Электроснабжение текстильного комбината

Проектирование системы электроснабжения завода машиностроения. Расчет нагрузок цехов по методу коэффициента спроса и их графическое изображение. Проверка линий электропередач на термическую стойкость. Определение молниезащиты заземляющего устройства.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 07.09.2010
Размер файла 1,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

RТА = 0,05 мОм; ХТА = 0,07 мОм [3]

По условиям выбора UН Uсети = 0,38 кВ;

, (9.15)

А

Выбираем автомат типа АВМН 10Н

UH = 0,38 кВ; IН = 1000 А; IН ОТКЛ =20 кА [7]

Сопротивление автомата RA = 0,25 мОм; ХА = 0,1 мОм [3].

Переходное сопротивление автомата RК = 0,08 мОм [3]

Сопротивление алюминиевых шин 80х6 с Iдоп = 1150 А; l = 3 м, аСР = 60 мм; RШ = R0 l = 0,0343 = 0,102 мОм; ХШ = Х0 l = 0,016 3 = 0,048 мОм.

, (9.16)

мОм

, (9.17)

мОм

Сопротивление цепи КЗ без учета сопротивления дуги:

мОм

Согласно [3] сопротивление дуги Rд в месте КЗ, принимается активным и рекомендуется определять отношением падения напряжения на дуге Uд и около КЗ IКО в месте повреждения, рассчитанным без учета дуги.

, (9.18)

где ,

где Ед - напряженность в стволе дуги, В/мм2

lд - длина дуги, мм.

IКО - ток КЗ в месте повреждения, рассчитанный без учета дуги, кА.

При IКО > 1000 А Ед = 1,6 В/мм

Длина дуги определяется в зависимости от рассмотрения а между фазами проводников в месте КЗ.

, (9.19)

Из [3] для КТП с трансформаторами мощностью 630 кВА а =60 мм.

, (9.20)

кА > 1000 А

Следовательно Ед = 1,6 В/мм

Тогда сопротивление дуги:

, (9.21)

мОм

, (9.22)

мОм

Полное сопротивление цепи КЗ:

, (9.23)

мОм

Тогда периодическая составляющая тока трехфазного КЗ в точке К-3.

, (9.24)

кА

, (9.25)

с

, (9.26)

, (9.27)

кА

Результаты расчета токов КЗ сведены в табл. 12

Таблица 13 - Результаты расчета токов КЗ

Точка КЗ

, кА

, кА

Та, с

Куд

iудК-i, кА

К-1

1,64

1,41

0,15

1,94

4,486

К-2

7,59

6,45

0,05

1,8

33,05

К-3

12,87

-

0,0043

1,098

19,98

10. Выбор электрических аппаратов

10.1 Выбор аппаратов напряжением 110 кВ

Выберем выключатель 110 кВ

Условия выбора:

1. По номинальному напряжению

2. По номинальному длительному току.

Условия проверки выбранного выключателя.

1. Проверка на электродинамическую стойкость:

1.1. По удельному периодическому току КЗ

1.2. По ударному току КЗ

2. Проверка на включающую способность.

2.1. По удельному периодическому току КЗ

2.2. По ударному току КЗ

3. Проверка на отключающую способность

3.1. По номинальному периодическому току отключения

3.2. По номинальному апериодическому току отключения

4. Проверка на термическую стойкость.

Расчетные данные сети:

Расчетный ток послеаварийного режима IР = 116,9 А был найден в пункте 5.3. по формуле (5.3.4)

Расчетное время

где tРЗ - время срабатывания релейной защиты (обычно берется минимальное значение); в данном случае для первой ступени селективности tРЗ = 0,01 с.

tСВ - собственное время отключения выключателя (в данный момент пока не известно) действующее значение периодической составляющей начального тока КЗ IПО = 6,21 кА было рассчитано в пункте 7.1.;

Периодическая составляющая тока КЗ в момент расхождения контактов выключателя IП в следствие неизменности во времени тока КЗ принимается равной периодической составляющей начального тока КЗ: IП = IПО = 6,21 кА;

Апериодическая составляющая полного тока КЗ в момент расхождения контактов выключателя определяется по выражению:

и будет определено позже;

расчетное выражение для проверки выбранного выключателя по апериодической составляющей полного тока КЗ:

расчетный импульс квадратичного тока КЗ

будет определено позже.

Согласно условиям выбора из [7] выбираем выключатель ВВЭ-110Б-16/1000 со следующими каталожными данными:

UНОМ = 110 кВ; IНОМ = 1000 А; IН откл = 16 кА; = 25%; iпр СКВ = 67 кА; Iпр СКВ = 26 кА; iН вкл = 67 кА; IН вкл = 26 кА; IТ = 26 кА; tТ = 3 с; tСВ = 0,05 с.

Определяем оставшиеся характеристики:

Расчетное время по формуле :

с

Апериодическая составляющая полного тока КЗ в момент расхождения контактов выключателя по формуле :

кА

Расчетное выражение согласно формуле :

кА

Расчетный импульс квадратичного тока КЗ по формуле :

кА2с

Расчетные данные выбранного выключателя: проверка выбранного выключателя по апериодической составляющей полного тока КЗ

кА

Проверка по термической стойкости:

кА2с

Выбор и проверка выключателя представлен в табл. 13.

Выберем разъединитель 110 кВ

Условия выбора:

1. По номинальному напряжению.

2. По номинальному длительному току.

Условия проверки выбранного разъединителя:

1. Проверка на электродинамическую стойкость.

2. Проверка на термическую стойкость.

Для комплексной трансформаторной подстанции блочного типа КТПБ-110/6-104 тип разъединителя согласно [7] РНД3.2-110/1000 или РНД3-1б-110/1000. Согласно условию с учетом вышесказанного из [7] выбираем разъединитель РНД3.2-110/1000 У1 со следующими каталожными данными:

UНОМ = 110 кВ; IНОМ = 1000 А; iпр СКВ = 80 кА; IT = 31,5 кА; tТ = 4 с.

Расчетные данные выбранного разъединителя термическая стойкость:

кА2с

Выбор и проверка разъединителя представлены в табл. 13

Таблица 13. Выбор аппаратов напряжением 110 кВ

Условия выбора (проверки)

Данные сети

Выключатель

Разъединитель

Uсети UНОМ

110 кВ

110 кВ

110 кВ

IР IНОМ

116,9 А

1000 А

1000 А

IПО IПР СКВ

6,21 кА

26 кА

-

iуд iпр СКВ

15,81 кА

67 кА

-

IПО IН.вкл

6,21 кА

26 кА

-

iуд iН.вкл

15,81 кА

67 кА

80 кА

IП IН. откл

6,21 кА

26 кА

-

11,43 кА

28,28 кА

-

4,24 кА2с

2028 кА2с

3969 кА2с

10.2 Выбор аппаратов напряжением 6 кВ

Выберем ячейки распределительного устройства 6 кВ.

Так как РУНН принято внутреннего исполнения будем устанавливать перспективные малогабаритные ячейки серии "К" с выкатными тележками.

Расчетный ток с учетом расщепления вторичной обмотки трансформаторов ППЭ.

Выбираем малогабаритные ячейки серии К-104 с параметрами: UНОМ = 6 кВ; IНОМ = 1600 А; iпр СКВ = 81 кА; IН откл = 31,5 кА; тип выключателя ВК-10.

Выберем вводные выключатели 6 кВ:

Расчетные данные сети:

Расчетный ток ПАР IР = 1046,75 А

Расчетное время = tРЗ +tСВ; = 0,01+0,05 = 0,06 с действующее значение периодической составляющей начального тока КЗ IПО = 9,213 кА было рассчитано в пункте 7.2.

Периодическая составляющая тока КЗ в момент расхождения контактов выключателя:

кА;

Расчетное выражение для проверки выбранного выключателя по апериодической составляющей полного тока КЗ:

кА

Расчетный импульс квадратичного тока КЗ:

кА2с

Выбираем выключатель ВК-10-1600-20У2 со следующими каталожными данными:

UНОМ = 10 кВ; IНОМ = 1600 А; IН откл = 31,5 кА; = 20%; iпр СКВ = 80 кА; Iпр СКВ = 31,5 кА; iН вкл = 80 кА; IН вкл = 31,5 кА; tТ = 4 с; tСВ = 0,05 с

Расчетные данные выбранного выключателя: проверка выбранного выключателя по апериодической составляющей полного тока КЗ:

кА

Проверка по термической стойкости:

кА2с

Выбор и проверка выключателя представлены в табл. 14

Выберем выключатель на отходящей линии 6 кВ

Расчетные данные сети:

Расчетный ток ПАР:

А

Расчетное время

= tРЗ +tСВ; = 0,01+0,05 = 0,06 с

Остальные величины имеют те же значения что и для выключения ввода.

Выбираем выключатель ВК-100-630-20У2 со следующими каталожными данными:

UНОМ = 10 кВ; IНОМ = 630 А; IН откл = 20 кА; = 20%; iпр СКВ = 52 кА; Iпр СКВ = 20 кА; iН вкл = 52 кА; IН вкл = 20 кА; IТ = 20 кА; tТ = 4 с; tСВ = 0,05 с

Расчетные данные выбранного выключателя:

кА2с

Выбор и проверка выключателя представлены в табл. 14

Таблица 14. Выбор выключателей 6 кВ

Условия выбора (проверки)

Данные сети для ввода

Выключатель ввода

Данные сети для отходящей линии

Выключатель отходящей линии

Uсети UНОМ

6 кВ

10 кВ

6 кВ

10 кВ

IР IНОМ

1046,75 А

1600 А

105,03 А

630 А

IПО IПР СКВ

9,213 кА

31,5 кА

9,213 кА

20 кА

iуд iпр СКВ

25,02 кА

80 кА

25,02 кА

52 кА

IПО IН.вкл

9,213 кА

31,5 кА

9,213 кА

20 кА

iуд iН.вкл

25,02 кА

80 кА

25,02 кА

52 кА

IП IН. откл

9,213 кА

31,5 кА

9,213 кА

20 кА

20,93 кА

53,46 кА

20,93 кА

33,94 кА

15,28 кА2с

3969 кА2с

1528 кА2с

1600 кА2с

Выберем трансформаторы тока.

Условия их выбора:

1. По номинальному напряжению.

2. По номинальному длительному току.

Условия проверки выбранных трансформаторов:

1. Проверка на электродинамическую стойкость. (если требуется)

2. Проверка на термическую стойкость.

3. Проверка по нагрузке вторичных цепей.

Расчетные данные сети:

Расчетный ток IР = 1046,75 А

Ударный ток КЗ iуд = 25,02 кА

Расчетный импульс квадратичного тока КЗ ВК = 15,28 кА2с

Согласно условиям выбора их [7] выбираем трансформаторы тока типа ТПШЛ-10 со следующими каталожными данными:

UНОМ = 10 кВ; IНОМ = 1500 А; r = 1,2 Ом; IT = 35 кА; tT = 3 с.

Расчетные данные выбранного трансформатора тока: так как выбран шинный трансформатор тока, то проверка на электродинамическую стойкость не требуется; Проверка термической стойкости:

кА2с

Трансформаторы тока (ТТ) включены в сеть по схеме неполной звезды на разность токов двух фаз. Чтобы трансформатор тока не вышел за пределы заданного класса точности, необходимо, чтобы мощность нагрузки вторичной цепи не превышала нормальной: r r2.

Перечень приборов во вторичной цепи ТТ приведен в табл. 16, схема их соединения - на рис. 12.

Таблица. 15. Приборы вторичной цепи ТТ

Наименование

Количество

Мощности фаз, ВА

А

В

С

Амперметр Э335

1

0,5

-

-

Ваттметр Д335

1

0,5

-

0,5

Варметр Д335

1

0,5

-

0,5

Счетчик активной мощности СА4У-И672 М

1

2,5

-

2,5

Счетчик реактивной мощности СР4У-И673 М

2

2,5

-

2,5

Итого

6

9

-

8,5

Наиболее нагруженной является фаза А

Общее сопротивление приборов

где Sприб - мощность приборов, ВА;

I2 НОМ - вторичный ток трансформатора тока, А.

Ом

Допустимое сопротивление проводов:

Ом

Минимальное сечение приводов:

где = 0,0286 - удельное сопротивление проводов согласно [3], Ом/м;

lрасч = 50 - расчетная длина проводов согласно [3], м.

мм2

Принимаем контрольный кабель АКРВГ с жилами сечением 2,5 мм2, тогда:

Ом

Полное расчетное сопротивление:

Ом

Выбор и проверка ТТ представлены в табл.16

Таблица 16. Выбор трансформаторов тока

Условия выбора (проверки)

Данные сети для ввода

Каталожные данные

Uсети UНОМ

6 кВ

10 кВ

IР IНОМ

1046,75 А

1500 А

iуд iдин

25,02 кА

Не проверяется

15,28 кА2с

3675 кА2с

Z2Y r2расч

1,03 Ом

1,2 Ом

Выберем трансформаторы напряжения

Условия их выбора:

1. По номинальному напряжению.

Условия проверки выбранных трансформаторов:

1. Проверка по нагрузке вторичных цепей.

Согласно условиям выбора из [7] выбираем трансформаторы напряжения типа НАМИ-6-66УЗ со следующими каталожными данными: UНОМ = 6 кВ; IНОМ = 1500 А; S = 150 ВА. Схема соединения приборов приведена на рис.13, перечень приборов в табл.17.

Таблица 17. Приборы вторичной цепи ТН

Наименование

Количество

Мощность катушки

Число катушек

Полная мощность

Амперметр Э335

4

2

1

8

Ваттметр Д335

1

1,5

2

3

Варметр Д335

1

1,5

2

3

Частотомер Э 337

1

3

1

3

Счетчик активной мощности СА4У-И672 М

6

8

2

96

Счетчик реактивной мощности СР4У-И673 М

2

8

2

32

Номинальная мощность трансформатора напряжения НАМИ-6 S = 150 ВА. Расчетная мощность вторичной цепи S2 = 145 ВА. ТН будет работать в выбранном классе точности.

Выберем шины на ПГВ.

Условия их выбора:

1. По номинальному длительному току;

2. По экономическому сечению.

Условия проверки выбранных шин:

1. Проверка на термическую стойкость;

2. Проверка на электродинамическую стойкость.

Расчетный ток IР = 1046,75 А был определен ранее.

Так как это сборные шины, то согласно [5] по экономической плотности тока они не проверятся. Выбираем алюминиевые шины прямоугольного сечения 80х10 с допустимым током Iдоп = 1480 А.

Проверка на термическую стойкость: ВК = 15,28 кА2с

Минимальное сечение шин:

где с = 95 - термический коэффициент для алюминиевых шин 6 кВ согласно [3], Ас2/мм2

так как Fmin = 41,15 мм2 < F = 800 мм2, то шины термически стойкие.

Проверим шины на механическую стойкость. Для этого определим длину максимального пролета между изоляторами при условии, что частота собственных колебаний будет больше 200 Гц, так как при меньшей частоте может возникнуть механический резонанс:

где W - момент сопротивления поперечного сечения шины относительно оси, перпендикулярной направлению силы, F, м3;

- сила взаимодействия между фазами на 1 м длины при трехфазном КЗ с учетом механического резонанса, Н/м;

ДОП = 70 10 6 - допустимое напряжение в материале для алюминиевых шин [5], Па

- коэффициент равный 10 для крайних пролетов и 12 для остальных пролетов.

Согласно [3] силы взаимодействия между фазами на 1 м длины при трехфазном КЗ с учетом механического резонанса определяется по формуле:

где а - 60 10-3 - расстояние между осями шин смежных фаз для напряжения 6 кВ [3], м;

iуд - ударный ток трехфазного КЗ, А.

По выражению (8.2.5.)

Н/м

Момент сопротивления поперечного сечения шины при растяжении их плашмя определяется по выражению:

где b = 10 10-3 - высота шин, м; h = 20 10-3 - ширина шин, м.

м3

Длина пролета по формуле (9.2.4.)

м

Вследствие того, что ширина шкафа КРУ 750 мм, и опорные изоляторы имеются в каждом из них, принимаем длину пролета l = 0,75 м. Максимальное расчетное напряжение в материале шин, расположенных в одной плоскости, параллельных друг другу, с одинаковыми расстояниями между фазами:

МПа

Так как Ф = 17,96 МПа < ДОП = 70 МПа, то шины механически стойкие.

Выберем опорные изоляторы на ПГВ

Опорные изоляторы выбираются по номинальному напряжению и проверяются на механическую прочность. Допустимая нагрузка на головку изолятора:

где Fразр - разрушающее усилие на изгиб, Н. Расчетное усилие на изгиб

где Кh - коэффициент учитывающий расположение шин на изоляторе.

При расположении шин плашмя Кh = 1 [3].

Н

Из [7] выбираем опорные изоляторы 40-6-3,75 УЗ со следующими каталожными данными: UНОМ = 6 кВ; Fразр = 3750 Н.

Допустимая нагрузка:

Fдоп = 0,6 Fразр;

Fдоп = 0,6 3750 =2250 Н.

Так как Fдоп = 2250 Н > Fрасч = 1377,2 Н, то изоляторы проходят по допустимой нагрузке.

Выберем проходные изоляторы

Проходные изоляторы выбираются по номинальному напряжению, номинальному току и проверяются на механическую прочность.

Расчетный ток IР = 1046,75 А

Расчетное усилие на изгиб:

Н

Из [7] выбираем проходные изоляторы ИП-10/1600-1250 УХЛ1 со следующими каталожными данными: UНОМ = 10 кВ; IНОМ = 1600 А; Fразр = 1250 Н.

Допустимая нагрузка:

Fдоп = 0,6 Fразр;

Fдоп = 0,6 1250 = 750 Н

Так как Fдоп = 750 Н > Fрасч = 688,6 Н, то изоляторы проходят по допустимой нагрузке.

Выберем выключатели нагрузки

Условия его выбора:

1. По номинальному напряжению.

2. По номинальному длительному току.

Условия проверки выбранного выключателя нагрузки:

1. Проверка на отключающую способность.

2. Проверка на электродинамическую стойкость.

По предельному периодическому току.

По ударному току КЗ.

3. Проверка на термическую стойкость (если требуется)

Согласно [5] по режиму КЗ при напряжении выше 1000 В не проверяется:

1. аппараты и проводники, защищенные плавкими предохранителями с вставками на номинальный ток до 60 А - по электродинамической стойкости.

Проверку на включающую способность делать нет необходимости, так как имеется последовательно включенный предохранитель.

Расчетные данные сети:

Расчетный ток ПАР IР = 116,9 А был определен ранее при выборе выключателя на отходящей линии;

Действующее значение периодической составляющей номинального тока КЗ IПО = 9,213 кА было рассчитано ранее в пункте 10.2;

Для КТП-630-81 тип коммутационного аппарата на стороне 6 (10) кВ согласно [7] - выключатель нагрузки типа ВНРу-10 или ВНРп-10.

Согласно условиям выбора с учетом вышесказанного из [7] выбираем выключатель нагрузки ВНРп-10/400-103УЗ со следующими каталожными данными UНОМ = 10 кВ; IНОМ = 400 А; IН откл = 400 А; iпр СКВ = 25 кА; Iпр СКВ = 10 кА; IТ = 10 кА; tТ = 1 с.

IПО = 9,213 кА < Iпр СКВ = 10 кА

Iуд = 25,02 кА < iпр СКВ = 25 кА

IP = 116,9 А < IН откл = 400 А

Выберем предохранитель

Условия его выбора:

1. По номинальному напряжению.

2. По номинальному длительному току.

Условия проверки выбранного предохранителя

1. Проверка на отключающую способность.

Расчетный ток IР = 105,03 А был определен ранее.

Согласно условиям выбора из [7] выбираем предохранитель ПКТ 103-6-160-20УЗ со следующими каталожными данными UНОМ = 6 кВ; IНОМ = 160 А; IН откл = 20 кА; IПО = 9,213 < IН откл = 20 кА предохранитель по отключающей способности проходит.

10.3 Выбор аппаратов напряжением 0,4 кВ

Выберем автоматический выключатель

Условия выбора:

1. По номинальному напряжению.

2. По номинальному длительному току.

Условия проверки выбранного предохранителя

1. Проверка на отключающую способность.

Ранее в пункте 10.3 был выбран автомат типа АВМ10Нс UНОМ = 0,38 кВ; IНОМ = 1000 А; IН откл = 20 кА.

Проверка на отключающую способность:

Выбранный автомат проходит по условию проверки.

11. Проверка КЛЭП на термическую стойкость

Согласно [3] выбранные ранее кабели необходимо проверить на термическую стойкость при КЗ в начале кабеля.

Проверять будем кабели, отходящие от ПГВ, так как для остальных КЛЭП не известны токи КЗ.

Проверка проводится по условию:

где с = 0,92 - термический коэффициент для кабелей с алюминиевыми однопроволочными жилами и бумажной изоляцией согласно [7], Ас2/мм2;

tотк - время отключения КЗ, с;

а - постоянная времени апериодической составляющей тока КЗ, с;

F - сечение КЛЭП, мм2.

Рассмотрим расчет на примере КЛЭП ПГВ-ТП1

кА

Увеличим сечение до 95 мм2, тогда

кА > IКЗ = 9,213 кА,

что допустимо

Результаты проверки кабелей на термическую стойкость сведем в табл.18.

Таблица 18. Результаты проверки КЛЭП на термическую стойкость

Наименование КЛЭП

F, мм2

Iтер, кА

IКЗ, кА

ПГВ-ТП1

70

7,2

9,213

ПГВ-ТП2

35

3,6

9,213

ПГВ-ТП3

35

3,6

9,213

ПГВ-ТП4

35

3,6

9,213

ПГВ-ТП5

35

3,6

9,213

ПГВ-ТП6

16

1,6

9,213

ПГВ-ТП7

70

7,2

9,213

ПГВ-ТП8

50

5,14

9,213

ПГВ-ТП10

70

7,2

9,213

ПГВ-ТП11

50

5,14

9,213

ПГВ-ТП12

25

2,57

9,213

ПГВ-ТП13

95

9,77

9,213

ПГВ-РП

240

24,69

9,213

РП-ТП9

50

5,14

9,213

РП-ТП14

70

7,2

9,213

РП-ТП15

10

1,3

9,213

По режиму КЗ при напряжении выше 1 кВ не проверяются:

1. Проводники защищенные плавкими предохранителями не зависимо от их номинального тока и типа.

2. Проводники в цепях к индивидуальным электроприемникам, в том числе цеховым трансформаторам общей мощностью до 2,5 МВА и с высшим напряжением до 20 кВ, если соблюдены одновременно следующие условия:

- в электрической или технологической части предусмотрена необходимая степень резервирования, выполненного так, что отключение указанных электроприемников не вызывает расстройства технологического процесса;

- повреждение проводника при КЗ не может вызвать взрыва или пожара;

- возможна замена проводника без значительных затруднений.

3. Проводники к отдельным небольшим распределительным пунктам, если такие электроприемники и распределительные пункты являются не ответственными по своему назначению и если для них выполнено хотя бы только условие приведенное в пункте 2.2.

В остальных случаях сечение проводников надо увеличить до минимального сечения, удовлетворяющего условию термической стойкости.

Так как в нашем случае выполняются все выше изложенный условия в пунктах 1, 2 и 3 то сечение проводников увеличивать не будем.

Для проводников напряжением до 1 кВ приведенных в табл. 19 сечение увеличиваем до 95 мм2.

12. Расчет самозапуска электродвигателей

Самозапуск заключается в том, что при восстановлении электроснабжения после кратковременного нарушения электродвигатели восстанавливают свой нормальный режим работы. Отличительные особенности самозапуска по сравнению с обычным пуском:

- Одновременно пускается группа двигателей;

- В момент восстановления электроснабжения и начала самозапуска часть, или все электродвигатели вращаются с некоторой скоростью;

- Самозапуск обычно происходит под нагрузкой.

При кратковременном нарушении электроснабжения самозапуск допустим как для самих механизмов так и для электродвигателей.

Если невозможно обеспечить самозапуск двигателей, то в первую очередь необходимо обеспечить самозапуск для ответственных механизмов, отключение которых необходимо.

Расчет самозапуска синхронных двигателей:

В цехе № 15 установлены 6х500 СД. Из справочника выбираем двигатель марки СДН32-20-49-20 справочные данные последнего снесем в табл.19.

Таблица 19. Справочные данные СДН32-20-49-20

SН,

кВА

РН,

кВт

UН,

кВ

,

%

jпот,

тм2

n,

об/мин

cos

540

500

6

94,3

5,5

0,9

2,1

1,1

1,038

315

0,91

1. Электромеханическая постоянная времени механизма и двигателя определяется:

где n0 - синхронное число оборотов в минуту.

РН - номинальная мощность двигателя, кВт.

с

Выбор определяется по формуле

где tН - время нарушения электроснабжения, с.

mС - момент сопротивления механизма.

Цех питается от трансформатора ППЭ.

За базисную мощность принимаем мощность двигателя. Индуктивное сопротивление источника питания:

Расчетная пусковая мощность, индуктивное сопротивление двигателя и напряжения при самозапуске в начале самозапуска К' = 6.

кВА

При скольжении 0,1; К' = 3

кВА

Выходной момент при глухом подключении:

где М = 0,3 определено по номограмме [3].

Входной момент при глухом подключении недостаточен для обеспечения самозапуска. Проверим достаточность момента при разрядном сопротивлении. Критическое скольжение:

Так как это условие выполняется, двигатель дойдет до критического скольжения

Избыточный момент:

В начале самозапуска

При скольжении 0,05:

Время самозапуска

с

Дополнительный нагрев.

оС

Из расчета следует, что самозапуск возможен как по условию необходимого избыточного момента, так и по условию допустимого дополнительного нагрева.

13. Расчет релейной защиты

Распределительные сети 6-220 кВ промышленных предприятий обычно имеют простую конфигурацию и выполняются, как правило, радиальными и магистральными. Силовые трансформаторы подстанций на стороне низшего напряжения обычно работают раздельно. Поэтому промышленные электросети и электроустановки для своей защиты от повреждения и аномальных режимов в большинстве случаев не требуют сложных устройств релейной защиты. В месте с тем, особенности технологических процессов и связанные с ними условия работы и электрические режимы электроприемников и распределительных сетей могут предъявлять повышенные требования к быстродействию, чувствительности и селективности устройств релейной защиты, к их взаимодействию с сетевой автоматикой: автоматическим выключением резервного питания (АВР, автоматическим повторным включением (АПВ), автоматической частотной разгрузкой (АЧР).

Исходными данными определено произвести расчет релейной защиты трансформаторов ПГВ. Согласно [3] для трансформаторов, устанавливаемых в сетях напряжением 6 кВ и выше, должны предусматриваться устройства релейной защиты от многофазных КЗ в обмотках и на выводах, однофазных КЗ в обмотке и на выводах, присоединенных к сети с глухозаземленной нейтралью, витковых замыканий в обмотках, токов в обмотках при внешних КЗ и перегрузках, понижений уровня масла в маслонаполненных трансформаторах и маслонаполненных вводах трансформаторов.

13.1 Защита от повреждений внутри кожуха и от понижений уровня масла

Тип защиты - газовая, реагирующая на образование газов, сопровождающих повреждение внутри кожуха трансформатора, в отсеке переключения отпаек устройства регулирования коэффициента трансформации (в отсеке РПН), а также действующая при чрезмерном понижении уровня масла. В качестве реле защиты в основном используется газовые реле. При наличии двух контактов газового реле защита действует в зависимости от интенсивности газообразования на сигнал или на отключение.

Типовыми схемами защиты предусматривается в соответствие с требованиями ПЭУ возможность перевода действия отключающего контакта газового реле (кроме реле отсека РПН) на сигнал и выполнение раздельной сигнализации от сигнального и отключающего контактов реле. Газовое реле отсека РПН должно действовать только на отключение.

При выполнении газовой защиты с действием на отключение принимаются меры для надежного отключения выключателей трансформатора при кратковременном замыкании соответствующего контакта газового реле.

Газовая защита установлена на трансформаторах ПГВ и на внутрицеховых трансформаторах мощностью 630 кВА и более. Применяем реле типа РГУЗ-66.

Защита от повреждений внутри кожуха трансформатора, сопровождающихся выделением газа, может быть выполнена и с помощью реле давления, а защита от понижения уровня масла - реле уровня в расширителе трансформатора.

13.2 Защита от повреждений на выводах и от внутренних повреждений трансформатора

Для этой цели будем использовать продольную дифференциальную токовую защиту, действующую без выдержки времени на отключение поврежденного трансформатора от неповрежденной части электрической системы с помощью выключателя. Данная защита осуществляется с применением реле тока, обладающих улучшенной отстройкой от бросков намагничивающего тока, переходных и установившихся токов небаланса. Согласно рекомендациям [3] будем использовать реле торможением типа ДЗТ-11. Рассматриваемая защита с реле ДЗТ-11 выполняется так, чтобы при внутренних повреждениях трансформатора торможение было минимальным или совсем отсутствовало. Поэтому тормозная обмотка реле обычно подключается к трансформаторам тока, установленных на стоне низшего напряжения трансформатора.

Произведем расчет продольной дифференциальной токовой защиты трансформаторов ПГВ, выполненной с реле типа ДЗТ-11. Для этого сначала определяем первичные токи для всех сторон защищаемого трансформатора, соответствующие его номинальной мощности:

где SНОМ - номинальная мощность защищаемого трансформатора, кВА.

UНОМ - номинальное напряжение соответствующей стороны, кВ.

Ток для высшей стороны напряжения:

А

Для низшей стороны напряжения:

Принимаем трансформаторы тока с nТ ВН = 150/5 и nТ НН = 1500/5. Схемы соединения трансформаторов тока следующие: на высшей стороне , а на низшей стороне - Y.

Определим соответствующие вторичные токи в плечах защиты:

где КСХ - коэффициент схемы включения реле защиты, которой согласно [3] для ВН равен , для НН-1.

Тогда с использованием выражения (11.2.2):

А

А

Выберем сторону, к трансформаторам тока которой целесообразно присоединить тормозную обмотку реле. В соответствии с [8] на трансформаторах с расщепленной обмоткой тормозная обмотка включается в сумму токов трансформаторов тока, установленных в цепи каждой из расщепленной обмоток. Первичный минимальный ток срабатывания защиты определяется из условия отстройки от броска тока намагничивания:

где Котс = 1,5 - коэффициент отстройки.

А

Расчетный ток срабатывания реле, приведенный к стороне ВН:

А

Расчетное число витков рабочей обмотки реле включается в плечо защиты со стороны ВН:

где FСР = 100 - магнитодвижущая сила срабатывания реле, А.

Согласно условию WВН WВН расч принимаем число витков WВН = 9, что соответствует минимальному току срабатывания защиты:

А

Расчетное число витков рабочей обмотки реле, включаемых в плечо защиты со стороны НН:

Принимаем ближайшее к WНН расч целое число, т.е. WНН = 17.

Определим расчетное число витков тормозной обмотки, включаемых в плечо защиты со стороны НН:

где = 0,1 - относительное значение полной погрешности трансформатора тока;

u - относительная погрешность, обусловленная РНП, принимается равный половине суммарного диапазона регулирования напряжения;

б - угол наклона касательной к горизонтальной характеристике реле типа ДЗТ-11, tgб = 0,75.

Для ТРДН-25000-110 u = 0,5290,0178 = 0,16

Согласно стандартного ряда, приведенного в [3], принятое число витков тормозной обмотки для реле ДЗТ-11 WТ = 9.

Определим чувствительность защиты при металлическом КЗ в защищаемой зоне, когда торможение отсутствует. Для этого определим ток КЗ между двумя фазами на стороне НН трансформатора:

кА

кА = 462 А

Коэффициент чувствительности:

,

что удовлетворяет условиям

Определяем чувствительность защиты при КЗ в защищаемой зоне, когда имеется торможение.

Вторичный ток, подводимый к рабочей обмотке реле:

А

Второй ток, подводимый к тормозной обмотке:

А.

Рабочая МДС реле:

А

Тормозная МДС реле:

А

По характеристике срабатывания реле, приведенной в [9], графически определяем рабочую МДС срабатывания реле: FCР = 125 А.

Тогда коэффициент чувствительности:

,

что удовлетворяет условиям

13.3 Защита от токов внешних многофазных КЗ

Защита предназначена для отключения внешних многофазных КЗ при отказе защиты или выключателя смежного поврежденного элемента, а также для выполнения функции ближайшего резервирования по отношению к основным защитам трансформатора (дифференциальной и газовой). В качестве защиты трансформатора от токов внешних КЗ используются:

1. токовые защиты шин секций распределительных устройств низшего и среднего напряжений, подключенных к соответствующим выводам трансформатора;

2. максимальная токовая защита с пуском напряжения, устанавливаемая на стороне высшего напряжения защищаемого трансформатора.

Защита установленная на стороне ВН, выполняется двухобмоточных трансформаторах с двумя, а на трехобмоточных с тремя реле тока. Реле присоединяется ко вторичным обмоткам ТТ, соединенным, как правило, в треугольник.

Непосредственное включение реле защиты от токов внешних КЗ в токовые цепи дифференциальной защиты не допускается.

13.4 Защита от токов внешних замыканий на землю на стороне ВН

Защита предусматривается для трансформаторов с глухим заземлением нейтрали обмотки высшего напряжения при наличии присоединенных синхронных электродвигателей в цепях резервирования отключения замыканий на землю на шинах питающей подстанции и для ускорения отключения однофазного КЗ в питающей линии выключателями низшего напряжения трансформатора. Реле максимального тока защиты подключается к трансформатору тока, встроенному в нулевой вывод обмотки ВН трансформатора.

13.5 Защита от токов перегрузки

Согласно [3] на трансформаторах 400 кВА и более, подверженных перегрузкам, предусматривается максимальная токовая защита от токов перегрузки с действием на сигнал с выдержкой времени. Устанавливается на каждой части расщепленной обмотки. Продолжительность срабатывания такой защиты должны быть выбраны примерно на 30% больше продолжительности пуска или самозапуска электродвигателей, получающих питание от защищаемого трансформатора, если эти процессы приводят к его перегрузке.

14. Расчет молниезащиты и заземляющего устройства ПГВ

Защита от прямых ударов молнии установок, зданий и сооружений независимо от их высоты должна быть выполнена отдельностоящими тросовыми или стержневыми молниеотводами.

Открытые распределительные устройства (ОРУ) подстанций 20-500 кВ защищают от прямых ударов молнии стержневыми молниеотводами. Защиту ОРУ 110 кВ можно выполнить на конструкциях независимо от площади заземляющего контура подстанции. При этом от стоек конструкции ОРУ 110 кВ нужно обеспечить растекание тока не менее, чем в двух-трех направлениях и установить вертикальные электроды длиной 3-5 метра на расстоянии не менее длины электрода. Для экономии металла молниеотводы необходимо установить на конструкциях (порталах, опорах линии, прожекторных мачтах и т.п.) и на закрытых распределительных устройствах (ЗРУ). Сами здания, имеющие железобетонные несущие конструкции кровли защищать молниеотводами не требуется.

Защитное действие стержневого молниеотвода основано на свойстве молнии поражать наиболее высокие и хорошо заземленные металлические сооружения. Во время лидерной стадии развития молнии на вершине молниеотвода накапливаются заряды, создающие на ней очень большие напряженности электрического поля. К этой области и направляется канал молнии. Зоной защиты молниеотвода называется пространство вокруг него, в котором объект защищен от прямых ударов молнии с определенной степенью надежности. Защищаемый объект не поражается молнией, если он целиком входит в зону защиты молниеотвода. Защита ПГВ от прямых ударов молнии производится с помощью стержневых молниеотводов. Два молниеотвода устанавливаются на порталах ОРУ 110 кВ, других на ЗРУ.

Условие защищенности всей площади ПГВ выражается соотношением:

,

где D - диаметр окружности, м;

Р - коэффициент для разных высот молниеотводов (до 30 м Р = 1);

hа - активная высота молниеотвода, м.

Минимальная активная высота молниеотвода

Принимаем hа = 5 м.

Молниеотводы характеризуются высотой h:

где hх - высота заземляемого объекта (hх = 12 м.)

м

Зона защиты молниеотвода представляет собой конус, с криволинейной образующей. Радиус зоны защиты определяется по формуле:

м

Наименьшая ширина зоны защиты bх в середине между молниеотводами (на горизонтальном сечении) на высоте hХ определяется по формуле:

где а - расстояние между молниеотводами

м

Граница зоны защиты между молниеотводами (в вертикальном сечении) определяется радиусом R, проходящей через вершины молниеотводов и точку А, распложенную по средине между молниеотводами на высоте h0, м

м

Самые высокие объекты входят в зону защиты молниеотводов.

Условия защищенности всей площади выполняется:

(38 40 м)

Воздушные линии на железобетонных опорах защищаются тросовыми молниеотводами на подходе к подстанции. Длина подхода 2 км. Защитный угол тросового молниеотвода равен 25 градусов.

Защитное заземление необходимо для обеспечения безопасности персонала при обслуживании электроустановок. К защитному заземлению относятся заземления частей установки, нормально не находящейся под напряжением, на которые могут оказаться под ним при повреждении изоляции. Заземление позволяет снизить напряжение прикосновения до безопасного значения.

Произведем расчет заземляющего устройства ПГВ.

Установим необходимое допустимое сопротивление заземляющего устройства. В данном случае заземляющее устройство используется одновременно для установок выше 1000 В с заземленной нейтралью и изолированной нейтралью. Согласно [10] сопротивление растекания RЗ для установок свыше 1000 В с заземленной нейтралью RЗ 0,5 Ом, а для установок свыше 1000 В с изолированной нейтралью , но не более 10 Ом. Из двух сопротивлений выбираем наименьшее, т.е. RЗ 0,5 Ом.

Определим необходимое сопротивление искусственного заземлителя RН. Так как данных о естественных заземлителях нет, то RН = RЗ = 0,5 Ом.

Выберем форму и размеры электродов, из которых будем сооружать групповой заземлитель. В качестве вертикальных электродов выбираем прутки длиной 5 м, диаметром 14 мм. Эти заземлители наиболее устойчивы к коррозии и долговечны. Кроме того, их применение приводит к экономии металла. Прутки погружаем в грунт на глубину 0,7 м с помощью электрозаглубителей. В качестве горизонтальных электродов применяем полосовую сталь сечением 4х40 мм. Во избежания нарушения контакта при возможных усадках грунта укладываем ее на ребро. Соединение горизонтальных и вертикальных электродов осуществляем сваркой.

Размеры подстанции 37х28 м. Тогда периметр контурного заземлителя равен Р = 2 (37 - 4 + 28 - 4) = 114 м, а среднее значение расстояния между электродами:

м

где nВ - предварительное число вертикальных электродов.

Отношение а/1 = 1,9/5 = 0,38, тогда из [10] коэффициент использования вертикальных электродов Кu верт = 0,29.

Определяем расчетное удельное сопротивление грунта отдельно для горизонтальных и вертикальных электродов с учетом повышающих коэффициентов КС, учитывающих высыхание грунта летом и промерзания его зимой.

Расчетное удельное сопротивление грунта для вертикальных электродов:

где КС.В. = 1,3 - коэффициент сезонности для вертикальных электродов и климатической зоны 2 согласно [10].

0 = 40 - удельное сопротивление грунта для глины, Омм.

Расчетное удельное сопротивление грунта для горизонтальных электродов:

где КС.Г. = 3 - коэффициент сезонности для горизонтальных электродов и климатической зоны 2 согласно [10];

Омм Омм

Определим сопротивление растеканию тока одного вертикального электрода:

где l = 5 м - длина вертикального электрода, м; d = 14 10-3 диаметр электрода, м; t = 3,2 - расстояние от поверхности грунта до середины электрода, мм;

Ом

Определим примерное число вертикальных электродов nВ при предварительно принятом коэффициенте использования вертикальных электродов Кu верт = 0,29:

Принимаем nВ = 80 шт.

Определим сопротивление растеканию тока горизонтального электрода:

где l = 114 - длина горизонтального электрода, м; t = 3,2 - глубина заложения, м; dЭ - эквивалентный диаметр электрода, м;

Ом

Уточненные значения коэффициентов использования: Кu верт = 0,276; Кuгор = 0,161, тогда уточненное число вертикальных электродов с учетом проводимости горизонтального электрода:

шт.

Принимаем nВ.У. = 81 шт.

,

Меньше на 10%, следовательно, окончательное число вертикальных электродов - 81.

Для выравнивания потенциала на поверхности земли с целью снижения напряжения прикосновения и шагового напряжения на глубине 0,7 м укладываем выравнивающую сетку с размером ячейки 3,6х6 м.

15. Охрана труда

Анализ опасных и вредных производственных факторов на рабочем месте дежурного диспетчера

Условия труда на рабочих местах производственных помещений или площадок складываются под воздействием большого числа факторов, различных по своей природе, формам проявления, характеру действия на человека.

В соответствии с ГОСТ 12.0.003-74 опасные и вредные производственные факторы подразделяются по своему действию на следующие группы:

- физические;

- химические;

- биологические;

- психофизиологические;

Один и тот же опасный и вредный производственный фактор по природе своего действия может относиться одновременно к различным группам. Следует иметь в виду, что одни опасные факторы могут отрицательно влиять только на человека, осуществляющего технологический процесс (например электрический ток, отлетающие частицы обрабатываемого материала, вращающиеся части производственного оборудования), а другие (например шум, пыль) и на среду, окружающую рабочие места. Некоторые факторы могут оказывать отрицательное влияние на все элементы системы "человек - машина - окружающая среда - предмет труда". Влияние на одни элементы системы может быть непосредственным (прямым), а на другие косвенным.

Выбор технических средств безопасности должен осуществляться на основе выявления опасных и вредных факторов, специфических для данного технологического процесса, а также изучения особенностей каждого выявленного фактора и зоны его действия (опасной зоны).

Повышенный уровень шума на рабочем месте

Стандарт устанавливает классификацию шума, характеристики и допустимые уровни шума на рабочих местах, шумовым характеристикам машин, механизмов, средств транспорта и другого оборудования и измерениям шума.

По характеру спектра шум следует подразделять на:

- широкополосный с непрерывным спектром шириной более одной октавы;

- тональный, в спектре которого имеются выраженные дискретные тона.

Тональный характер шума для практических целей (при контроле его параметров на рабочих местах) устанавливают измерением в третьоктавных полосах частот по превышению уровня звукового давления в одной полосе над соседними не менее чем на 10 дБ.

По временным характеристикам шум следует подразделять на:

- постоянный, уровень звука которого за восьмичасовой рабочий день изменяется во времени не более чем на 5 дБА при измерениях на временной характеристике "медленно" шумомера по ГОСТ 17187-81.

- непостоянный, уровень звука которого за восьмичасовой рабочий день (рабочую смену) изменяется во времени более чем на 5 дБА при измерениях на временной характеристике "медленно" шумомера по ГОСТ 17187-81.

Непостоянный шум следует подразделять на:

- колеблющийся во времени;

- прерывистый;

- импульсный.

Допустимые уровни звукового давления в октавных полосах частот и эквивалентные уровни звука в соответствии с ГОСТ 12.1.003-83 для дежурного диспетчера подстанции.

Уровни звукового давления в дБ, в октавных полосах со среднегеометрическими частотами, Гц.

31,5

63

125

250

500

1000

2000

4000

8000

Уровни звука и эквивалентные уровни звука, дБ

93

79

70

63

58

55

52

50

49

80

Повышенный уровень вибрации

Вредное действие на работающих оказывает вибрация, возникающая при работе электротехнического оборудования.

Под вибрацией понимается движение точки или механической системы, при котором происходит поочередное возрастание и убывание во времени значений, по крайней мере, одной координаты.

Физическими характеристиками вибрации являются: амплитуда виброперемещения Х, амплитуда колебательной скорости V, амплитуда колебательного ускорения А, частота колебаний F. Общая вибрация нормируется с учетом свойств источника ее возникновения и подразделяется на транспортную, транспортно-технологическую и технологическую. Наиболее высокие требования предъявляются при проектировании технологической вибрации в помещениях для умственного труда.

На данном рабочем месте гигиенические нормы: технологическая вибрация с источниками вибрации находится в пределах частот от 2 до 63 Гц и =107-92 дБ. В соответствии с ГОСТ 12.1.012-90 данное рабочее место относится к 3 типу "A" комфорт.

Общая

ЭК, В

1

2

4

8

16

31,5

63

92

Технологическая тип "A"

-

108

99

93

92

92

92

Неблагоприятные параметры микроклимата

Воздух производственных помещений должен отвечать определенным требованиям как по чистоте (содержанию вредных веществ), так и по параметрам микроклимата (температура, влажность и скорость движения воздуха). При работе оборудования и ведении технологических процессов в воздух рабочей зоны попадают различные вредные вещества, химические соединения, пыль производственные яды и прочее, в некоторых случаях увеличивается влагосодержание воздуха и его температура. Для нормализации параметров воздушной среды, оказывающих непосредственное отрицательное воздействие на организм человека, одним из самых распространенных методов является вентиляция производственных помещений, заключающаяся в удалении из помещения загрязненного и нагретого воздуха и подаче в него чистого свежего. По виду побудителя движения воздуха вентиляция подразделяется естественную (аэрацию) и механическую. Естественная вентиляция, не требуя затрат энергии, способна перекачивать значительное количество воздуха, однако обладает рядом существенных недостатков: невозможностью очистки приточного и удаляемого воздуха, трудностью в управлении и малой эффективностью работы в летнее время. Механическая вентиляция лишена этих недостатков и по способу организации воздухообмена делится на общеобменную и местную, по принципу действия подразделяется на приточную и вытяжную.

Нормируемые параметры микроклимата:

Время года

Категория работ, согласовано с ГОСТ 12.1-005-88

Температура воздуха, град. С

Относительная влажность воздуха, %

Скорость движения воздуха, м/с.

оптимальная

относительная

оптимальная

Холодное

Теплое

Легкая-1 б

Легкая-1 б

21-23

22-24

40-60

40-60

0,1

0,2

К категории 1б относятся работы, производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением.

Недостаточная освещенность рабочей зоны

Рациональное освещение производственных помещений и рабочих мест на предприятиях улучшает гигиенические условия труда, повышает культуру производства, оказывает положительное психологическое воздействие на работающих. Правильно организованное освещение способствует не только повышению производительности и качества труда, но одновременно создает благоприятные условия, снижающие утомляемость, уровень производственного травматизма и профессиональных заболеваний. Среди факторов внешней среды, влияющих на организм человека, свет занимает одно из первых мест. Известно что около 90 % процентов всей информации о внешнем мире человек получает через зрительные ощущения. Усталость органов зрения зависит от степени напряженности процессов, сопровождающих зрительное восприятие. Освещение производственных помещений характеризуется количественными и качественными показателями. Количественные показатели: лучистая энергия, лучистый поток, световой поток, сила света, яркость и освещенность. Качественные показатели: фон, контраст между объектом и фоном, видимость, показатель ослепленности, коэффициент пульсации освещенности и показатель дискомфорта. На рабочем месте дежурного диспетчера подстанции примерные нормы освещения в соответствии с СНиП 23.05-95.

Искусственное освещение

Естественное

освещение

Совмещенное

освещение

Освещенность, Лк.

КЕО, Ен %

При системе комбинированного освещения

При общем освещении

Показатель освещенности и коэффициент пульсации

При верхнем

Боковом

При верхнем

Боковом

всего

в т.ч. общего

Р

Кп, %

400

200

200

40

20

4

1,5

2,4

0,9

Электрический ток

Анализ производственного травматизма показывает, что из общего числа несчастных случаев на производстве число электротравм составляет 0,5 - 1 %, однако среди несчастных случаев со смертельным исходом на долю электротравм приходится 20 - 40 %, что больше чем по какой - либо другой причине. Опасность электрического тока в отличие от прочих опасных и вредных производственных факторов усугубляется тем, что человек не обнаруживает на расстоянии с помощью органов чувств грозящую опасность. Реакция человека на электрический ток возникает лишь при прохождении его через организм. Электрический ток оказывает на организм человека термическое, электролитическое, механическое и биологическое воздействие. В соответствии с ГОСТ 12.1.002 - 84:

- предельно допустимый уровень напряженности воздействующего электрического поля (ЭП) устанавливается равным 25 кВ/м.

- пребывание в (ЭП) напряженностью более 25 кВ/м без применения средств защиты не допускается.

- пребывание в (ЭП) напряженностью до 5 кВ/м включительно допускается в течение рабочего дня.

- при напряженности (ЭП) свыше 20 -25 кВ/м время пребывания персонала в нем не должно превышать 10 минут.

Напряженность ЭП на рабочих местах персонала должна измеряться:

- при изменении конструкции электроустановок и стационарных средств защиты от ЭП;

- при применении новых схем коммутации;

- при приемке в эксплуатацию новых установок;

- при организации новых рабочих мест;

- в порядке текущего санитарного надзора - 1 раз в 2 года.

На данном рабочем месте часть помещения в которой находится рабочее место диспетчера имеет напряженность ЭП до 5 кВ/м. Часть помещения в котором находятся шкафы релейной защиты и автоматики, распределительные устройства имеет напряженность ЭП до 25 кВ/м.

Тяжесть и напряженность трудового процесса

Под тяжестью труда понимают степень совокупного воздействия производственных элементов условий труда на функциональное состояние организма человека, его здоровье и работоспособность, на процесс воспроизводства рабочей силы и безопасность труда. Тяжесть труда определяется степенью нагрузки на мышечную систему.

Уровень тяжести на данном рабочем месте можно отнести ко второму классу - допустимый (средняя физическая нагрузка) - условия труда, при которых неблагоприятные факторы не превышают гигиенических нормативов на рабочих местах и не приводят к накоплению утомления.

Напряженность труда - это характеристика трудового процесса, отражающая преимущественную нагрузку на ЦНС, т.е. определяется нервным и психоэмоциональным напряжением, длительностью и интенсивностью интеллектуальной нагрузки.

На данном рабочем месте:

Напряженность труда средней степени.

1. Содержание работы: решение простых задач по инструкции.

2. Восприятие сигналов информации и их оценка: восприятие сигналов с последующей коррекцией действий и операций.

3. Распределение функций по степени сложности задания: обработка выполнение задания и его проверка.

4. Характер выполняемой работы: работа по установленному графику с возможной его коррекцией по ходу деятельности.

Сенсорные, эмоциональные нагрузки, монотонность нагрузок, режим работы соответствуют Допустимому классу условий труда в соответствии с

Р 2.2.755 - 99.

Меры по снижению и устранению опасных и вредных факторов

Неблагоприятные параметры климата

Воздухообмен в помещениях должен быть организован так, чтобы заданные условия воздушной среды достигались при минимальном расходе воздуха. Для этого необходимо учитывать закономерности взаимодействия приточных, вытяжных и конвективных струй в помещении, так как они определяют характер движения воздуха в нем. Формируют поля температур и поля концентрации вредных веществ.

При проектировании общеобменной вентиляции необходимый воздухообмен определяют из условия разбавления вредностей чистым воздухом до предельно - допустимых концентраций. Необходимое количество воздуха при расчете вентиляции определяют следующими методами:

- по количеству воздуха на одного человека;

- по кратности воздухообмена.

При вентиляции должен очищаться как приточный воздух, так и удаляемый из помещения. Способ очистки и вид очистной аппаратуры выбирают с учетом таких факторов, как влажность воздуха, температура, степень загрязнения и требуемая степень очистки, свойства пыли (сухая, липкая, гигроскопичная, волокнистая), размеры частиц пыли (степень эксперсности).


Подобные документы

  • Определение средней нагрузки подстанции. Проверка провода. Выбор количества и мощности трансформаторов. Расчёт токов короткого замыкания, заземляющего устройства. Проверка линии электропередач на термическую стойкость. Проектирование релейной защиты.

    дипломная работа [646,5 K], добавлен 15.02.2017

  • Разработка внутризаводского электроснабжения: определение силовых нагрузок цехов предприятия, выбор типа, мощности и мест расположения компенсирующих устройств. Расчёт токов короткого замыкания и проверка сечений кабельных линий на термическую стойкость.

    курсовая работа [737,0 K], добавлен 26.02.2012

  • Разработка системы электроснабжения бумажной фабрики. Обзор технологического процесса и определение электрических нагрузок методом коэффициента спроса. Распределение электроэнергии, расчеты релейной защиты, молниезащиты и заземляющего устройства.

    дипломная работа [941,9 K], добавлен 19.01.2011

  • Выбор схемы и линий электроснабжения оборудования. Расчет электрических нагрузок, числа и мощности питающих трансформаторов. Выбор компенсирующей установки, аппаратов защиты. Расчет токов короткого замыкания и заземляющего устройства и молниезащиты.

    курсовая работа [663,0 K], добавлен 04.11.2014

  • Проектирование системы электроснабжения предприятия. Определение расчётных нагрузок цехов и предприятия. Расчет и рациональное построение системы электроснабжения агломерационной фабрики металлургического комбината. Разработка заземляющих устройств.

    дипломная работа [558,9 K], добавлен 02.01.2011

  • Расчёт электрических и осветительных нагрузок завода и цеха. Разработка схемы электроснабжения, выбор и проверка числа цеховых трансформаторов и компенсация реактивной мощности. Выбор кабелей, автоматических выключателей. Расчет токов короткого замыкания.

    дипломная работа [511,9 K], добавлен 07.09.2010

  • Проектирование внутреннего электроснабжения завода и низковольтного электроснабжения цеха. Расчет центра электрических нагрузок. Выбор номинального напряжения, сечения линий, коммутационно-защитной аппаратуры электрических сетей для механического цеха.

    дипломная работа [998,0 K], добавлен 02.09.2009

  • Характеристика технологического процесса и требования к надёжности электроснабжения. Определение расчетных электрических нагрузок по методу упорядоченных диаграмм. Выбор кабельных линий автоматических выключателей, мощности силовых трансформаторов.

    дипломная работа [558,8 K], добавлен 30.01.2011

  • Определение категорий цехов и предприятия по надежности электроснабжения. Выбор количества цеховых трансформаторов с учётом компенсации реактивной мощности. Разработка схемы внутризаводского электроснабжения и расчет нагрузки методом коэффициента спроса.

    курсовая работа [382,4 K], добавлен 11.12.2011

  • Назначение и основные положения системы электроснабжения. Расчет электрических нагрузок кузнечно-механического цеха, параметров заземляющего устройства ГПП. Организация ремонта. Определение численности персонала. Применение системы АСКУЭ на предприятии.

    дипломная работа [553,7 K], добавлен 13.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.