Физика сверхпроводимости

Обращение в нуль электрического сопротивления постоянному току и выталкивание магнитного поля из объема. Изготовление сверхпроводящего материала. Промежуточное состояние при разрушении сверхпроводимости током. Сверхпроводники первого и второго рода.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 24.07.2010
Размер файла 3,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Если же образец имеет иную форму, то картина перехода в нормальном состоянии выглядит на много сложнее. С ростом поля наступает момент, когда оно становится равным критическому в каком-нибудь одном месте поверхности образца. Если образец имеет форму шара, то выталкивание магнитного поля приводит, к сгущению силовых линий в окрестности его экватора. Такое распространен поля является результатом наложения на равномерное внешнее магнитное поле с индукцией В0 магнитного поля, создаваемого экранизирующими токами.

Очевидно, распределение силовых линий магнитного поля обусловлено геометрией образца. Для простых тел этот эффект можно характеризировать одним числом, так называемым коэффициентом разложения. Если, например, тело имеет форму эллипсоида, одна из осей которая направлена вдоль поля, то на его экваторе поле становиться равным критическому при выполнении условия В0 с(1-N). При известном коэффициенте размагничивания N можно определить поле на экваторе. Для шара, например, N=? так что на экваторе его магнитное поле становиться равным критическому при индукции В0=?Вс. При дальнейшем увеличении поля сверхпроводимость у экватора должна разрушаться. Однако, весь шар не может перейти в нормальное состояние, так как в этом случае поле проникло бы во внутрь шара и стало бы равно внешнему, полю то есть оказалось ба меньше критического. Наступает частичное разрушение сверхпроводимости - образец расслаивается на нормальные и сверхпроводящие области. Такое состояние, когда в образце существуют нормальные и сверхпроводящие области, называется промежуточным.

Теория промежуточного состояния была разработана Л.Д.Ландау. согласно этой теории в интервале магнитных полей с индукцией В1 < B0 < Bс1 - индукция внешнего магнитного поля, в тот момент, когда в каком-нибудь месте поверхности поле, достигает значение индукции Вс ). Сверхпроводящие и нормальные области существуют, образуя совокупности чередующихся между собой зон разной электропроводности. Реальная картина намного сложнее. Структура промежуточного состояния, полученная при исследовании оловянного шара, (сверхпроводящие области заштрихованы). Соотношение между количествами S - и N - областей непрерывно меняется. С ростом поля сверхпроводящая фаза “тает” за счет роста N - областей и при индукции В = Вс исчезает полностью. И все это связано с образованием границ и их исчезновением между S - и N - областями. А образование всякой поверхности раздела между двумя различными состояниями должно быть связано с дополнительной энергией. Эта поверхностная энергия играет весьма существенную роль и является важным фактором. От неё, в частности зависит тип сверхпроводника.

В нормальной области магнитное поле равно критическому (или больше). На границе нет резкого перехода от полностью нормального к полностью сверхпроводящему. Магнитное поле проникает на расстояние в глубь сверхпроводящей области, и число сверхпроводящих электронов ns на единицу объема медленно повышается на расстояние равном некоторой характеристической длине, которую назвали длиной когерентности .

Глубина проникновения , имеет порядок 10-5…10-6см, длина когерентности для чистых металлов, по оценкам английского физика А.Пиппарда, должна быть порядка 10-4 см. Как показали советские физики В.Л.Гизбург и Л.Д.Ландау, поверхностная энергия будет положительной, еcли отношение \ меньше 1\2 0,7. Этот случай реализуется у веществ, которые принято называть сверхпроводниками I рода.

В сверхпроводниках первого рода поверхностная энергия положительна, то есть в нормальном состоянии выше, чем в сверхпроводящем. Если в толще такого материала возникает нормальная зона, то для границы между сверхпроводящей и нормальной фазами необходима затрата некоторой энергии. Это и объясняет причину расслоения сверхпроводника в промежуточном состоянии только на конечное число зон. При этом размеры S - и N - областей могут быть порядка миллиметра и их можно видеть даже невооруженным глазом, покрывая поверхность образца тонким магнитным и сверхпроводящим (диамагнитным) порошком. Магнитные порошки притягиваются полем и располагаются на выходе нормальных слоев.

Теперь о сверхпроводниках второго рода. Промежуточное состояние соответствует ситуации, когда расслоение < . В неоднородных металлах при наличии примесей дело обстоит иначе. Соударение электронов с атомами примесей могут привести к снижению длины когерентности . В таких материалах, как сплавы, длина когерентности оказывается меньше, и порой существенно - в сотни раз, чем глубина проникновения. Таким образом сверхпроводники второго рода - это сплавы и металлы с примесями. В сверхпроводниках второго рода поверхностная энергия отрицательна ( < ), поэтому создание границы раздела между фазами связано с освобождением некоторой энергии. Им энергетически выгодно пропустить в свой объем часть внешнего магнитного тока. Вещество при этом распадается на некую смесь из мелких сверхпроводящих и нормальных областей, границы которых параллельны направлению приложенного поля. Такое состояние принято называть смешанным.

3.5 Туннельные эффекты

В 1962 году появилась статья никому до того неизвестного автора Б. Джозефсона, в которой теоретически предсказывалось существование двух удивительных эффектов: стационарного и нестационарного. Джозефсон теоретически изучал туннелирование куперовских пар из одного сверхпроводника в другой через какой-либо барьер. Прежде чем переходить к первому эффекту Джозефсона, остановимся кратко на туннелирование электронов между двумя частями металла, разделенными тонким слоем диэлектрика.

Туннельный эффект известен в физики давно. Туннельный эффект -- это типичная задача квантовой механики. Частица (например, электрон в металле) подлетает к барьеру (например, к слою диэлектрика), преодолеть который она по классическим представлениям никак не может, так как ее кинетическая энергия недостаточна, хотя в области за барьером она со своей кинетической энергией вполне могла бы существовать. Напротив, согласно квантовой механике, прохождение барьера возможно. Частица с некоторой вероятностью может, как бы пройти по туннелю через классически запрещенную область, где ее потенциальная энергия как бы больше полной, то есть классическая кинетическая энергия как бы отрицательна. На самом деле с точки зрения квантовой механики для микрочастицы (электрона) справедливо соотношение неопределенностей ?х?р > h (x -- координата частицы, p -- ее импульс). Когда малая неопределенность ее координаты в диэлектрике ?х = d(d -- толщина слоя диэлектрика) приводит к большой неопределенности ее импульса ?р? h/ ?x, а следовательно, и кинетической энергии p2/(2m) (m -- масса частицы), то закон сохранения энергии не нарушается. Опыт показывает, что действительно между двумя металлическими обкладками, разделенными тонким слоем диэлектрика (туннельный переход), может протекать электрический ток тем больший, чем тоньше диэлектрический слой.

3.6 Эффект Джозефсона

Физические объекты, в которых имеет место эффект Джозефсона, сейчас принято называть джозефсоновскими переходами, или джозефсоновскими контактами, или джозефсоновскими элементами. Для того чтобы представить себе ту роль, которую играют джозефсоновские элементы в сверхпроводниковой электронике, можно провести параллель между ними и полупроводниковыми p--n-переходами (диоды, транзисторы) -- элементной базой обычной полупроводниковой электроники.

Джозефсоновские переходы представляют собой некоторую слабую электрическую связь между двумя сверхпроводниками. Фактически эту связь можно осуществить несколькими способами. Наиболее часто используемые на практике типы слабой связи -- это: 1) туннельные переходы, в которых связь между двумя пленочными сверхпроводниками осуществляется через очень тонкий (десятки ангстрем) слой изолятора между ними -- SIS-структуры; 2) «сандвичи» -- два пленочных сверхпроводника, взаимодействующие через тонкий (сотни ангстрем) слой нормального металла между ними -- SNS-структуры; 3) структуры типа мостик, представляющие собой узкую сверхпроводящую перемычку (мостик) ограниченной длины между двумя массивными сверхпроводящими электродами.

Носителями сверхтока в сверхпроводниках при T = 0 К являются все электроны проводимости n(0) (концентрация электронов). При повышении температуры появляются элементарные возбуждения (нормальные электроны), так что концентрация ns сверхпроводящих электронов при температуре Т

ns(T) = п(0)-пn(Т),

где nn( T) -- концентрация нормальных электронов при температуре Т. В теории Бардина, Купера и Шриффера (БКШ) при Т> Тс (критическая температура)

пs(Т) ? ?2(Т),

где 2Д(Т) -- ширина энергетической щели в спектре сверхпроводника. Все сверхпроводящие электроны образуют связанные парные состояния, получившие название куперовских пар электронов.

Куперовская пара объединяет два электрона с противоположными спинами и импульсами и, следовательно, имеет нулевой суммарный спин. В отличие от нормальных электронов, имеющих спин 1/2 и поэтому подчиняющихся статистике Ферми--Дирака, куперовские пары подчиняются статистике Бозе--Эйнштейна и конденсируются на одном, нижнем энергетическом уровне. Характерной особенностью куперовских пар является их относительно большой размер (порядка 1 мкм), намного превышающий среднее расстояние между парами (порядка межатомных расстояний). Такое сильное пространственное перекрытие пар означает, что вся совокупность (конденсат) куперовских пар является когерентной, то есть описывается в квантовой механике единой волновой функцией Ш = ?eix. Здесь Д -- амплитуда волновой функции, квадрат которой характеризует концентрацию куперовских пар, ч -- фаза волновой функции, i -- мнимая единица, P -- -1. В случае же нормальных электронов, являющихся ферми-частицами, согласно принципу Паули, энергии электронов никогда не равны друг другу точно. Поэтому из уравнения Шрёдингера для этих частиц следует, что скорости фаз дч/дt волновых функций нормальных электронов различаются, следовательно, фазы ч оказываются равномерно распределенными по тригонометрической окружности и при суммировании по всем частицам явная зависимость от ч исчезает.

Наличие слабой электрической связи между сверхпроводящими электродами обусловлено слабым перекрытием волновых функций куперовских пар электродов, в результате чего такой контакт также является сверхпроводящим, однако значение плотности его критического тока намного (на несколько порядков) меньше плотности критического тока электродов jc ? 108 A/см2. Для туннельных структур и структур типа сандвич плотность критического тока джозефсонов-ских переходов обычно лежит в диапазонеjjc от 101 до 104 A/см2, а их площадь Sв рамках современной технологии может быть сделана от нескольких сот до единиц квадратных микрон. Поэтому критический ток таких джозефсоновских элементов Ic = jjc . S может быть от нескольких миллиампер до нескольких микроампер.

В целом можно отметить три следствия проявления квантовой когерентности бозе-конденсата куперовских пар в макроскопическом масштабе:

1) сам факт наличия сверхтока в сверхпроводниках,

2) эффект Джозефсона в слабых связях сверхпроводников и, наконец,

3) эффект квантования магнитного потока.

Величина постоянного сверхтока через джозефсоновский переход является периодической функцией разности фаз волновых функций электродов ц =ч12, называемой джозефсоновской фазой. В некоторых важных случаях эта функция представляет собой синус, то есть

(11)

При отсутствии тока через джозефсоновский элемент ц = 0 (с точностью до 2рn), а при протекании максимального сверхтока, равного Ic, джозефсоновская фаза ц = р/2. При протекании постоянного тока I > Iс напряжение на контакте равно нулю. Это явление носит название стационарного эффекта Джозефсона.

Нестационарный эффект Джозефсона (dц/dt ? 0) имеет место, когда, например, через джозефсоновский элемент пропускается ток I > Ic. В этом случае в переносе тока I через джозефсоновский переход кроме сверхтока Is будет участвовать также нормальная компонента In, которая представляет собой ток нормальных электронов nn(T). Таким образом, I= Is + In. Протекание нормальной и, следовательно, диссипативной компоненты тока обусловливает появление на джозеф-соновском переходе падения напряжения

V= ЙnRn ,

где Rn -- так называемое нормальное сопротивление перехода. В силу основного соотношения Джозефсона

в этом случае будут иметь место неограниченное нарастание (или убывание, если V < 0) джозефсоновской фазы ц и, следовательно, периодическое изменение во времени сверхтока Is. Таким образом, при пропускании через джозефсоновский элемент постоянного тока | Д > > Ic этот ток будет переноситься двумя компонентами тока Is и In, которые, согласно (3), осциллируют (в про-тивофазе) во времени с частотой, пропорциональной постоянной составляющей V падения напряжения на джозефсоновском переходе:

Напряжение на джозефсоновском элементе V(t) = In(t)Rn будет также осциллировать во времени с частотой Щ и этот процесс носит название джозефсоновской генерации. Такое состояние джозефсоновского перехода называется резистивным. Следует подчеркнуть, что, несмотря на наличие падения напряжения на джозефсоновском переходе, сверхпроводимость электродов, образующих джозефсоновский элемент, в резистивном состоянии сохраняется.

Если джозефсоновский элемент обладает заметной собственной емкостью С (например, туннельный джозефсоновский переход), то в резистивном состоянии ток через него будет представлять собой сумму трех компонент: Is, In и емкостной компоненты тока (тока смещения)

Наиболее простой моделью джозефсоновских элементов, хорошо описывающей структуры типа мостик и S--N--S, является резистивная модель, в которой нормальное сопротивление Rn является постоянной величиной, не зависящей от напряжения V.

3.7 Вольт-амперная характеристика

Наиболее важной (и вместе с тем наиболее легко измеряемой) характеристикой джозефсоновского элемента является его вольт-амперная характеристика (ВАХ), представляющая собой зависимость среднего напряжения на джозефсоновском элементе V от задаваемого через него тока I. Эта характеристика отражает внутреннюю динамику джозефсоновского перехода, непосредственное наблюдение которой крайне затруднено из-за очень высокой частоты джозефсоновской генерации: характерная джозефсоновская частота, соответствующая постоянной составляющей напряжения на джозефсоновском элементе, равной характерному напряжению Vc = IcRn, находится в диапазоне десятков и сотен гигагерц. Вольт-амперная характеристика джозефсоновского элемента состоит из сверхпроводящей или S-ветви, для которой V = 0, и двух резистивных или R-ветвей, где V ? 0. При отсутствии емкости R-ветви представляют собой в резистивной модели ветви гиперболы (рис. 8, а):

38

При V > 0 характер осцилляций напряжения имеет ярко выраженный импульсный вид, а по мере увеличения частоты джозефсоновской генерации ее форма приближается к синусоидальной при неизменной амплитуде осцилляций.

Учет конечной емкости джозефсоновского перехода, относительное влияние которой характеризуется параметром Стьюарта--Маккамбера в = (2е/ћ)IcRn2С, приводит к неоднозначной, гистерезисной ВАХ (рис. 8,б). По мере увеличения в увеличивается диапазон токов I<Ic, в котором возможны два устойчивых состояния: сверхпроводящее и резистивное. Кроме того, шунтирующее действие емкости обусловливает монотонное уменьшение амплитуды осцилляций напряжения по мере увеличения частоты джозефсоновской генерации.

В случае туннельного джозефсоновского перехода его ВАХ (рис. 8, в) характеризуется двумя основными особенностями: 1) глубоким гистерезисом вследствие больших значений емкости С и 2) специфической формой резистивной ветви вследствие особенностей в условиях туннелирования квазичастиц (нормальных электронов) в такой структуре из-за специфики энергетического спектра сверхпроводников.

Принципиально новые эффекты возникают, когда мы замыкаем электроды джозефсоновского перехода сверхпроводящей цепью. Простейшей системой такого рода является сверхпроводящее кольцо, содержащее джозефсоновский переход (рис. 9, а). Обычно такую систему называют одноконтактным сверхпроводящим квантовым интерферометром.

В стационарном состоянии, когда ток через джозефсоновский элемент дается выражением (11), получаем уравнение интерферометра

ц+l· sinц = цe, (17)

38

которое определяет связь между полным и внешним потоками магнитного поля через кольцо интерферометра. При l<<1с зависимость ц(цe) почти линейна: ц=цe.

38

При увеличении параметра l связь ц и цe все более отклоняется от линейной, и при l>1с зависимость ц(цe) становится неоднозначной (рис. 10). Наконец, при l>1с система имеет примерно N?lустойчивых стационарных состояний, в которых значения потока близки к nФ0, таким образом, это эффект квантования магнитного потока. Если бы сверхпроводящее кольцо было сплошным, то фаза ц должна была бы точно равняться нулю или 2рn (так как ц есть разность фаз сверхпроводящего конденсата в практически совпадающих точках) и тогда следовало бы точное равенство магнитного потока Ц целому числу квантов. В случае кольца с джозефсоновским переходом значения ц могут быть отличными от нуля или 2рn и поэтому квантование потока только приближенное.

В силу эффекта Мейснера стенки сверхпроводящего кольца не могут пропускать через себя силовые линии магнитного поля. Поэтому число квантов потока n в сплошном кольце остается замороженным. Если теперь изменить внешнее поле, то это возбудит незатухающий ток в кольце Д/=ДЦe/L, как раз такой, чтобы полный поток оставался равным целому числу квантов. Если же в кольцо включен джозефсоновский переход с конечным критическим током, то при |I|>Ic джозефсоновский элемент переходит в резистивное состояние и в кольцо через него врываются один или несколько квантов Фо. Разница между Ц и Фе при этом снижается, значение тока падает ниже критического значения, и джозефсоновский элемент возвращается в сверхпроводящее состояние, что приводит к замораживанию нового целого числа квантов потока. Проникновение в интерферометр кванта магнитного потока через джозефсоновский переход сопровождается генерацией на нем короткого одно квантового импульса напряжения с "площадью"

38

38

Включение в сверхпроводящее кольцо не одного, а двух джозефсоновских переходов вызывает возникновение новых особенностей макроскопической квантовой интерференции в сверхпроводниках. Наиболее важной из этих особенностей является то, что среднее напряжение между двумя частями такого кольца (см.рис. 9б) V1=V2=V уже может быть отлично от нуля. Поэтому такая система, двухконтактный интерферометр, может характеризоваться своей ВАХ V(Ie), причем вид ВАХ существенно зависит от величины потока Фе, приложенного к кольцу внешнего магнитного поля. Т.о. здесь квантовая интерференция может наблюдаться и на постоянном токе. При отсутствии транспортного (от внешнего источника) тока Ie через двухконтактный интерферометр имеет место квантование магнитного потока, близкое по своему характеру к тому, что наблюдается в одноконтактном интерферометре.

Рассмотрим теперь ВАХ двухконтактного интерферометра и ее зависимость от Фе. Поскольку джозеф-соновские переходы включены параллельно друг другу по отношению к транспортному току, критический ток интерферометра Ic при отсутствии внешнего магнитного поля равен сумме критических токов джозефсоновских переходов Ic1 и Ic2.

При задании внешнего магнитного поля по кольцу интерферометра будет течь круговой экранирующий ток IM, который в одном из джозефсоновских переходов будет направлен в ту же сторону, что и транспортный ток, а в другом -- противоположно транспортному току. Это приводит к тому, что критический ток интерферометра, как и мейсснеровский ток IM, имеет периодическую зависимость (с периодом Фо) от внешнего магнитного потока Фе. ВАХ двухконтактного интерферометра по своему виду близка к ВАХ его джозефсоновских элементов, однако отличается наклоном асимптоты: / = V/R, где R-1 = Rn1-1 + Rn2-1, а также тем, что критический ток интерферометра есть не постоянная величина, а периодическая функция потока внешнего магнитного поля. Поэтому при изменении Фе имеет место также периодическая модуляция всей ВАХ (рис.11). При этом максимальное смещение испытывают участки резистивных ветвей, непосредственно примыкающие к S-ветви ВАХ.

3.8 Сквиды

Если зафиксировать значение транспортного тока через двухконтактный интерферометр на резистивной ветви ВАХ, на участке, непосредственно примыкающем к S-ветви, то есть задать I?(Ic)max, то среднее напряжение на интерферометре V будет периодически изменяться по мере роста (убывания) внешнего магнитного потока (см. рис. 11), то есть будет иметь место преобразование магнитный поток Фе> напряжение V. Зависимость V(Фе) называется сигнальной характеристикой двухконтактного интерферометра при его использовании в качестве датчика устройства, называемого сквидом постоянного тока. Название "сквид" происходит от английского SQUID: Superconducting Quantum Interference Device.

Сквид постоянного тока включает в себя также усилитель выходного сигнала датчика и цепь следящей (интегрирующей) обратной связи, посредством которой в кольцо интерферометра задается магнитный поток ФFB, компенсирующий изменение внешнего магнитного потока (Фе+ФFB=const) для фиксации рабочей точки датчика сквида в точке сигнальной характеристики с максимальной крутизной преобразования з = |дV/дФе|. Выходным сигналом сквида в режиме работы с замкнутой обратной связью служит сигнал цепи обратной связи, пропорциональный (с обратным знаком) изменению внешнего потока Фе.

Благодаря очень высокой эффективности преобразования Фе > V двухконтактным интерферометром сквиды постоянного тока представляют собой приборы, имеющие уникально высокую чувствительность к магнитному полю. Поскольку чувствительность сквида определяется, с одной стороны, крутизной преобразования з, а с другой -- уровнем внутренних флуктуаций, эффективная мощность которых пропорциональна частотной полосе пропускания прибора Д/, чувствительность таких устройств принято характеризовать минимально обнаружимыми значениями магнитного потока дФе и энергии, отнесенными к единичной полосе Дf=1Гц. По определению, дЕ равна приведенной к входу сквида энергии внутренних флуктуаций W, деленной на полосу пропускания Д/ Например, если V2f -- средний квадрат напряжения шумов на выходе сквида, то соответствующая ему энергия шумов, приведенная к входу сквида, W = V2f з-2/2L,

и, следовательно:

Лучшие современные сквиды постоянного тока гелиевого уровня охлаждения (T=4,2K) имеют чувствительность по энергии и магнитному потоку соответственно, где h=6,64 10-34 Дж/Гц--постоянная Планка. Полученное рекордное разрешение по энергии дЕ?h (при T=0,9K) лишь в 2 раза отличается от квантового предела чувствительности дEq=h/2.

Одноконтактные интерферометры позволяют, в свою очередь, создавать на их основе сквиды переменного тока. Поскольку среднее напряжение на одноконтактном интерферометре всегда равно нулю, в качестве датчика используется одноконтактный интерферометр, индуктивно связанный с колебательным контуром, который находится под воздействием внешнего периодического сигнала (сигнала накачки) на частоте, близкой к резонансной частоте контура (см. рис. 9, в). Выходным сигналом датчика является амплитуда (точнее, изменение амплитуды) напряжения на контуре Va, которая представляет собой периодическую функцию внешнего потока Фе. В безгистерезисном режиме работы чувствительность сквида переменного тока может быть близка к указанной выше чувствительности сквидов постоянного тока.

Основные применения сквидов определяются их уникальной чувствительностью. В первую очередь это применение в биологии и медицине: магнитокардиография и магнитоэнцефалография. Т.к. магнитокардиограф на основе сквида позволяет измерять бесконтактным образом кардиограмму сердца ребенка, находящегося в утробе матери, то есть контролировать работу сердца ребенка задолго до его рождения. Современные многоканальные (до 200 каналов) томографы на основе сквидов, обладающие чувствительностью от 2 до 5ФТ/vГц, позволяют бесконтактным образом получать детализированную информацию о картине магнитного поля и пространственной локализации его источников в мозге человека и животных, низким энерговыделением и малыми временами процессов переключения. Именно эти свойства и позволяют создавать на их основе сверхпроводниковые аналоговые, аналого-цифровые и цифровые устройства, отличающиеся рекордно высокой чувствительностью и высокими значениями рабочих частот.

3.9 Влияние кристаллической решетки

Если в самых общих чертах попробовать себе представить строение твердых тел (так как твердые тела в основном кристаллы, то можно нарисовать следующую картину: огромная совокупность одинаковых атомов или молекул, которые во всех трех измерениях расположены в строгом порядке, образуя кристаллическую решетку.

Эта строгая пространственная периодичность в структуре кристалла - характерная его черта. Конечно в реальном кристалле этот строгий порядок нарушается, и эти нарушения означают наличие дефектов. И ещё одна характеристика кристалла: образующие его атомы между собой взаимодействуют.

Исчезновение электрического сопротивления, экранирование внешнего магнитного поля, скачек теплоемкости при сверхпроводящем фазовом переходе - все эти свойства относятся к электронам. Кристаллическая решетка представляет собой как бы сосуд, емкость, в которую налита электронная «жидкость». И вот на первый взгляд при сверхпроводящем переходе меняется свойство жидкости, а сосуд здесь ни причем.

Оказывается, что это неверно. Действительно, в большинстве случаев сверхпроводящий переход почти не влияет на решетку. Но вот кристаллическая решетка на сверхпроводимость влияет, более того определяет сверхпроводимость, причем исключение из этого закона не обнаружено.

Существует много видов кристаллической решетки. Часто одно и то же вещество может иметь разную кристаллическую решетку, то есть одни и те же атомы могут быть расположены друг относительно друга по разному.

Переход от одного типа решетки к другому происходит при изменении либо температуры, либо давление, либо ещё какого-нибудь параметра. Такой переход, как и возникновение сверхпроводимости и плавление является фазовым. Влияние кристаллической решетки на сверхпроводимость продемонстрировал открытый в 1950г. изотоп - эффект. При замене одного изотопа на другой вид кристаллической решетки не меняется, «электронная жидкость» вообще не затрагивается меняется только сила атомов. Оказалось, что от массы атомов зависит Тс многих сверхпроводников. Чем меньше сила, тем больше Тс. Более того вид этой зависимости позволили утверждать, что Тс пропорциональна частоте колебаний атомов решетки, а это сыграло существенную роль в понимании механизма сверхпроводимости.

3.10 Изотопический эффект

В 1905г. был открыт ток называемый изотопическим эффектом. Изучая сверхпроводимость у различных изотопов ртути и олова, физики обратили внимание на то обстоятельство что критическая температура Тк перехода в сверхпроводящее состояния и масса изотопа М связана соотношением ТkМ1\2=const.

Изотопы - это атомы одного и того же элемента, в ядрах которых содержаться одинаковое число протонов, но разное число нейтронов. Они имеют одинаковый заряд, но разную массу. Масса изотопа является характеристической решетки кристалла и может влиять на её свойства. От массы зависит, например, частота колебаний в решетки. Она, так же как и критическая температура, обратно пропорциональна массе: М-1\2. Значит, если массу М устремить к бесконечности, то температура перехода Тк будет стремиться к нулю, то есть чем тяжелее атомы, тем медленнее они колеблются и тем труднее (при меньших температурах) получается идеальная проводимость, а чем выше энергия нулевых колебаний, тем легче.

Таким образом, изотопический эффект указывая на то что колебания решетки участвуют в создании сверхпроводимости! Сверхпроводимость, которая является свойством электронной системы металла, оказывается связанной с состоянием кристаллической решетки. Следовательно, возникновение эффекта сверхпроводимости, обусловлено взаимодействием электронов с решеткой кристалла.

4. Микроскопическая теория сверхпроводимости Бардина - Купера - Шриффера (БКШ) и Боголюбова

4.1 Теория БКШ

Многие ученые разных стран внесли вклад в создании теории сверхпроводимости. Первым из них был советский ученый Л.Д. Ландау. Он первым сопоставил два «странных» явления - сверхпроводимость и сверхтекучесть электронной жидкости.

В 1950г.В.Л. Гинзбург и Л.Д. Ландау предложили феноменологическую теорию сверхпроводимости, позволившую рассмотреть ряд существенных свойств сверхпроводников, описать их поведение во внешнем поле. Теория эта была обоснована Л.П. Горьковым, разработавшим метод исследования сверхпроводящего состояния.

Следующий шаг был сделан почти одновременно советским физиком академиком Н.Н. Боголюбовым и американским физиком Бардиным, Купером и Шриффером. Американские ученые успели несколько раньше поставить последнюю точку.

Сверхпроводимость, как оказалось, проявляется в тех случаях, когда электроны в металле группируются в пары, взаимодействующие через кристаллическую решетку. Она тесно связана между собой, так что разорвать пару и разобщить электроны через трудные мощные связи позволяют электронам двигаться без всякого сопротивления сквозь решетку кристалла.

Исходя из этих представлений Бардин, Купер и Шриффер в 1957г. построили долгожданную микроскопическую теория сверхпроводимости, за которую они в 1972г.были удостоены нобелевской премии. Эта теория, известная сегодня под названием «теория БКШ», не только позволила с уверенностью сказать, что механизм сверхпроводимости ясен, но и впервые привела к установлению связи между критической температурой Тс и параметрами металлов.

4.2 Энергетическая щель

Металл представляет собой систему колеблющихся положительно заряженных ионов, образующих кристаллическую решетку, и систему относительно свободных, как говорят, "коллективизированных" электронов. Поскольку электроны имеют собственный механический момент (спин), равный 1/2, по принципу Паули в каждом квантовом состоянии могут находиться только два электрона с противоположно направленными спинами. А так как концентрация n коллективизированных электронов в металлах велика (n ~ 1023 -- 1024 см?3), верхним заполненным энергетическим состояниям соответствует очень большая кинетическая энергия еF = mVF2/2? (1 -- 10) эB. Энергетический спектр электронов, то есть схема расположения уровней энергии, которые могут занимать электроны, квазинепрерывен (уровни расположены очень близко один к другому, рис. 4а). В некотором смысле, электроны ведут себя, как жидкость, заполняющая сосуд: чем больше жидкости, тем выше ее уровень. Поэтому электроны в металле хаотически движутся не со скоростями, определяемыми энергией теплового движения kТ, а с "космическими" скоростями VF ~ 108 см/с, соответствующими энергии еF. Между электронами действуют силы кулоновского отталкивания, которые частично экранируются положительным зарядом ионов.

В электрическом поле Е электроны ускоряются в направлении поля и возникает ток. Плотность тока j = neVE определяется концентрацией электронов n, их зарядом е = 1,6· 10?19Кл и средней скоростью VE направленного (упорядоченного) движения под действием электрического поля Е. Ускоренные электроны, то есть электроны, у которых скорость VE увеличивается в поле Е, рассеиваются на тепловых колебаниях решетки, примесях и других неоднородностях, передавая решетке приобретенную в электрическом поле кинетическую энергию:

38

которая выделяется в виде джоулева тепла (стрелки на рис. 12а). После рассеяния электроны возвращаются к своему начальному значению энергии еF. Поскольку электроны в металлах никак не связаны между собой, а энергетический спектр квазинепрерывен, любые сколь угодно малые значения энергии, приобретенные в Е, могут при рассеянии передаваться решетке.

Отсутствие электрического сопротивления в сверхпроводящем состоянии указывает на то, что по каким-то причинам электроны перестают рассеиваться кристаллической решеткой. Речь идет о токах 0 <js <jс = neVc, а следовательно, скоростях Vs направленного движения сверхпроводящих электронов 0 < Vs < Vc и соответственно изменениях энергии 0 < mVFVs< mVFVc. Это означает, что в энергетическом спектре сверхпроводника возникает область энергий над энергией еF, шириной ~mVFVC, в которой электроны не рассеиваются решеткой (рис. 12б). Электроны начинают рассеиваться лишь после того, как увеличение кинетической энергии их движения m VF Vs становится больше m VF Vc. Исходя из самых общих соображений, можно предположить, что рассеяния не происходит потому, что при таких значениях энергии оно энергетически невыгодно, то есть приводит к увеличению общей энергии (кинетической и потенциальной) коллективизированных электронов. Если рассматривать только кинетическую энергию (как в нормальных металлах), то при рассеянии она всегда уменьшается и, таким образом, процессы рассеяния энергетически выгодны при любых значениях энергии электронов.

(19)

Чтобы они стали невыгодны (и не происходили бы), нужно, чтобы электроны в области еF < е < mVFVc обладали отрицательной потенциальной энергией, то есть притягивались бы друг к другу, и эта энергия исчезала бы при рассеянии. Обозначим модуль этой энергии ?. Чтобы рассеяние в указанной области было энергетически невыгодно, ? должно быть равно

?=mVFVc.

Рассмотрим рассеяние электрона с энергией еF + е' (точка А на рис. 12б). При рассеянии его кинетическая энергия уменьшится (левая красная стрелка), но одновременно возрастет потенциальная энергия на ? (правая красная стрелка) и суммарная энергия увеличится. Рассеяние становится энергетически выгодным только при значениях е' > ?.

В изолированной электронной системе силы притяжения возникнуть не могут. Для их возникновения необходимо участие другой системы, с которой электроны могут взаимодействовать. Существо этого эффекта можно проиллюстрировать на следующей наглядной модели. Положим на установленную горизонтально упругую мембрану тяжелый шар. Под действием силы тяжести мембрана прогнется. Если теперь положить на мембрану второй шар, то пока расстояние между шарами велико, никаких сил взаимодействия между ними не возникает. Но как только один шар попадает в область упругой деформации мембраны, создаваемой вторым шаром (оба шара скатываются в одну лунку), на шары со стороны мембраны начинают действовать силы, стремящиеся сблизить шары до касания. При соприкосновении шаров энергия системы "мембрана?шары" становится минимальной. Величина "силы притяжения" определяется величиной изменения потенциальной энергии второго шара в результате упругой деформации мембраны, создаваемой его партнером. Чем мягче мембрана, тем сильнее шары связываются друг с другом. Заметим, что если мембрана абсолютно жесткая (не деформируемая), то шары с мембраной не взаимодействуют и сил притяжения не возникает.

38

Допустим теперь, что один шар движется, а создаваемая им деформация (например, в результате инерционности мембраны) отстает во времени и следует за шаром на некотором расстоянии. В этом случае потенциальная энергия системы будет минимальна, когда второй шар движется за первым на определенном расстоянии, находясь в создаваемой им лунке. Ситуация выглядит так, как будто один шар коррелирует движение второго.

Предположим, наконец, что по мембране хаотически движется несколько шаров и их кинетическая энергия такова, что они не локализуются в деформационных лунках. Однако каждый раз, когда какой-нибудь из шаров проходит через лунку, созданную одним из его коллег, его потенциальная энергия понижается на то время, пока он в ней находится. Величина общего понижения потенциальной энергии системы таких движущихся шаров будет, очевидно, определяться величиной изменения потенциальной энергии при каждом попадании в лунку и частотой таких попаданий.

Аналогичный процесс происходит при взаимодействии электронов с ионной решеткой (рис. 13). Электрон, пролетая между соседними ионами, притягивает ионы к себе (на рисунке штриховыми линиями обозначено положение смещенных ионов), в результате чего возникает поляризация решетки -- область сжатия ионов, обладающая избыточным положительным зарядом. Время поляризации определяется периодом колебания атомов, то есть происходит за время T0/4 ? 10?13с (при частоте колебания атомов н0 ~ 1013 с0?1). За это время электрон удалится на расстояние о~ VFТ0/4 = 108 · 10?13 = 10?5 см, то есть на ~ 1000 Е. Когда другой электрон попадает в область поляризации (потенциальную яму), созданную первым электроном, его потенциальная энергия понижается. Можно также считать, что оба электрона притягиваются к области избыточного (поляризационного) положительного заряда и если силы притяжения к нему превышают силы экранированного кулоновского отталкивания этих электронов, возникает результирующая сила притяжения. Такое взаимодействие принято называть электрон-фононным. (Фононы -- квазичастицы, описывающие энергетический спектр колебаний кристаллической решетки.)

В 1956 году Куппер показал, что при наличии сколь угодно слабого притяжения между электронами в металле могут образоваться связанные состояния пар электронов, получившие название купперовских пар. Расстояние о ~ 1000 Е, на котором взаимодействуют два электрона, называется длиной корреляции (или длиной когерентности); оно определяет размер пар. Феномен Куппера стал ключом к пониманию природы сверхпроводимости и созданию теории БКШ. В самом деле, каждый электрон в паре Куппера не может рассеяться без того, чтобы пара не разрушилась. Но для того, чтобы разрушить пару, нужно преодолеть энергию связи, которую обычно обозначают 2? (? на каждый электрон). Таким образом, критическая скорость Vc в формуле (19) определяется энергией связи пар:

(20)

Выше говорилось о том, что "энергия упорядочения" при переходе в сверхпроводящее состояние соответствует энергии теплового движения, то есть ?~кТс. Подставляя в (20) ? = с для Тс = 10 К , VF = 10с8 см/с, m = 9,1 · 10?28 г, находим критическую скорость сверхпроводящих электронов: V?(103-104)см/с.

При концентрации электронов n = 1023 см?3 критической скорости Vc соответствует плотность критического тока

jc = enVc ? (107 - 108) А/см2.

Полученное значение хорошо согласуется с рассчитанным по правилу Сильсби (4).

4.3 Бесщелевая сверхпроводимость

В первые годы после создания теории БКШ наличие энергетической щели в электронном спектре считалось характерным признаком сверхпроводимости без энергетической щели - бесщелевая сверхпроводимость.

Как было впервые показано А.А. Абрикосовым и Л.П. Горьковым при введении магнитных примесей критическая температура эффектно уменьшается. Атомы магнитной примеси обладают спином, а значит спиновым магнитным моментом. При этом спины пары оказываются как бы в параллельном и антипараллельном магнитном поле примеси. С увеличением концентрации атомов, магнитной примеси в сверхпроводнике все большее число пар будет разрушаться, и в соответствии с этим ширина энергетической щели будет уменьшаться. При некоторой концентрации n, равной 0,91nкр (nкр - значение концентрации, при которой полностью исчезает сверхпроводящее состояние), энергетическая щель становиться равной нулю.

Можно предположить, что появление бесщелевой сверхпроводимости связано с тем, что при взаимодействии с атомами примеси часть пар оказывается временно разорванными. Такому временному распаду пары соответствует появление локальных энергетических уровней в пределах самой энергетической щели. С ростом концентрации примесей щель все больше заполняется этими локальными уровнями до тех пор, пока не исчезнет совсем. Существование электронов образовавшихся при разрыве пары, приводит к исчезновению энергетической щели, а оставшиеся куперовские пары обеспечивают равенство нулю электронного сопротивления.

Мы приходим к выводу, что существование щели само по себе вовсе не является обязательным условием проявление сверхпроводящего состояния. Тем более что бесщелевая сверхпроводимость, как оказалось явление не столь уж и редкое. Главное - это наличие связанного электронного состояния - куперовской пары. Именно это состояние может проявлять сверхпроводящие свойства и в отсутствии энергетической щели. «Парные корреляции - писал один из создателей теории БКШ Шриффер, - на которых основана теория спаривания электронов, наиболее существенных для объяснения основных явлений наблюдаемых в сверхпроводящем состоянии».

5. Термодинамика перехода в сверхпроводящее состояние

Пусть длинный цилиндр из сверхпроводящего проводника I рода помещен в однородное продольное поле Н0. Найдем значение этого поля Нс, при котором произойдет разрушение сверхпроводимости.

При Н0с существует эффект Мейснера, т.е. В=0, и магнитный момент единицы объема цилиндра М.

М = -Н0 /4 (21)

При изменении внешнего магнитного поля Н0 на dН0 источник магнитного поля совершит работу названой единицей объема сверхпроводника, равную

МdН0 = НdН/4

Следовательно, при изменеии поля от 0 до Н0 источник поля совершает работу. Эта работа запасена в энергии сверхпроводника, находящегося в магнитном поле Н0 таким образом, если плотность свободной энергии сверхпроводника в отсутствии магнитного поля равна Fs0, то плотность свободной энергии сверхпроводников в магнитном поле

FsH = Fs0 + Н02/8 (22)

Переход в нормальное состояние произойдет, если свободная энергия FsH превысит уровень плотности энергии нормального металла: FsH=FH при Н0c.

Fn - Fs0 = Н c2/8 (23)

Из этой формулы следует, что критическое поле массивного материала является мерой того, на сколько сверхпроводящее состояние является мерой того, на сколько сверхпроводящее состояние является энергетически более выгодным, чем нормальное, то есть в какой мере свободная энергия сверхпроводящего состояния меньше свободной энергии нормального состояния. Поле Нc часто называют термодинамическим магнитным полем и обозначают Нcm.

Обратимся теперь к вопросу об энтропии сверхпроводника. Согласно первому началу термодинамики,

дQ = дA + dU (24)

где дQ - проращивание тепловой энергии рассматриваемого тела, дA-работа, совершаемая единицей объема этого тела над внешними телами, dU-приращение его внутренней энергии. По определению свободная энергия

F = U - TS, (25)

где Т - температура тела, а S - энергия энтропия. Тогда

dF = dU - TdS - SdT. (26)

Поскольку при обратном процессе дQ = TdS , имеем

dU = TdS - дA, (27)

dF = - дA - SdT. (28)

Эта формула позволяет получить ряд важных физических следствий.

1)Согласно теореме Нернста энтропия всех тел при Т = 0 рана нулю. Это значит, что кривая зависимости Нcm (Т) при Т=0 имеет нулевую производную.

2)Из эксперимента видно, что зависимость Нcm(Т) - монотонно спадающая с увеличением Т кривая, то есть что во всем интервале температур от 0 до Тc величина. => в этом интервале температур Ss<Sn.

3)Поскольку при Т=Тc после Нcm = 0, то Ss = Sn при Т= Тc.

Проведенный анализ позволяет сделать ряд существенных выводов.

1) Сверхпроводящее состояние является более упорядочным, чем нормальное, так как его энтропия меньше.

2) Переход при Т=Тc происходит без поглощения или выделения скрытой теплоты, т.к. Ss=Sn при Т=Тc. => переход при Т =Тc - переход второго рода.

При Т<Тc переход из сверхпроводящего состояния в нормальное может происходить под действием магнитного Перенос тепла в металле осуществляется свободными электронами и колебаниями решетки. И электропроводность, и теплопроводность обусловлены процессами рассеяния электронов. Поэтому наличие сверхпроводимости означает отсутствие обмена энергией электронов проводимости с решеткой. В сверхпроводнике по мере понижения температуры все большее число свободных электронов связывается в куперовские пары и тем самым выключается из процессов обмена энергии, а значит, вклад электронов в теплопроводность постоянно уменьшается. При низких температурах в сверхпроводнике не остается свободных электронов, и он ведет себя как изолятор: электронная система просто полностью выключается из теплового баланса.

Значительная разность теплопроводности металла в нормальном состоянии и сверхпроводящем используется для создания сверхпроводящего теплового ключа - устройства, позволяющего разрывать тепловой контакт между источником холода и охлаждаемым телом в экспериментах в области низких температур. Конструктивно сверхпроводящий ключ выполняется в виде отрезка тонкой проволоки (диаметром 0,1-0,3мм) из тантала или свинца длинной от нескольких единиц до нескольких десятков сантиметров, соединяющего исследуемое тело с хладопроводом. На проволоку наматывается медная катушка, по которой пропускается ток, достаточный для создания магнитного поля, критического значения. При пропускании тока сверхпроводимость разрушается магнитным полем, и ключ открывается.


Подобные документы

  • Сверхпроводники. У начала пути. Сверхпроводники первого второго рода. Абрикосовские вихри. Свойства сверхпроводников. Микроскопическая теория сверхпроводимости Бардина - Купера - Шриффера (БКШ) и Боголюбова. Теория Гинзбурга - Ландау.

    курсовая работа [60,1 K], добавлен 24.04.2003

  • Понятие и природа сверхпроводимости, ее практическое применение. Характеристика свойств сверхпроводников 1-го и 2-го рода. Сущность "теории Бардина-Купера-Шриффера" (БКШ), объясняющей явление сверхпроводимости металлов при сверхнизких температурах.

    реферат [42,2 K], добавлен 01.12.2010

  • Открытие явления сверхпроводимости. Первые экспериментальные факты. Эффект Мейснера, изотопический эффект. Теория сверхпроводимости. Щель в энергетическом спектре. Образование электронных пар. Квантование магнитного потока (макроскопический эффект).

    дипломная работа [2,7 M], добавлен 24.08.2010

  • Великие физики, которые прославились, занимаясь теорией и практикой сверхпроводимости. Изучение свойств вещества при низких температурах. Реакция сверхпроводников на примеси. Физическая природа сверхпроводимости и перспективы ее практического применения.

    презентация [2,7 M], добавлен 11.04.2015

  • Фазами называют однородные различные части физико-химических систем. Фазовые переходы первого и второго рода. Идеальные и реальный газы. Молекулярно – кинетическая теория критических явлений. Характеристика сверхтекучести и сверхпроводимости элементов.

    реферат [32,3 K], добавлен 13.06.2008

  • Открытие особенностей изменения сопротивления ртути в 1911 году. Сущность явления сверхпроводимости, характерного для многих проводников. Наиболее интересные возможные промышленного применения сверхпроводимости. Эксперимент с "магометовым гробом".

    презентация [471,0 K], добавлен 22.11.2010

  • Гипотезы монополя Дирака. Магнитный заряд электрона, который тождественен кванту магнитного потока, наблюдаемого в условиях сверхпроводимости. Анализ эффекта квантования магнитного потока. Закон Кулона: взаимодействие электрического и магнитного заряда.

    статья [205,4 K], добавлен 09.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.