Расчет идеального газового потока в камере ракетного двигателя

Порядок построения профиля канала переменного сечения. Методика расчета параметров газового потока. Основные этапы определения силы воздействия потока на камеру и тяги камеры при разных вариантах газового потока. Построение графиков изменения параметров.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 18.11.2010
Размер файла 446,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

19

КУРСОВАЯ РАБОТА

На тему:

«Расчет идеального газового потока в камере ракетного двигателя»

Самара 2009

Введение

Целью данной курсовой работы является закрепление теоретических знаний по курсу механике жидкостей и газа.

Идеальный газ поступает в камеру сгорания в виде струи, которая в начальном сечении камеры 0 имеет площадь проходного сечения S0. После входа в камеру сгорания струя газа внезапно расширяется и в некотором сечении 1 полностью и равномерно заполняет поперечное сечение камеры сгорания с площадью SК. На участке от сечения 1 до конечного сечения камеры сгорания К газовый поток получает внешнюю теплоту, эквивалентную теплоте сгорания ракетного топлива.

Из камеры сгорания газовый поток поступает в сверхзвуковое сопло с начальным течением К, узким (наименьшей площади) сечением У, выходным сечением а, площади которых равны SК, SУ u Sа. Из сопла газ вытекает во внешнюю среду, давление в которой равно рн.

1. Построение профиля канала переменного сечения

Найдем размеры, необходимые для построения профиля сопла:

- длина камеры сгорания:

мм;

- длина дозвуковой части сопла

мм;

- длина сверхзвуковой части сопла:

мм;

- радиус камеры сгорания:

мм;

- радиус потока при входе в камеру сгорания:

мм;

- радиус выходного сечения сопла:

мм;

- величины для построения профиля сопла:

мм;

мм;

- величины для нахождения характерных сечений:

мм;

мм;

мм;

мм;

мм.

По найденным размерам строим профиль сопла (рисунок 1 в приложении).

После построения снимаем с чертежа недостающие величины радиусов поперечных сечений, необходимые для расчетов:

мм;

мм;

мм;

мм;

мм;

мм;

мм;

мм;

мм.

Рассчитаем площади этих сечений:

м2;

м2;

м2;

м2;

м2;

м2;

м2;

м2;

м2.

2. Расчет параметров газового потока

2.1 Расчет параметров для сечения 0 и k

Вычислим значение газодинамической функции для сечения k:

.

По найденному значению с помощью математического пакета MathCAD по формуле газодинамической функции определяем соответствующие значение :

,

.

Находим значения остальных газодинамических функций, числа Маха, температуры, критической скорости, скорости газового потока и скорости звука в газе для сечения k по следующим формулам:

,

Запишем преобразованное уравнение количества движения для газа, находящегося в камере сгорания между сечениями 0 и k. С помощью математического пакета MathCAD определяем величину , учитывая, что в данном сечении дозвуковой поток, то есть :

Получаем .

Находим значения газодинамических функций, числа Маха, температуры, критической скорости, скорости газового потока и скорости звука в газе для сечения 0 по следующим формулам:

Вычислим оставшиеся параметры газового потока в сечении «к»:

Запишем преобразованное уравнение неразрывности для сечений «0» и «к» газового потока:

МПа.

Остальные параметры вычислим следующим образом:

кг/с.

Аналогично рассчитаем значения этих же параметров газового потока для сечения «1».

Для сечения «2» определяем методом подбора величину из решения уравнения количества движения для газа, учитывая, что в данном сечении дозвуковой поток, т.е.

где

Принимаем

Рассчитаем значения газодинамических функций и параметров по аналогии с расчетами для сечения «1».

Параметры для сечений «3», «у», «4», «5», «а» определим по аналогии учитывая, что в сечении 3 в сечении «у» , в сечениях «4», «5», «а»

Полученные значения приведены в таблице 1 (см. Приложение)

2.2 Расчет параметров для сечения «2» - «a»

Рассчитаем параметры потока со скачком уплотнения в выходном сечении сопла.

Сначала вычислим значение :

Соответствующее ему q:

Расчет остальных параметров проведем по аналогии с сечением «а». Нужно иметь ввиду, что в прямом скачке уплотнения Т* не изменяется, р* и ?* скачкообразно уменьшаются.

МПа.

Все вычисления сведем в таблицу 1 (см. Приложение)

Аналогично просчитаем и заполним таблицу 2 (см. Приложение)

2.3 Расчет значений для таблиц 3,4

;

;

;

.

.

.

Некоторые вычисления:

;

кН;

МПа;

кН;

кН;

кН;

кН;

кН;

кН;

кН.

По результатам расчетов (таблицы 1-4) в форме графиков, выполняется построение расчетных зависимостей (рисунок 2-7, см. Приложение).

Заключение

В данной работе был произведен расчет идеального газового потока в камере ракетного двигателя.

По исходным данным для живых сечений газового потока 0, 1, k, 2, 3, у, 4, 5 и а были рассчитаны газодинамические функции, параметры торможения, а также рассчитаны варианты идеального газового потока со скачком уплотнения в 5,4, выходном сечениях и с критическим состоянием газа в узком сечении сопла и последующим дозвуковым течением газа по соплу. По расчетов были построены графики изменения параметров газового потока по длине камеры ракетного двигателя.

В конце работы были определены силы воздействия потока на камеру и тяга камеры при различных вариантах газового потока.

Список источников

Абрамович Г.Н. «Прикладная газовая динамика», 4-е издание. М.: Наука, 1976 г., 888 с.

Лекции по механике жидкостей и газов.

В.А. Курочкин, А.С. Наталевич, А.М. Цыганов «Методические указания к курсовой работе по газовой динамике», Самара: СГАУ, 1994 г.

Приложение

Результаты расчета параметров газового потока, варианты 3, 4, 5

Варианты

1 - 3

3

1 - 4

4

1 - 5

5

Сечения

5

5за

а

4

4за

5

а

у

4

5

а

r, мм

98.23

98.23

119.07

74.88

74.88

98.23

119.07

63

74.88

98.23

119.07

S, мм2

30313.6

30313.6

44540.4

17614.9

17614.9

30313.6

44540.4

12468.9

17614.9

30313.6

44540.4

q(?)

0.411

0.764

0.52

0.708

0.838

0.487

0.331

1

0.708

0.411

0.28

?

1.797

0.556

0.347

1.523

0.657

0.322

0.214

1

0.499

0.269

0.18

?(?)

0.462

0.948

0.98

0.613

0.928

0.983

0.992

0.833

0.959

0.988

0.995

?(?)

0.067

0.831

0.932

0.181

0.77

0.941

0.973

0.528

0.862

0.958

0.981

?(?)

0.145

0.876

0.951

0.295

0.83

0.957

0.981

0.634

0.9

0.97

0.987

М

2.413

0.522

0.32

1.775

0.622

0.297

0.196

1

0.465

0.247

0.165

Т*, К

950

950

950

950

950

950

950

950

950

950

950

Т, К

438.981

900.968

930.964

582.674

881.739

933.533

942.738

791.667

910.634

938.562

944.877

р*, МПа

3.084

1.65

1.65

3.084

2.605

2.605

2.605

3.084

3.084

3.084

3.084

р, МПа

0.2068

1.371

1.547

0.5573

1.956

2.451

2.536

1.629

2.661

2.956

3.027

?*, кг/м3

11.301

6.045

6.045

11.301

9.546

9.546

9.546

11.301

11.301

11.301

11.301

?, кг/м3

1.64

5.295

5.784

3.329

7.723

9.137

9.364

7.164

10.17

10.964

11.149

акр, м/с

564.291

564.291

564.291

564.291

564.291

564.291

564.291

564.291

564.291

564.291

564.291

кр, м/с

1014

314.018

195.661

859.494

370.513

181.979

120.851

564.291

281.369

151.667

101.507

а, м/с

420.199

601.986

611.925

484.111

595.528

612.769

615.782

564.291

605.207

614.417

616.481

Ma, м/с

1014

314.018

195.661

859.494

370.513

181.979

120.851

564.291

281.369

151.667

101.507

G, кг/с

50.406

50.406

50.406

50.406

50.406

50.406

50.406

50.406

50.406

50.406

50.406

?сS, кг/с

50.406

50.406

50.406

50.406

50.406

50.406

50.406

50.406

50.406

50.406

50.406

Результаты расчета импульсов газового потока

Варианты

1 - 5

1 - 5

1 - 5

1

2

3

4

5

Сечения

0

к

у

а

а

а

а

а

?

0.397

0.402

1

1.92

0.521

0.347

0.214

0.18

р*, МПа

3.5

3.084

3.084

3.084

1.161

1.65

2.605

3.084

S, мм2

10535.5

21072.6

12468.9

44540.4

44540.4

44540.4

44540.4

f

1.084

1.085

1.268

0.431

1.133

1.066

1.026

1.019

Ф, кН

39.954

70.508

48.76

59.224

58.581

78.306

119.036

139.97

Результаты расчета сил и тяги

Варианты

1

2

3

4

5

?в.р

0.9143

0.9143

0.9143

0.9143

0.9143

?Т

0.9638

0.9638

0.9638

0.9638

0.9638

?П

-

0.3825

0.5385

0.8459

1

рН, МПа

0.11

0.987

1.547

2.536

3.027

Р0-к, кН

30.554

30.554

30.554

30.554

30.554

Рк-у, кН

-21.748

-21.748

-21.748

-21.748

-21.748

Ру-а, кН

10.464

9.821

29.546

70.276

90.61

Р0-а, кН

19.27

18.627

38.352

79.082

99.416

Рвнутр, кН

59.224

58.581

78.306

119.036

139.97

Рнар, кН

-4.899

-48.95

-68.904

-112.954

-134.824

Р, кН

54.324

9.632

9.402

6.081

5.146

Рисунок 1 - Схема камеры ракетного двигателя

Рисунок 2 - Изменение температуры газа по длине камеры ракетного двигателя

Рисунок 3 - Изменение давления газа по длине камеры ракетного двигателя

Рисунок 4 - Изменение плотности газа по длине камеры ракетного двигателя

Рисунок 5 - Изменение скорости газового потока по длине камеры ракетного двигателя


Подобные документы

  • Расчеты газового потока в камере ракетного двигателя на сверхзвуковых и дозвуковых режимах, со скачками и без скачков уплотнения. Определение значений сил взаимодействия потока со стенками камеры и тяги двигателя. Расчет скоростей газового потока.

    курсовая работа [616,3 K], добавлен 27.02.2015

  • Сопло Лаваля как техническое приспособление, служащее для ускорения газового потока. Рассмотрение основных особенностей построения графика газодинамических функций давления, скорости. Этапы расчета параметров течения воздушного потока в сопле Лаваля.

    контрольная работа [394,1 K], добавлен 10.01.2013

  • Анализ и особенности распределения поверхностных сил по поверхности жидкости. Общая характеристика уравнения Бернулли, его графическое изображение для потока реальной жидкости. Относительные уравнение гидростатики как частный случай уравнения Бернулли.

    реферат [310,4 K], добавлен 18.05.2010

  • Методы практического исследования потока в неподвижных криволинейных каналах. Определение потерь механической энергии при движении потока в них. Сравнение значения коэффициента потери энергии установки, полученного экспериментальным путем с теоретическим.

    лабораторная работа [139,4 K], добавлен 13.03.2011

  • Рассмотрение экспериментальных зависимостей температуры горячего потока от входных параметров. Расчет показателей расхода хладагента и горячего потока и их входной температуры. Определение толщины отложений на внутренней поверхности теплообменника.

    лабораторная работа [52,4 K], добавлен 13.06.2019

  • Определение расхода охладителя для стационарного режима работы системы и расчет температуры поверхностей стенки со стороны газа и жидкости. Расчет линейной плотности теплового потока, сопротивления теплопроводности, характеристик системы теплоотвода.

    курсовая работа [235,2 K], добавлен 02.10.2011

  • Теневой метод и шлирен-метод визуализации Тёплера. Экспериментальная аэродинамическая сверхзвуковая установка для оптического исследования потока. Конструкция аэродинамической трубы. Создание кратковременного сверхзвукового или гиперзвукового потока газа.

    лабораторная работа [1,3 M], добавлен 19.09.2014

  • Гидравлические машины как устройства, служащие для преобразования механической энергии двигателя в энергию перемещаемой жидкости или для преобразования гидравлической энергии потока жидкости в механическую энергию, методика расчета ее параметров.

    курсовая работа [846,7 K], добавлен 09.05.2014

  • Расчет газодинамических параметров. Визуализация распределения скорости в прямом тракте газовода. Основные показатели статического давления при заданной высоте канала. Асимметрия распределения давления. Число Нуссельта, Рейнольдса, Прандтля, Стантона.

    курсовая работа [15,1 M], добавлен 10.01.2015

  • Изучение конструктивных особенностей резервуара для хранения нефтепродуктов. Построение переходной характеристики объекта при условии мгновенного изменения величины входного потока. Определение уровня жидкости в резервуаре нефтеперекачивающей станции.

    реферат [645,4 K], добавлен 20.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.