Физика сверхпроводимости

Обращение в нуль электрического сопротивления постоянному току и выталкивание магнитного поля из объема. Изготовление сверхпроводящего материала. Промежуточное состояние при разрушении сверхпроводимости током. Сверхпроводники первого и второго рода.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 24.07.2010
Размер файла 3,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

38

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

Ульяновский государственный педагогический университет

имени И.Н. Ульянова

Кафедра общей физики

Физика сверхпроводимости.

квалификационная работа

Выполнил:

студент дневного отделения

физико-математического

факультета

Ульяновск 2010г.

Содержание:

ВВЕДЕНИЕ

1. СВЕРХПРОВОДНИКИ. У НАЧАЛА ПУТИ

1.1Чудеса вблизи абсолютного нуля

1.2 У начала пути

1.3 Лейден, 1911г. открытие сверхпроводимости

2. ОСНОВНЫЕ ПОНЯТИЯ

2.1 Конечные температуры (критические)

2.2 Критический ток

2.3 Эффект Мейснера

2.4 Глубина проникновения. Уравнение Лондонов

2.5 Сверхпроводники первого рода и второго род

2.6 Критическое магнитное поле

3.СВОЙСТВА СВЕРХПРОВОДНИКОВ

3.1 Нулевое сопротивление

3.2 Электрическое сопротивление сверхпроводников

3.3 Сверхпроводники в магнитном поле

3.4 Промежуточное состояние при разрушении сверхпроводимости током

3.5 Туннельные эффекты

3.6 Эффект Джозефсона

3.7 Вольт-амперная характеристика

3.8 Сквид

3.9 Влияние кристаллической решетки

3.10 Изотопический эффект

4. МИКРОСКОПИЧЕСКАЯ ТЕОРИЯ СВЕРХПРОВОДИМОСТИ БАРДИНА - КУПЕРА - ШРИФФЕРА (БКШ) И БОГОЛЮБОВА

4.1 Теория БКШ

4.2 Энергетическая щель

4.3 Бесщелевая сверхпроводимость

5. ТЕРМОДИНАМИКА ПЕРЕХОДА В СВЕРХПРОВОДЯЩЕЕ СОСТОЯНИЕ

6. ТЕОРИЯ ГИНЗБУРГА - ЛАНДАУ

7. ПРИМЕНЕНИЕ СВЕРХПРОВОДИМОСТИ

8.ПРАКТИЧЕСКАЯ ЧАСТЬ

8.1 Способ изготовления сверхпроводящего материала

8.2 Ход эксперимента и полученные результаты

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

ПРИЛОЖЕНИЕ.

Введение

Сверхпроводимость - физическое явление, наблюдаемое у некоторых веществ (сверхпроводников), при охлаждении их ниже определенной критической температуры Tс, и состоящее в обращении в нуль электрического сопротивления постоянному току и выталкивания магнитного поля из объема образца (эффект Мейснера). Явление открыто в 1911 г. Х. Каммерлинг-Оннесом. Изучая температурный ход электросопротивления Hg, он обнаружил, что при температуре ниже 4,22К Hg практически теряет сопротивление.

Начав изучение физики с явлений в макроскопических системах, человек приобретает ряд «классических предрассудков», ему очень хочется сохранить для микромира понятие размера, траектории, цвета и т.п. Мои наглядные представления являются отражением того, с чем мы сталкиваемся в обыденной жизни, между тем как квантовые явления проявляются обычно в недоступном непосредственному восприятию микромире. «Классические предрассудки» заставляют нас ставить вопросы, на которые нельзя ждать разумных ответов. Человеческое воображение зачастую отказывается служить в этом странном мире квантовых явлений. Но, как сказал Л. Д. Ландау, «величайшим триумфом человеческого гения является то, что человек способен понять вещи, которые он уже не в силах вообразить».

Нам пройти этот неизбежный путь отказа от классических представлений намного легче, ибо можно воспользоваться опытом предшественников. Как ни парадоксально звучат иногда утверждения квантовой механики, они неизбежны. К ним приводит неодолимая логика экспериментальных фактов.

Цель данной работы - выяснить, в чем заключается физика сверхпроводимости, одно из главных явлений микромира.

Задачи, поставленные в работе:

1. Изучение основных физических свойств сверхпроводников

2. Изучение научной, научно-популярной и периодической литературы по данной теме.

3. Изготовление сверхпроводящего материала.

В качестве самостоятельной части данной работы ставится экспериментальная задача изучения способов создания высокотемпературной сверхпроводящей керамики.

1. Сверхпроводники. У начала пути

1.1Чудеса вблизи абсолютного нуля

Немало поводов для размышлений принесло физикам XX столетие. Среди них результаты опытов в условиях сверхглубокого холода при температурах всего лишь на несколько градусов выше абсолютного нуля.

Понятие абсолютный ноль вошло в физику в середине XIX века. Родившись из газового закона, оно постепенно распространилось на все состояния вещества, приобрело фундаментальное значение для всей физики.

Абсолютному нулю соответствует температура -273 градуса Цельсия (точнее - 273,15?С). Любое вещество больше охладить нельзя, т.е. нельзя у него отнять энергию. Иными словами, при абсолютном нуле молекулы вещества обладают наименьшей возможной энергией, которая уже не может быть отмена от тела ни при каком охлаждении. При каждой попытке охладить вещество энергия в нем остается все меньше и меньше, но всю ее вещество никогда не сможет отдать охлаждающему устройству. По этой причине ученые не достигли абсолютного нуля и не надеются сделать это, хотя они уже творят чудеса, достигая температуры порядка миллионных долей градуса.

Так как абсолютный ноль есть самая низкая температура, то естественно, что в физике, особенно в тех разделах, где идет речь о низких температурах, пользуются термодинамической температурной шкалой, которая может быть проградуирована в Кельвинах (К) и в градусах Цельсия (?С); соотношение между температурой любой из этих шкал: Т= t+273, Т - абсолютный ноль , t - температура.

Исследования при температурах, близких к абсолютному нулю давно привлекли к себе внимание ученых, такие температуры в физике называются криогенными (от греческого слова «крио» - холод). При криогенной температуре происходит много удивительного. Ртуть замерзает так, что ею можно забивать гвозди, резина разлетается на осколки от удара молотком, некоторые металлы становятся хрупкими как стекло.

Поведение вещества вблизи абсолютного нуля зачастую не имеет ничего общего с его поведением при обычных температурах. Казалось бы, вместе с теплом из вещества уходит энергия, а застывшее вещество уже не может представлять интереса.

Еще столетие назад так и считали: абсолютный ноль - это смерть материи. Но вот физики получили возможность работать при сверхнизких температурах, и оказалось, что область вблизи абсолютного нуля не такая уж мертвая. Совсем наоборот: здесь начинают проявляться многочисленные красивые эффекты, которые при обычных условиях, как правило, замаскированы тепловым движением атомов. Именно здесь начинается тот мир - удивительный и порой парадоксальный, который называется сверхпроводимостью.

Сверхпроводимость - способность вещества пропускать электрический ток, не оказывая ему ни малейшего сопротивления. Открытие этого уникального явления не имеющего аналога в классической физике, мы обязаны замечательному голландскому ученому Гейне Камерлинг-Оннесу.

1.2 У начала пути

Удивительное событие в науке - открытие, а еще удивительнее путь, которым приходит к нему человек. Он пробивается вперед сквозь, казалось бы непроходимые дебри, всегда вынужден сомневаться, что дороги вперед нет и ее приходится строить позади себя, как говорил немецкий физик Маке Борн.

Первый шаг был сделан ещё в конце XVIII веке. В XIX веке были сжижены уже многие газы. Опыты следовали один за другим - превращены в жидкость кислород, азот, водород. Один лишь гелий не поддавался усилиям ученых. Помогали даже, что этот газ занимает в мире какое-то особое положение. Поэтому он и не превращается в жидкость. Во многих теориях мира экспериментаторы активно искали способы получения жидкого гелия. Успех выпал на долю Камерлинг-Оннеса. Именно в его лаборатории низких температур в Лейденском университете был проведен эксперимент, ставший последней страницей в истории поиска новый жидкостей.

Успех голландского физика не был случайным. Задача была решена человеком, понявшим коллективный характер науки XX столетия, создавшим, может быть, первую по-настоящему современную научную лабораторию.

Мы привыкли к уже масштабным научным исследованием. Но в начале века Оннес резко выделился на фоне многих экспериментаторов, проводивших свои исследования с помощью небольших лабораторных установок. Уже первая установка для сжижения кислорода, азота и др. атмосферных газов, сконструированная им в 1894 году, имела такую производительность, что смогла удовлетворить быстро растущие потребности в лаборатории в течение многих лет.

1.3 Лейден, 1911г. открытие сверхпроводимости

Шел 1911 год. Камерлинг-Оннес работал над проблемой, которая значилась в тогдашней лейденской исследовательской программе как «изучение свойств различных веществ при гелиевых температурах».

Одним из первых исследований, проведенным в новой температурной области, было изучение зависимости электрического сопротивления металлов от температуры. Словно предвидя развитие событий электротехники, ещё в XIX веке ввели в теорию электричества термин идеальный проводник, т. е. проводник без электрического сопротивления. С другой стороны, и физики, изучавшие свойства металлов, установили, что при сжижении температуры сопротивление металла уменьшается. Но им уже удалось добраться до температуры жидкого водорода, а сопротивление образцов из чистых металлов все падало и падало. А что же дальше? Каким будет предельное значение сопротивления проводника при приближении его температуры к абсолютному нулю.

Большинство ученых придерживалось мнения: при абсолютном нуле электрическое сопротивление должно исчезать. Действительно, электрический ток - это поток свободных электронов проходящих сквозь кристаллическую решетку. Если бы кристалл был идеальным, а его атомы строго неподвижны, то электроны двигались бы совершенно свободно, не встречал помех со стороны кристаллической решетки. Такой кристалл был бы идеальным проводником с нулевым сопротивлением. Однако, во-первых, беспорядочность колебание атомов решетки нарушают ее структуру, а во-вторых, электроны, движущиеся в кристалле, могут взаимодействовать с колеблющимися атомами, передавать им часть своей энергии, что и означает появление электрического сопротивления. При понижении атомов амплитуда колебаний атомов уменьшается, следовательно, столкновение свободных электронов с ними уменьшается, и, таким образом ток встречает меньше сопротивления! При абсолютном нуле, когда решетка уже неподвижна, сопротивление проводника становится равным нулю.

Впрочем, небольшое сопротивление тока может сохранится и при абсолютном нуле, поскольку и тогда некоторые электроны все еще сталкивались бы с атомами решетки. Кроме того, кристаллические решетки, как правило, не являются идеальными: в них всегда есть дефекты и примеси посторонних атомов. С другой стороны была выдвинута гипотеза, согласно которой электроны проводимости при низких температурах объединяются с атомами, что приводит к бесконечно большому сопротивлению при температуре, равной ноль Кельвинов.

До 1911г. трудно было себе представить ещё какое-нибудь другой вариант. Опыт и только опыт может служить физических моделей и критерием их справедливости. Вполне понятно, что одним из первых экспериментов при температуре жидкого гелия стало измерение сопротивление металлов. Сам физический «+» холода не доступен эксперименту, поэтому Камерлинг-Оннес, который к тому времени располагал возможностью получать температуры лишь на один градус выше абсолютного нуля, измерял электрическое сопротивление металлов при разных температурах. Затем строились кривые, которые можно было продолжить, т.е. как бы составить прогноз для интересующей нас области.

Сначала Оннес исследовал образцы платины и золота, так как именно эти металлы имелись тогда в достаточно чистом виде. При понижении температуры образцов сопротивление исправно падало, стремясь к некоторому постоянному значению (остаточному сопротивлению). Однако значения электрических сопротивлений различных образцов, при равных условиях были тем меньше, чем чище оказывался металл. Отсюда вывод: «…учитывая поправку на достаточное сопротивление, я пришел к заключению, что сопротивление абсолютно чистой платиной при температуре кипения жидкого гелия, возможно, исчезнет».

Итак, ртуть Оннес заморозил в сосуде, содержащим жидкий гелий, и приступил к измерению сопротивления.

Вначале все шло так, как предусматривала теория. Электрическое сопротивление ртути плавно падало по мере снижения температуры: 10; 5; 4,2К, и сопротивление стало таким малым, что его вообще не удавалось зарегистрировать приборами, имевшимися в лаборатории. Позднее, в 1913г., вспоминая этот период; Оннест писал: « Будущее казалось мне прекрасным. Я не видел перед собой трудностей. Они были преодолены и убедительность эксперимента не вызвала сомнений». И вдруг случилось неожиданное.

В ходе дальнейших экспериментов на усовершенствованной аппаратуре Оннест заметил, что сопротивление ртути при температуре около 4,1К уменьшалось не плавно, а скачком до неизменно малой величины, т.е. исчезало начисто.

Первая мысль была о неисправности прибора, с помощью которого измерялось сопротивление. Включили другой. И вновь при температуре 4,1К стрелка прибора прыгнула к 0. Здесь было от чего прийти в замешательство: до абсолютного нуля было ещё четыре градуса. И он повторяет эксперимент ещё раз. Изготовляет из ртути новый образец; берет даже очень загрязненную ртуть, у которой остаточное сопротивление должно быть ярко выражено; замеряет измерительный прибор точнейшим зеркальным гальванометром.

Но сопротивление по-прежнему исчезало. Вот тогда, наверное, Камерлине-Оннес и произнес впервые слово сверхпроводимость. «… и не осталось сомнений, - писал Оннес. - в существовании нового состояния ртути, в котором сопротивление физики исчезает… ртуть перешла в новое состояние, и, учитывая его исключительные электрические свойства, его можно назвать «сверхпроводящим состоянием».

Нет нужды говорить о том, каким это была сенсация. Теперь с его именем связывали два существенных события в физике: жидкий гелий и сверхпроводимость. В 1913 году Камерлине-Оннесу была присуждена Нобелевская премия. Разумеется, Оннес думал о загадке сверхпроводимости, но тогда, в декабре 1913 года, ему оставалось только предполагать: «Эта работа должна приподнять покрывало, которым тепловое движение при обычных температурах закрывает от нас внутренний мир атомов и электронов... Из всех областей физики к нам приходят вопросы, ожидающие решения от измерений при гелиевых температурах».

2. Основные понятия

2.1 Конечные температуры (критические)

Совершенный конденсат, охватывающий все электроны, способные объединяться в пары, может существовать только при абсолютном нуле. С повышением температуры тепловое возбуждение в конце концов становится достаточным, чтобы разрушить пары. Образовавшиеся при этом «нормальные», несвязные электроны становятся той разрушительной силой, которая уничтожает электронные пары. Они портят и механизм притяжения между электронами и тем самым ослабляют силы связи между образовавшимися парами. Это ведет в свою очередь к дальнейшему разрушению пар. А когда температура поднимается еще выше, разрушение приобретает катастрофический характер : выше некоторой определенной температуры уже ни одна пара существовать не может. При этом величина критической температуры Тc оказывается одного порядка с энергией спаривания. Основной количественный результат теории - это формула для критической температуры:

Тc=1,14 hхе-1/g (1)

Здесь hх - средняя энергия фононов. По порядку величины равной дебаевской температуре ; g - постоянная, определяющая силу притяжения между электронами. Значение критической температуры тем выше, чем выше значение температуры Дебая и параметра g.

Фононы в твердом теле могут иметь ограниченную энергию. Энергия фонона пропорциональны его частоте х, которая в свою очередь не превышает значения хmax порядка 1013 Гц. Это значит, что энергия фононов не превышает нескольких сотен градусов. Действительно, Еср.max = hхmax ? 5·10-23Дж или в градусах (Е=kТ), Еср.max = hх/k ? 500k (постоянная планка h = 6,62·10-39Дж·с, постоянная Больцмана k = 1,38·10-23Дж/К). Таким образом дебаевская температура обычно лежит в пределах температур 100…500К. что касается параметра g, то для обычных сверхпроводников, у которых роль посредника при спаривании электронов выполняет кристаллическая решетка, g=0,5 и, даже несколько меньше.

Рассмотрим, в каких пределах меняется Тс. У элементарных сверхпроводников, включая элементы, обнаруживающие сверхпроводимость при высоких давлениях, минимальное значение Тс имеет вольфрам: Тс = 0,015 К, максимальное -- ниобий: Тс = 9,25 К. У сплавов Тс имеет существенно более высокие значения: V3Ga -- 14,5 K, V3Si -- 17 K, Nb3Sn - 18 K, Nb3Al0 ,8Ge0,2 - 20,7 K. Рекордное значение T0 до 1986 года имело соединение Nb3Ge -- 23,2 K. У недавно синтезированных углеродных кластеров -- фулеренов, легированных калием, K3C60, Тс = 20 К. При легировании фулеренов цезием и рубидием (CsC60 и PbC60) Тс повышается до 30 К.

После открытия высокотемпературной сверхпроводимости и до настоящего времени в литературе появляются сообщения о наблюдении сверхпроводимости при температурах выше 140 К и даже при комнатной температуре: около 310 К (около +40°С!). Правда, авторы отмечают, что сверхпроводящие фазы, обладающие такими Тс, являются термодинамически неустойчивыми и распадаются при многократном понижении и повышении температуры. Что можно сказать по этому поводу? По-видимому, предельно высоким значением Тс= 135 К при нормальных условиях обладает система HgBa2Ca2Cu3O8 + x. Это термодинамически устойчивое значение. Очень интересно, что если это соединение подвергнуть всестороннему сжатию, то его Тс обратимо повышается до значения ~ 160 К! Это указывает на возможность синтеза сверхпроводников с такими Тс. Насколько реально будет получить термодинамически устойчивые сверхпроводники с более высокими Тс, сказать трудно, хотя получение метастабильных фаз с Тс ? 300 К является, по-видимому, возможным и представляет, с моей точки зрения, большой интерес, так как свидетельствует о принципиальной возможности существования сверхпроводимости при таких температурах.

Интересно отметить, что до 1986 года существовало мнение, что высокотемпературная сверхпроводимость (при температурах выше температуры кипения жидкого азота) невозможна. Поэтому открытие Беднорцем и Мюллером в 1986 году сверхпроводимости у керамик La2 ? xBaxCuО4 c Тс ? 3 5 K и La2 ? xSrxCuO4 c Тс ? 40 K явилось настоящей сенсацией. Вскоре после этого открытия были синтезированы керамики YBa2Cu3O7 ?x c Тс ? 90 K, Bi2Sr2CaCu2O8 c Тс ? 110 K, Tl2Ba2CaCu2O8 c Тс ? 125 K. В самое последнее время синтезировано соединение HgBa2Ca2Cu3O8 +x с Тс ? 135 К.

Безусловно, открытие сверхпроводников с такими значениями Тс является выдающимся достижением, так как для охлаждения сверхпроводящих систем стало возможным использовать дешевый и относительно легко доступный жидкий азот вместо дорогостоящего гелия. Тем не менее все приведенные значения Тс существенно ниже комнатной температуры, и поэтому чрезвычайно актуальна возможность синтеза новых сверхпроводников с еще более высокими Тс. Поиском высокотемпературных сверхпроводников заняты сейчас многие лаборатории мира.

2.2 Критический ток

Еще в 1916г. американец Сильбиг высказал предположение, что сверхпроводимость уничтожается таким значением тока в проводнике, которое создает на поверхности сверхпроводника магнитное поле равное критическому. При этом совершенно все равно какое поле на него действует - собственное или приложенное внешнее.

Рассмотрим сверхпроводящую проволоку, по которой течет ток благодаря внешнему источнику. Физики называют этот ток током переноса, т.к. он переносит заряд по проволоке. Если проволока находится во внешнем магнитном поле, то возникшее на поверхности проводника экранизирующие токи складываются с током переноса и в каждой точке ток I можно рассматривать как суммарный. Магнитное поле на поверхности такой проволоки, через которую протекает ток I, определяется выражением В0 = м0I\2рr , где В0 - поле на поверхности; I - суммарный ток, r - радиус проволоки, м0 - магнитная постоянная. При этом не важно , возбужден ток или навеян магнитным полем, чтобы сверхпроводимость в какой-либо точке сохранилась, суммарный ток в неё не должен превысить критическую величину, присущую данному материалу.

Если полный ток, текущий по сверхпроводнику, достаточно высок, то плотность тока на поверхности достигает критического значения и связанное с ним магнитное поле на поверхности станет равным критическому. Очевидно, чем сильнее внешнее магнитное поле, тем меньше ток переноса, который можно пропускать через сверхпроводник без возникновения в нем сопротивления.

Посмотрим теперь, каким образом происходит переход сверхпроводника в нормальное состояние при достижении критической силы тока.

Если ток течет по сверхпроводнику в присутствии внешнего магнитного поля, то здесь все зависит от того, как распределены в пространстве силовые линии собственного или внешнего магнитных полей. Если же внешнее магнитное поле отсутствует, то можно предположить, что при токе Iс в нормальное состояние переходит лишь внешний цилиндрический слой проволоки, а ее сердцевина- центральная часть - остается сверхпроводящей. Однако это оказывается невозможным.

Ток выбирает путь наименьшего сопротивления и, естественно, будет протекать по сердцевине проволоки, а не по внешнему цилиндрическому слою. Но, как известно, индукция магнитного поля обратно пропорциональна радиусу области, в которой идет ток. Вот и получается, что в центральной части магнитное поле будет больше, чем на поверхности проволоки. Если на поверхности поле достигает своего критического значения с индукцией Вс, то в центральной части оно становится больше критического и сверхпроводящая сердцевина должна уменьшить свой радиус. Этот процесс будет продолжаться до тех пор, пока радиус не обратиться в диаметр, т.е. пока проволока не перейдет в нормальное состояние. Но вся проволока перейти в нормальное состояние не может: поле достигло критического значения лишь на ее поверхности. Поэтому, очевидно, при критическом токе проволока не может быть ни полностью сверхпроводящей, ни полностью нормальной. Сверхпроводник переходит в промежуточное состояние с чередующимися сверхпроводящими и нормальными слоями. Для этого промежуточного состояния был предложен ряд моделей. Ф.Лонодон, например, предложил, что при силе тока I>Iс промежуточное состояние сосредотачивается в сердцевине, окруженной нормальной оболочкой.

Позже была предложена другая модель, согласно которой чередование нормальных и сверхпроводящих областей происходит вдоль всей проволоки. По мере возрастания тока сверхпроводящие области все более сжимаются, пока наконец не исчезают полностью.

У сверхпроводников 1-го рода критический ток Ic, при котором сверхпроводимость разрушается, совпадает с током, создающим на поверхности образца магнитное поле Н= Нс (правило Сильсби). Например, для цилиндрического образца радиуса r магнитное поле на его боковой поверхности связано с текущим по образцу током I соотношением

Отсюда по правилу Сильсби

Ic = 2рHcr. (3)

Возьмем Нс= 5·104 А/м и r = 0,1 см. Для такого образца Ic = 315A. Если учесть, что ток течет в поверхностном слое толщиной л (для Pb л?400 Е = 4·10?8 м), то плотность сверхпроводящего критического тока

(4)

Для сверхпроводников 2-го рода правило Сильсби неприменимо. Критический ток в сверхпроводниках 2-го рода необычайно чувствителен к структуре образца и у одного и того же материала может меняться на несколько порядков величины.

2.3 Эффект Мейснера

В 1913г. немецкие физики Мейснер и Оксенфельд решили экспериментально проверить, как именно распределяется магнитное поле вокруг сверхпроводника. Результат оказался неожиданным. Независимо от условий проведения эксперимента магнитное поле внутрь проводника не проникало. Поразительный факт заключался в том, что сверхпроводник, охлажденный ниже критической температуры в постоянном магнитном поле, самопроизвольно выталкивает это поле из своего объема, переходя в состояние, при котором магнитная индукция В=0, т.е. состояние идеального диамагнетизма. Это явление получило название эффекта Мейснера.

Многие считают, что эффект Мейснера, является наиболее фундаментальным свойством сверхпроводников. Действительно, существование нулевого сопротивления неизбежно следует из этого эффекта. Ведь поверхностные экранизирующие токи постоянны во времени и не затухают в не измеряющемся магнитном поле. В тонком поверхностном слое сверхпроводника эти токи создают свое магнитное поле, строго равное и противоположное внешнему полю. В сверхпроводнике эти два встречных магнитных поля складываются так, что суммарное магнитное поле становится равным нулю, хотя слагаемые поля существуют совместно, поэтому и говорят об эффекте «выталкивание» внешнего магнитного поля из сверхпроводника.

Пусть в исходном состоянии идеальный проводник охлажден ниже критической температуры и внешнее магнитное поле отсутствует. Внесем теперь такой идеальный проводник во внешнее магнитное поле. Поле в образец не проникает, что схематически изображено на рис. 1. Сразу по появлении внешнего поля на поверхности идеального проводника возникает ток, создающий, по правилу Ленца, свое собственное магнитное поле, направленное навстречу приложенному, и полное поле в образце будет равно нулю.

Это можно доказать используя уравнения Максвелла. При изменении индукции В внутри образца должно возникнуть электрическое поле Е:

(5)

Где с - скорость света в вакууме. Но в идеальном проводнике R= 0, так как

E = jс,

где с -- удельное сопротивление, которое в нашем случае равно нулю, j -- плотность наведенного тока. Отсюда следует, что B=const, но поскольку до внесения образца в поле В = 0, то ясно, что В = 0 и после внесения в поле. Это можно интерпретировать еще и так: поскольку с =0, время проникновения магнитного поля в идеальный проводник равно бесконечно.

Итак, внесенный во внешнее магнитное поле идеальный проводник имеет В = 0 в любой точке образца. Однако того же состояния (идеальный проводник при Т<Тс во внешнем магнитном поле) можно достигнуть и другим путем: сперва наложить внешнее поле на «теплый» образец, а затем охладить его до температуры Т<Тс.

Электродинамика предсказывает для идеального проводника совершенно другой результат. Действительно, образец при Т>Тс имеет сопротивление и магнитное поле в него хорошо проникает. После охлаждения его ниже Тс поле останется в образце. Эта ситуация изображена на рис. 2.

Таким образом, кроме нулевого сопротивления сверхпроводники обладают еще одним фундаментальным свойством - идеальным диамагнетизмом. Исчезновение магнитного поля внутри связано с появлением незатухающих поверхностных токов в сверхпроводнике. Но магнитное поле не может быть вытолкнуто полностью, т.к. это бы означало, что на поверхности магнитное поле падает скачком от конечного значения В до нуля. Для этого необходимо, чтобы по поверхности протекал ток, бесконечной плотности, что невозможно. Следовательно, магнитное поле проникает в глубь сверхпроводника, на некоторую глубину л.

Эффект Мейснера Ї Оксенфельда наблюдается только в слабых полях. При увеличении напряженности магнитного поля до величины Нcm сверхпроводящее состояние разрушается. Это поле получило название критического Нcm .Зависимость между критическим магнитным полем и критической температурой хорошо описывается эмпирической формулой (6).

Нcm(T)=Нcm(0)[1-(T/Tc)2] (6)

Где Нcm(0) - критическое поле экстраполированное к абсолютному нулю.

График этой зависимости приведен на рисунке 3. Этот график также можно рассматривать, как фазовую диаграмму, где каждая точка серой части соответствует сверхпроводящему состоянию, а белой области - нормальному.

По характеру проникновения магнитного поля сверхпроводники делятся на сверхпроводники первого и второго рода. В сверхпроводник первого рода магнитное поле не проникает до тех пор пока, напряженность поля не достигнет значения Нcm. Если поле превышает критическое значении, то сверхпроводящее состояние разрушается и поле полностью проникает в образец. К сверхпроводникам первого рода относятся все химические элементы сверхпроводники, кроме ниобия.

Подсчитали, что при переходе металла из нормального состояния в сверхпроводящее производится некоторая работа. Что, собственно, является источником этой работы? То, что у сверхпроводника энергия ниже, чем у того же металла в нормальном состоянии.

Ясно, что «роскошь» эффекта Мейснера сверхпроводник может себе позволить за счет выигрыша в энергии. Выталкивание магнитного поля будет иметь место до тех пор, пока связанное с этим явлением увеличение энергии компенсируется более эффективным ее уменьшением, связанным с переходом металла в сверхпроводящее состояние. В достаточно магнитных полях энергетически более выгодным оказывается не сверхпроводящее, а нормальное состояние, в котором поле свободно проникает в образец.

2.4 Глубина проникновения. Уравнение Лондонов

В 1935г. физики братья Лондоны предприняли попытку количественного описания электрических и магнитных свойств сверхпроводников. Предложенные ими уравнения имеют для сверхпроводников такое же значение, какое имеет закон Ома для нормальных проводников. Для нормальных проводников плотность тока j пропорциональна напряженности электрического поля Е: j= уЕ (у - электропроводность). Применим закон Ома (I=U/R) к однородному проводнику длиной l и сечением S. Вследствие симметрии формы провода электрическое поле в нем имеет напряженность, равную E=U/l, а плотность тока j=I/S. Подставляя эти выражения в закон Ома, получили El/Js=R, откуда j=E/с, где с-удельное сопротивление проводника, равное с=RS/l, а у=l/с - удельная электропроводность. Связь между плотностью тока и электрическим или магнитным полем для сверхпроводников дается двумя уравнениями Лондонов. Первое уравнение описывает идеальную проводимость: поле ускоряет электрон, движущийся в среде без сопротивления. Второе уравнение отражает эффект Мейснера. Оно описывает затухание магнитного поля в тонком поверхностном слое сверхпроводника и тем самым словно разрушает представление об идеальном диамагнетизме.

Диамагнетизм сверхпроводников - это поверхностный эффект, магнитное поле не проникает в толщу образца. Однако оно не может быть полностью вытолкнуто из своего объема металла, включая его поверхность. Иначе на поверхности магнитное поле скачком уменьшается до нуля. токовый слой не имел бы толщины, и плотность тока была бы бесконечной, что физически невозможно. Следовательно, магнитное поле хоть немного, проникает в проводник. Именно в этом тонком приповерхностном слое и протекают незатухающие токи, которые и экранизируют от влияния внешнего магнитного поля области, удаленные от поверхности. Толщина этого слоя, получившим название глубины проникновения поля л, является одной из важнейших характеристик сверхпроводника.

Теория Лондонов позволила найти зависимость индукции магнитного поля от глубины проникновения: В(х) = В0е-хл . Эта зависимость экспотенциальна. Все металлы имеют разное значение л, но, в общем, глубина проникновения очень мала, порядка нескольких сот ангстрем (Е) (1Е = 10-8см), поэтому и кажется, что массивные образцы ведут себя как идеальные диамагнетики с индукцией В=0.

Глубина проникновения не является постоянной величиной - она зависит от температуры образцов. чем больше температура отличается от критической, тем на меньшую глубину в образец проникает магнитное поле. По мере приближения к температуре перехода магнитное поле все глубже проникает в толщу образца. Пока наконец в самой точке перехода в нормальное состояние не захватит весь объем газа. В близи критической температуры сверхпроводники уже не являются идеальными диэлектриками.

2.5 Сверхпроводники первого рода и второго рода

Сверхпроводники, в зависимости от их поведения во внешнем магнитном поле Н, разделяются на два типа: сверхпроводники 1-го и 2-го рода.

Как указывалось выше, у всех сверхпроводников существует область не очень сильных полей, в которой индукция внутри сверхпроводника равна нулю. В этой области магнитный момент М линейно зависит от Н:

M =?H.

При дальнейшем увеличении поля зависимости Мот Н у сверхпроводников 1-го и 2-го рода принципиально отличаются (рис. 4): у сверхпроводников 1-го рода при критическом значении магнитного поля Нс (поле Нс называется термодинамическим критическим полем) идеальный диамагнетизм исчезает и образец (на рис. 4 приведены зависимости М от Н для образцов, имеющих форму длинных тонких цилиндров, ориентированных вдоль поля) полностью переходит в нормальное состояние. К сверхпроводникам 1-го рода относятся все чистые сверхпроводящие элементы и некоторые их сплавы стехиометрического состава.

38

У сверхпроводников 2-го рода линейная зависимость Мот Н нарушается при значении магнитного поля Нс1, называемого первым критическим полем. Далее М монотонно уменьшается и обращается в нуль при Нс2, получившем название 2-го критического поля. В области между Нс1 и Нс2 средняя магнитная индукция внутри сверхпроводника не равна нулю. Внешнее магнитное поле в этой области начинает проникать внутрь сверхпроводника в виде тонких нитей магнитного потока (рис. 5) -- вихрей Абрикосова. Каждый вихрь имеет нормальную (не сверхпроводящую) сердцевину диаметром 2о , через которую проходит магнитное поле. Вокруг сердцевины в слое толщиной л текут вихревые сверхпроводящие токи js, экранирующие области с В=0. Магнитный поток, пронизывающий каждый вихрь, имеет строго определенное значение Ц0 = 2,07 · 10?7 Вб (квант потока).

При увеличении Н число вихрей возрастает, расстояние между ними уменьшается. При Н = Нс2 нормальные сердцевины вихрей соприкасаются и объемная сверхпроводимость исчезает. Состояние, в котором находится сверхпроводник в области Нс1 < H< Hc2, называется смешанным состоянием (оно представляет смесь нормальной и сверхпроводящей фаз).

К сверхпроводникам 2-го рода относятся большое число сплавов и все высокотемпературные сверхпроводники.

2.6 Критическое магнитное поле

Кривые зависимостей критических полей от температуры для сверхпроводников 1-го и 2-го рода изображены на рис. 6а и 6б. Для сверхпроводника 1-го рода кривые Нс(Т) имеют вид парабол. У сверхпроводников 2-го рода в области полей 0 < H < Нс1 значения R и В равняются нулю. В полях Нс1 < H < Hc2 образец находится в смешанном состоянии (0 < В < µ0H), но при этом сопротивление образца остается равным нулю.

При Hc2 объемная сверхпроводимость разрушается, но сохраняется поверхностная сверхпроводимость в тонком слое на поверхности, которая разрушается в поле Нс3 = 1,69 Hc2.

У сверхпроводников 1-го рода Нс(0) (при Т = 0) не превышают 105 А/м.

У сверхпроводников 2-го рода Hc2(0) достигают огромных величин, что позволяет создавать на их основе сверхпроводящие системы для создания сильных магнитных полей в больших объемах без затраты энергии на их поддержание. Hc2(0) имеют следующие значения: у Nb3Sn -- 1,7 · 107 А/м; V3Ga - 2 · 107 А/м; Nb3Al - 2,6 · 107 А/м; Nb379(Al73Ge 27)21 - 3,4 · 107 А/м; PbMo36S8 - 4,8 · 107 А/м; керамики с Тс = 100 К -- более 10

38

3.Свойства сверхпроводников

3.1 Нулевое сопротивление

Когда же исчезает сопротивление? Ответ на этот вопрос получил Камерлинг-Оннес ещё в 1914г. Он предложил весьма остроумный метод измерения сопротивления. Схема эксперимента выглядела довольно просто. Катушку от свинцового провода опустили в криостат - устройство для проведения опытов при низких температурах. Охлаждаемая гелием катушка находилась в сверхпроводящем состоянии. При этом ток, идущий по катушке, создавал вокруг нее магнитное поле, которое легко обнаруживалось по отклонению магнитной стрелки, расположенной вне криостата. Затем ключ замыкают, так что теперь сверхпроводящая обводка оказалась замкнутой накоротко. Стрелка компаса, однако, оставалось отклоненной, что указывало наличие тока в катушке, уже отсоединенной от источника тока. Наблюдая за стрелкой на протяжении нескольких часов (пока не испариться весь гелий из сосуда), Оннес не заметил ни малейшего изменения в отклонении стрелки.

По результатам опыта Оннес пришел к заключению, что сопротивление сверхпроводящей свинцовой проволоки по меньшей мере в 1011раз меньше её сопротивления в нормальном состоянии. Впоследствии проведения аналогичных опытов, было установлено, что время затухания тока превышает многие годы, и из этого следовало, что удельное сопротивление сверхпроводника меньше чем 1025Ом·м. Сравнив это с удельным сопротивлением меди при комнатной температуре 1,55·10-8Ом·м - разница столь огромна, что можно смело считать: сопротивление сверхпроводника равно нулю, действительно трудно назвать другую наблюдаемую и изменяемую физическую величину, которая обращалась бы в такой же «круглый ноль», как сопротивление проводника при температуре ниже критической.

Вспомним известный из школьного курса физики закон Джоуля - Ленца: при протекании тока I по проводнику с сопротивлением R в нем выделяется тепло. На это расходуется мощность P = I2R. Как ни мало сопротивление металлов, но зачастую и оно ограничивает технические возможности различных устройств. Нагреваются провода, кабели, машины, аппараты, вследствие этого миллионы киловатт электроэнергии буквально выбрасываются на ветер. Нагрев ограничивает пропускную способность электропередач, мощность электрических машин. Так в частности обстоит дело и с электромагнитами. Получение сильных магнитных полей требует больших токов, что приводит к выделению колоссального количества тепла в обмотках электромагнита. А вот сверхпроводящая цепь остается холодной, ток будет циркулировать не затухая - сопротивление равно нулю, потерь электроэнергии нет.

Так как электрическое сопротивление равно нулю, то возбужденный в сверхпроводящем кольце ток будет существовать бесконечно долго. Электрический ток в этом случае напоминает ток, создаваемый электроном на орбите в атоме Бора: это как бы очень большая боровская орбита. Незатухающий ток и создаваемое им магнитное поле (рис. 7) не могут иметь произвольную величину, они квантуются так, что магнитный поток, пронизывающий кольцо, принимает значения, кратные элементарному кванту потока Фо = h/(2e) = 2,07 1015 Вб (h -- постоянная Планка).

38

В отличие от электронов в атомах и других микрочастиц, поведение которых описывается квантовой теорией, сверхпроводимость -- макроскопическое квантовое явление. Действительно, длина сверхпроводящей проволоки, по которой течет незатухающий ток, может достигать многих метров и даже километров. При этом носители тока в ней описываются единой волновой функцией. Это не единственное макроскопическое квантовое явление. Другим примером может служить сверхтекучесть в жидком гелии или в веществе нейтронных звезд.

В 1913 году Камерлинг-Оннес предлагает построить мощный электромагнит с обмотками из сверхпроводящего материала. Такой магнит не потреблял бы электроэнергии, и с его помощью можно было бы получать сверхсильные магнитные поля. Если бы так …

Как только пробовали пропускать по сверхпроводнику значительный ток, сверхпроводимость исчезала. Вскоре оказалось, что и слабое магнитное поле тоже уничтожает сверхпроводимость. Существование критических значений температуры, тока и магнитной индукции резко ограничивало практические возможности сверхпроводников.

3.2 Электрическое сопротивление сверхпроводников

Никакими экспериментальными методами принципиально нельзя доказать, что какая-либо величина, в частности электрическое сопротивление, равна нулю. Можно показать лишь, что она меньше некоторой величины, определяемой точностью измерений.

Наиболее точный метод измерения малых сопротивлений заключается в измерении времени затухания тока, индуцированного в замкнутом контуре из исследуемого материала. Уменьшение во времени энергии тока LI2/2 (L -- коэффициент самоиндукции контура) расходуется на джоулево тепло:

Отсюда

интегрируя, находим

(I0 -- значение тока при t = 0, R -- сопротивление контура).

Ток экспоненциально затухает во времени, а скорость затухания (при заданном L) определяется величиной электрического сопротивления.

Для малых R формулу (8) можно записать в виде

здесь дI-- изменение тока за время ?t. Эксперименты, проведенные с использованием тонкостенных сверхпроводящих цилиндров с предельно малыми значениями L, показали, что сверхпроводящий ток сохраняет постоянное значение (с точностью измерений) в течение нескольких лет. Отсюда следовало, что удельное сопротивление в сверхпроводящем состоянии меньше 4 · 10?25 Ом м, то есть более чем в 1017 раз меньше сопротивления меди при комнатной температуре. Поскольку возможное время затухания сравнимо со временем существования человечества, можно считать, что R на постоянном токе в сверхпроводящем состоянии равно нулю.

Таким образом, сверхпроводящий ток -- это единственный в природе реально существующий пример вечного движения в макроскопическом масштабе!

При R=0 разность потенциалов V= IR на любом отрезке сверхпроводника, а следовательно, и электрическое поле Е внутри сверхпроводника равны нулю. Электроны, создающие ток в сверхпроводнике, движутся с постоянной скоростью, не рассеиваясь на тепловых колебаниях атомов кристаллической решетки и ее неоднородностях. Заметим, что если бы Е не было равно нулю, электроны, переносящие сверхпроводящий ток, ускорялись бы неограниченно и ток мог бы достигать бесконечно большого значения, что физически невозможно. Чтобы создать сверхпроводящий ток, нужно только ускорить электроны до определенной скорости направленного движения (затратив при этом энергию), а далее ток сохраняет постоянное значение, не заимствуя энергию от внешнего источника (в отличие от тока в обычных проводниках).

Ситуация меняется, если к сверхпроводнику прикладывается переменная разность потенциалов, создающая переменный сверхпроводящий ток. В течение каждого периода ток меняет направление. Следовательно, в сверхпроводнике должно существовать электрическое поле, которое периодически замедляет сверхпроводящие электроны и ускоряет их в противоположном направлении. Так как на это расходуется энергия от внешнего источника, электрическое сопротивление на переменном токе в сверхпроводящем состоянии не равно нулю. Однако, поскольку масса электрона очень мала, потери энергии при частотах меньше 1010 - 1011 Гц ничтожны.

Обратим внимание, что при наличии эффекта Мейснера (равенства нулю магнитной индукции внутри материала сверхпроводника) сверхпроводящий ток течет только в тонком слое на поверхности, толщина которого определяется глубиной проникновения л магнитного поля в сверхпроводник, а при высоких частотах, когда глубина поверхностного слоя, в который проникает переменное электромагнитное поле, становится меньше л, -- в еще более тонком слое.

3.3 Сверхпроводники в магнитном поле

То, что в магнитном поле, превышающем некоторое пороговое или критическое значение, сверхпроводимость исчезает, совершенно бесспорно. Даже, если бы какой-то металл лишился бы сопротивления при охлаждении, то он не может снова вернуться в нормальное состояние, попав во внешнее магнитное поле. При этом у металла восстанавливается примерно тоже сопротивление, которое было у него при температуре, превышающей температуру Тс сверхпроводящего перехода. Само критическое поле с магнитной индукцией Вс зависит от температуры: индукция равна нулю при температуре Т = Тс и возрастает при температуре стремящейся к нулю. Для многих металлов зависимость индукции Вс от температуры подобна.

Рисунок 3 можно рассматривать как диаграмму, где линия зависимости В(Т) для каждого металла разграничивает области разных фаз. Области ниже этой линии соответствуют сверхпроводящему состоянию, выше - нормальному.

Рассмотрим теперь поведение идеального проводника (т.е. проводника лишенного сопротивления, в различных условиях). У такого проводника при охлаждении ниже критической температуры электропроводность становиться бесконечной. Именно это свойство позволило считать сверхпроводник идеальным проводником.

Магнитные свойства идеального проводника вытекли из закона индукции - Фарадея и условия бесконечной электропроводности. Предположим, что переход металла в сверхпроводящее состояние происходит в отсутствии магнитного поля и внешнее магнитное поле прикладывается лишь после исчезновения сопротивления. Здесь не надо никаких тонких экспериментов, чтобы убедиться в том, что магнитное поле внутрь проводника не проникает. Действительно, когда металл попадает в магнитное поле, то на его поверхности вследствие электромагнитной индукции возникают не затухающие замкнутые токи (их число называют экранирующим), создающие свое магнитное поле индукция которого по модулю равна, индукции внешнего магнитного поля, а направление векторов магнитной индукции этих полей противоположны. В результате индукция суммарного магнитного поля равна нулю.

Возникает ситуация, при которой металл как бы препятствует проникновения в него магнитного поля, то есть ведет себя как диамагнетик. Если теперь внешнее магнитное поле убрать, то образец окажется в своем не намагниченном состоянии.

Теперь поместим в магнитное поле металл находящийся в нормальном состоянии, и затем охладить его для того, чтобы он перешел в сверхпроводящее состояние. Исчезновение электрического сопротивления не должно оказывать влияние на не намагниченность образца, и поэтому распределение магнитного потока в нем не измениться. Если теперь приложенное магнитное поле убрать, то изменение потока внешнего магнитного поля через объем образца приведет (по закону индукции) к появлению незатухающих потоков, магнитное поле которых точно скомпенсирует изменение внешнего магнитного поля. В результате захваченное поле не сможет уйти: оно окажется «замороженным» в объеме образца и останется там как в своеобразной ловушке.

Как видно магнитные свойства идеального проводника зависят от того каким он попадает в магнитное поле. В самом деле, в конце этих двух операций - приложение и снижение поля - металл оказывается в одних и тех же условиях - при одинаковой температуре и нулевом внешнем магнитном поле. Но магнитная индукция металла-образца в обоих случаях совершенно различна - нулевая в первом случае и конечная, зависящая от исходного поля во втором.

3.4 Промежуточное состояние при разрушении сверхпроводимости током

По достижении критического значения магнитного поля сверхпроводимость скачком разрушается и образец целиком переходит в нормальное состояние. Это справедливо и тогда, когда внешнее магнитное поле имеет одно и то же значение в любой точке на поверхности образца. Такая простая ситуация может быть реализована, в частности, для очень длинного и тонкого цилиндра с осью, направленной вдоль поля.


Подобные документы

  • Сверхпроводники. У начала пути. Сверхпроводники первого второго рода. Абрикосовские вихри. Свойства сверхпроводников. Микроскопическая теория сверхпроводимости Бардина - Купера - Шриффера (БКШ) и Боголюбова. Теория Гинзбурга - Ландау.

    курсовая работа [60,1 K], добавлен 24.04.2003

  • Понятие и природа сверхпроводимости, ее практическое применение. Характеристика свойств сверхпроводников 1-го и 2-го рода. Сущность "теории Бардина-Купера-Шриффера" (БКШ), объясняющей явление сверхпроводимости металлов при сверхнизких температурах.

    реферат [42,2 K], добавлен 01.12.2010

  • Открытие явления сверхпроводимости. Первые экспериментальные факты. Эффект Мейснера, изотопический эффект. Теория сверхпроводимости. Щель в энергетическом спектре. Образование электронных пар. Квантование магнитного потока (макроскопический эффект).

    дипломная работа [2,7 M], добавлен 24.08.2010

  • Великие физики, которые прославились, занимаясь теорией и практикой сверхпроводимости. Изучение свойств вещества при низких температурах. Реакция сверхпроводников на примеси. Физическая природа сверхпроводимости и перспективы ее практического применения.

    презентация [2,7 M], добавлен 11.04.2015

  • Фазами называют однородные различные части физико-химических систем. Фазовые переходы первого и второго рода. Идеальные и реальный газы. Молекулярно – кинетическая теория критических явлений. Характеристика сверхтекучести и сверхпроводимости элементов.

    реферат [32,3 K], добавлен 13.06.2008

  • Открытие особенностей изменения сопротивления ртути в 1911 году. Сущность явления сверхпроводимости, характерного для многих проводников. Наиболее интересные возможные промышленного применения сверхпроводимости. Эксперимент с "магометовым гробом".

    презентация [471,0 K], добавлен 22.11.2010

  • Гипотезы монополя Дирака. Магнитный заряд электрона, который тождественен кванту магнитного потока, наблюдаемого в условиях сверхпроводимости. Анализ эффекта квантования магнитного потока. Закон Кулона: взаимодействие электрического и магнитного заряда.

    статья [205,4 K], добавлен 09.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.