Электроснабжение нефтеперерабатывающего завода

Краткие сведения о проектируемом предприятии и о питающей энергосистеме. Расчет электрических нагрузок предприятия, компенсация реактивной мощности с помощью конденсаторных установок. Выбор мощности силовых трансформаторов ГПП, внутризаводских подстанций.

Рубрика Физика и энергетика
Вид дипломная работа
Язык русский
Дата добавления 07.09.2010
Размер файла 536,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

? РК.3 = 58 кВт, uK = 10,5%

Линия Л1: l = 2 км, ryд = 0,306Ом/км, xуд = 0,434 Ом/км.

Технические данные цеховых трансформаторов и расчетные характеристики кабельных линий внутризаводских распределительных сетей приведены соответственно:

ТМЗ 1000/6,3. ST.HOM = 1000кВА, Uвн=6,3кВ, Uнн=0,38кВ,

? РК.3 = 11кВт, uK = 5,5%

Линия Л2: l = 900м, ryд = 0,443*10-3 Ом/м, xуд = 0,08*10-3 Ом/км

Для расчета составляется схема замещения, в которую входят все сопротивления цепи КЗ.

Рисунок 6.1 Схема замещения

Определяются параметры схемы замещения в относительных единицах.

Принимаем:

MBA,кВ,кВ,Sк=2000 MBA,X0=0,4Ом/км

Найдем силу базисных токов:

(6.1)

(6.2)

Найдем базисные сопротивления:

(6.3)

(6.2)

(6.3)

Сила тока короткого замыкания до точки К1:

(6.4)

где, Iб1 - базисный ток,кА

Xбк1 - полное базисное сопротивление

Найдем ударный ток в точке К1

(6.5)

где,Куд -ударный коэфициэнт, принимаем 1,8

Найдем мощность короткого замыкания в точке К1

(6.6)

Относительное базисное сопротивление трансформатора

(6.7)

Результирующее сопротивление до точки К2

(6.6)

Сила тока короткого замыкания до точки К2

(6.7)

Ударный ток до точки К2

(6.8)

Мощность короткого замыкания до точки К2

(6.9)

Сопротивление трансформатора, в относительных еденицах

(6.10)

(6.11)

Сопротивление трансформатора в мОм

;

Сопротивление шин

;

Суммарное активное сопротивление до точки К3

(6.12)

где, rш - сопротивление шин

rтт - сопротивление первичной обмотки трансформатора тока

rр - сопротивление трехфазного рубильника

Суммарное реактивное сопротивление до точки К3

(6.13)

где, xт - реактивное сопротивление трансформатора

xтт - реактивное сопротивление трансформатора тока

xш - реактивное сопротивление шины

Полное сопротивление до точки К3

(6.14)

Сила тока короткого замыкания в точке К3

(6.15)

Сила ударного тока короткого замыкания

Мощность короткого замыкания в точке К3

(6.16)

Результаты расчетов сведены в таблицу 6.1

Таблица 6.1- Сила токов короткого замыкания

Точка К.З

IК1(3), (кА)

IК(2), (кА)

iуд , (кА)

Sк, (мВА)

К1

6,25

5,3

15,9

1243

К2

13,5

11,6

34,5

140

К3

23,4

20,1

42,9

15,4

7 Выбор схемы внутреннего электроснабжения и ее параметров

7.1 Выбор схемы межцеховой сети.

Схемы электрических сетей могут выполняться радиальными и магистральными. Схема межцеховой сети должна обеспечивать надежность питания потребителей ЭЭ, быть удобной в эксплуатации. Радиальные схемы распределения электроэнергии применяются главным образом в тех случаях, когда нагрузки расположены в различных направлениях от центра питания, а также для питания крупных электроприемников с напряжением выше 1 кВ.

Магистральные схемы целесообразны при распределенных нагрузках, при близком к линейному расположению подстанций на территории предприятия, благоприятствующем возможно более прямому прохождению магистралей от ГПП до ТП.

Расчет нагрузок трансформаторов. Результаты в таблице 7.1.

Таблица 7.1 - Нагрузки трансформаторных подстанций

№ТП

Рс, кВт

Qс, кВар

Sс, кВА

Кз.норм

Кз.п/ав

1

2

3

4

5

6

ТП 1

294,3

141,3

326

0,5

1

ТП 2

279,09

133,9

309,5

0,5

1

ТП 3

568,5

455

728

0,6

1,2

ТП 4

568,5

455

728

0,6

1,2

ТП 5

581

445,5

713

0,6

1,2

ТП 6

405,5

648

519,4

0,4

0,8

ТП 7

405,5

648

519,4

0,4

0,8

ТП 8

347,9

278,3

393,6

0,4

0,8

7.2 Выбор сечений жил кабелей распределительной сети для обоих вариантов схем

При проектировании кабельных линий используется экономическая плотность тока. В ПУЭ установлены величины экономических плотностей тока jЭК зависящие от материала, конструкции провода, продолжительности использования максимума нагрузки ТНБ и региона прокладки.

Экономически целесообразное сечение определяют предварительно по расчетному току линии IРАС.НОРМ нормального режима и экономической плотности тока:

(7.1)

Найденное расчетное значение сечения округляется до ближайшего стандартного.

Для обеспечения нормальных условий работы кабельных линий и правильной работы защищающих аппаратов выбранное сечение должно быть проверено по допустимой длительной нагрузке, по нагреву в нормальном и послеаварийном режимах, а также по термической стойкости при токах КЗ.

Проверка по допустимой токовой нагрузке по нагреву в нормальном и послеаварийном режимах производится по условию Iрас ? Iдоп. факт,

где Iрас - расчетный ток для проверки кабелей по нагреву;

Iдоп. факт - фактическая допустимая токовая нагрузка.

Расчетный ток линии определяется как

, (7.2)

где Sкаб - мощность, передаваемая по кабельной линии в нормальном или послеаварийном режиме работы; Uном - номинальное напряжение сети.

Фактическая допустимая токовая нагрузка в нормальном и послеаварийном режимах работы вычисляется по выражению

, (7.3)

где Iдоп.табл - допустимая длительная токовая нагрузка, при FСТ=50мм2 ч IДОП=165А; FСТ=70мм2 ч IДОП=210А; FСТ=95мм2 ч IДОП=255А;

Кt - коэффициент, учитывающий фактическую температуру окружающей среды, нормативная температура для кабелей, проложенных в земле +15°С;

Кпр - коэффициент, учитывающий количество проложенных кабелей в траншее;

Кпер - коэффициент перегрузки, зависящий от длительности перегрузки и способа прокладки (в земле или в воздухе), а также от коэффициента предварительной нагрузки.

Проверка сечений по термической стойкости проводится после расчетов токов КЗ. Тогда минимальное термически стойкое токам КЗ сечение кабеля:

, (7.4)

где - суммарный ток КЗ от энергосистемы и синхронных электродвигателей: tп=0,7 - приведенное расчетное время КЗ; С - термический коэффициент (функция) для кабелей 6 кВ с алюминиевыми жилами: поливинилхлоридная или резиновая изоляция С=78 Ас2/мм2; полиэтиленовая изоляция С=65 Ас2/мм2, бумажная изоляция - 83 Ас2/мм2[4]

Из четырех полученных по расчетам сечений - по экономической плотности тока, нагреву в нормальном и послеаварийных режимах и стойкости токам КЗ - принимается наибольшее, как удовлетворяющее всем условиям.

Пример расчета:

Экономическая плотность тока jЭК, необходимая для расчета экономически целесообразного сечения одной КЛ определяется по нескольким условиям.

а) в зависимости от числа часов использования максимума нагрузки Тнб=6200 ч/год.

б) в зависимости от вида изоляции КЛ - изоляция из сшитого полиэтилена.

в) в зависимости от материала, используемого при изготовлении жилы кабеля - медные.

г) в зависимости от района прокладки - европейская часть России.

В результате получаем:

Для КЛ №1:

Sкаб= 4703,2 кВА.

(7.5)

А

(7.6)

мм2

Таким образом, изFст = 300 мм2

Аналогично рассчитываются сечения для остальных кабелей.

Результаты - в таблице 7.2.

Проверка кабелей по допустимому нагреву в нормальном и послеаварийном режимах работы.

В нормальном режиме:

Kt= 1 KПР= 1 KПЕР= 0,8 IДЛ.ДОП= 570 А

IДОП.ФАКТ=510 А

Iрасч = 453,1 А

Iрасч < Iдоп, поэтому данное сечение удовлетворяет требованиям.

В послеаварийном режиме фактический длительный допустимый ток:

Kt= 1 KПР= 1 KПЕР= 1.25 IДЛ.ДОП= 570 А

IДОП.ФАКТ=712,5 А

Iрасч = 390,5 А

Условие I рас.пав < I доп.пав выполняется. Результаты расчета для других линий в таблице 7.2

Проверка кабелей на термическую стойкость.

Расчетное значения тока короткого замыкания в точке 2 равно 13,5 кА.

IУ= 13500 А

tП - приведенное расчетное время КЗ, tП =0,7. Для кабелей, отходящих от ГПП, tП =1.25с.

С - термический коэффициент кабелей 6 кВ с медными жилам для

Изоляции из сшитого полиэтилена С=65 Ас2/мм2.[12]

Для кабеля №1:

мм2

Таким образом, минимальное допустимое сечение кабельной линии составляет 185 мм2.

Таблица 7.2 - Результаты расчетных токов, для кабельных линий

№ КЛ

НОРМАЛЬНЫЙ

ПОСЛЕАВАР.РЕЖИМ

КЗ НА ШИНАХ ГПП

Iрас,А

Fст,мм2

Iрас,А

Fст.мм2

Iкз,кА

Fтер, мм2

1

453,1

266,5?300

453,1

300

13,5

185

2

31,4

18,5?50

31,4

50

13,5

185

3

38

38?50

38

50

13,5

185

4

70,1

41,3?50

70,1

50

13,5

185

5

50

29,4?50

50

50

13,5

185

6

29,8

17,5?50

29,8

50

13,5

185

7

70,1

42,3?50

70,1

50

13,5

185

8

68,7

40,4?50

68,7

50

13,5

185

9

50

29,4?50

50

50

13,5

185

10

240

140?150

240

150

13,5

185

В системе электроснабжения завода применяются всего три вида сечений КЛ, поэтому требуется производить унификацию. Таким образом для прокладки внутризаводской сети используем кабели следующих сечений:

ВВГ 3*50,ВВГ 3*300,ВВГ 3*150.

7.3 Выбор оборудования электрической сети напряжением до 1 кВ

7.3.1 Подбор совокупности приемников, питаемых от ТП

Подбор совокупности электроприемников выполняем для насосной № 2. План цеха представлен в графической части проекта. Нагрузка этого цеха питается от ТП 3,ТП 4 Распределение нагрузки показано в таблице 7.6

Таблица 7.6 - электрооборудование насосной №2

№ НА ПЛАНЕ

n

НАИМЕНОВАНИЕ ЭО

РС,кВт

QС.кВар

SC,кВА

1…15

15

Насосы

843.7

472

966,7

16…26

10

Двигатели электрозадвижек

120

144

187

27….37

10

Вентиляторы

147

82.5

168,5

Итого

1110,7

533,5

1321,5

8 Выбор оборудования

8.1 Выбор ограничителей перенапряжения

Для защиты оборудования подстанции от набегающих с линии импульсов грозовых перенапряжений, на стороне высшего напряжения трансформаторов Т1 и Т2, устанавливаются ограничители перенапряжений ОПН-110.

8.2 Выбор измерительных трансформаторов тока

Условия выбора и проверки:

Uном Uном.сети ;

Iном Imax.расч ;

; (8.1)

(8.2)

Результаты выбора измерительных трансформаторов тока сведены в таблицу 7.1

Таблица 8.1 - Результаты выбора трансформаторов тока

условия выбора

расчетные данные

ТФЗМ-110Б-У1

Uном Uном.сети

Uном.сети=110 кВ

Uном=110 кВ

Iном Imax.расч

Imax.расч=50 А

Iном=150 А

iУ 1.41 кд Iном

iуд=6,25кА

1.41 кд Iном=58кА

8.3 Выбор разъединителей

Условия выбора и проверки:

Uном Uном.сети ; (8.3)

Iном Imax.расч ; (8.4)

iдин iуд ; (8.5)

(8.6)

Результаты выбора разъединителей сведены в таблицу 8.2.

8.4 Выбор заземлителей

Условия выбора и проверки:

Uном Uном.сети ; (8.7)

iдин iуд ; (8.8)

(8.9)

Результаты выбора заземлителей сведены в таблицу 7.3.

Таблица 8.3 Результаты выбора заземлителей

условия выбора

расчетные данные

ЗОН-110М-(I)УХЛ1

Uном Uном.сети

Uном.сети=110 кВ

Uном=110 кВ

iдин iуд

iуд=5.5 кА

iдин=16 кА

Bк=0.89 кА2с

I2т t т=160 кА2с

8.5 Выбор трансформатора напряжения

Для выработки сигналоизмерительной информации для электрических измерительных приборов и цепей учета, защиты и сигнализации выбираем трансформатор напряжения НКФ-110-58У1.

8.6 Выбор вводных и секционных выключателей на стороне 6,3 кВ.

На 1 секции 5 потребителей

А

Выключатель марки ВВЭ - 6 - 20/1000

Uном=6 кВ, Iном=1000 А.

Iном. откл= 20кА.

Iтор/I кр=40/4 кА.

iдин=128 кА.

Iдин=40 кА.

tсв=0,075 cек.

Цена=190 тыс.руб

На 2 секции 5 потребителей

Выключатель марки ВВЭ - 6 - 20/1000

Uном=6 кВ, Iном=1000А.

Iном. откл= 20кА.

Iтор/I кр=40/4 кА.

iдин=128 кА.

Iдин=40 кА.

tсв=0,075 cек.

Цена=190 тыс.руб

8.7. Выбор выключателей на отходящих линиях

Параметры трансформаторов цеховых ТП (ТМЗ -1000/10):

Sном=1000 кВА. Uk=5,5% , ДPx=2,45 кВт. U=6.3 кВ. Цена=1000 тыс.руб

Выбираю ВВЭ - 6 - 20/630

Uном=6 кВ, Iном=630А.

Iном. откл= 20кА.

Цена=190 тыс. руб

Выключатель нагрузки ВНПу - 6/400 - 10У3

Цена=50 тыс. руб

9 Расчет основных технико - экономических показателей спроектированной сети

В этом разделе определяются основные показатели, характеризующие полные расходы денежных средств и электрооборудование, необходимое для сооружения и эксплуатации сети.

Капиталовложения на сооружение спроектированной сети:

Кклвыклтпгппбк (9.1)

Ккл0•L , (9.2)

где К0 - укрупненный показатель стоимости сооружения 1 км линии.

Ккл=330 тыс.руб.

Квыкл - капиталовложения в ячейки КРУ с выключателями.

Ктп - стоимость КТП, включая трансформатор, дополнительное оборудование и постоянную часть затрат.

КГПП - капиталовложения на сооружения ГПП 110/6 кВ.

Кбк - стоимость конденсаторных батарей.

Ккл - капиталовложения на сооружения линии.

Капиталовложения для схемы 1:

КВЫКЛ б=3•190=570 тыс.руб.

КВЫКЛ в=10•190=1900 тыс.руб.

Ктп=8•1000=8000 тыс. руб.

Трансформаторная подстанция 110/6 кВ выполнена по схеме мостик с разъединителями в перемычке и в цепях трансформаторов,Кору=2000 тыс.руб,

Ктр=8000 тыс.руб. , Кпост=3500 тыс.руб.

Кгппорутрпост (9.3)

Кгпп=2000+2•8000+3500=21500 тыс.руб.

К?=33200 тыс.руб

Эксплуатационные издержки

вк=0,028 кл=0,063 пст=0,094 тп=0,104

Икл= кл•Ккл (9.4)

Икл=0,063•330=20,8тыс.руб./год.

Игпп=пст•(Кгппвыкл) (9.5)

Игпп=0,094•(21500+570+1900)=2253 тыс.руб./год.

Итп=тп•(Кгппвыкл)

Итп=0,104•(21500+570)=2295,3 тыс.руб./год.

Иклгпптп (9.6)

И=20,8+2253,3+2295=4569,1 тыс.руб./год.

Годовые потери в сети:

?=24673,8-2079,25-2035,32-1184,82-2055,22-1195,62-1591-2102-528-426,22-472,86-773-1133,5-491,22-2103-1231,22-2134-2504=633,55 кВт.

`?=100•?Р? / Рн?

`?=633,55 / 24673,8•100%=2,56 %

Потери холостого хода:

х=к•?Рхтр1+к•?Рхтр2, (9.7)

где: к - количество трансформаторов.

хтр1 и ?Рхтр2 - потери х.х. трансформаторов 1000 кВА и 10000 кВА.

х=8•2,45+2•10=39,6 кВт.

Нагрузочные потери:

н?=633,55-39,6=593,4 кВт.

Время наибольших потерь: ф=3200 ч

?WУ=ДPнУ•ф+ДPх•Тгод (9.8)

?WУ=593,4•3200+39,6•8760=536776 Вт ч / год.

?W`У=100•?WУ / РнУ•Т (9.9)

З`эi=2,2 коп/кВт ч; З``эi=1,7 коп/кВт ч.

Ипот=(2,2•492,85•3200+1,7•140,65•8760)•10-5=55,64 тыс.руб./год.

Суммарные издержки спроектированной заводской сети.

ИУппУпот (9.10)

ИУпп=316,73+55,64=372,37 тыс.руб / год.

Удельная стоимость электроэнергии будет определятся как:

С=ИУпп / ?WУ

коп /кВт ч.

Эксплуатационные издержки для схемы 2:

Икл=817,15•0,063=51,48 тыс.руб./год.

Игпп=0,094•(460+57+437)=89,676 тыс.руб./год.

Итп=0,104•(1073+315)=144,35 тыс.руб./год.

И=51,48+89,676+144,35=285,5 тыс.руб./год.

Годовые потери в сети:

?=24673,8-2079,25-2035,32-1184,82-2055,22-1195,62-1591-2102-528-426,22-472,86-773-1133,5-491,22-2103-1231,22-2134-2504=633,55 кВт.

`?=100•?Р? / Рн?

`?=633,55 / 24673,8•100%=2,56 %

Потери холостого хода:

х=37•2,45+2•25=140,65 кВт.

Нагрузочные потери:

н?=633,55-140,65=492,85 кВт.

Время наибольших потерь: ф=3200 ч.

?WУ=ДPнУ?ф+ДPх•Тгод (9.11)

?WУ=492,85•3200+140,65•8760=2809214 Вт ч / год.

?W`У=100•?WУ / РнУ•Т (9.12)

З`эi=2,2 коп/кВт ч; З``эi=1,7 коп/кВт ч.

Ипот=(2,2•492,85•3200+1,7•140,65•8760)•10-5=55,64 тыс.руб./год.

Суммарные издержки спроектированной заводской сети.

ИУппУпот (9.13)

ИУпп=285,5+55,64=341,146 тыс.руб / год.

Удельная стоимость электроэнергии будет определятся как:

С=ИУпп / ?WУ

коп /кВт ч.

Эксплуатационные издержки схемы 2 на 9% выгодней схемы 1

Суммарные потери активной мощности и энергии составляют:

ДР`У=2,56 % , ДW`У=2,42 %

Таблица 9.3 - Основные показатели спроектированной сети

Тип оборудования

количество

1

2

ТрансформаторТДН 10000/110

2 шт.

Трансформатор ТСЗ - 1000/6.3

8 шт.

Кабель АПвП-3Х150 мм2

2956 м.

Кабель АПвП-3Х 95 мм2

23778 м.

Выключатели ВВЭ - 6 - 20/1000

3шт

Выключатели

10 шт

Выключатели нагрузки ВНПу-6/400/10УЗ

8 шт

10 Релейная защита и автоматика

Защита трансформаторов.

Повреждения и ненормальные режимы работы:

Виды повреждений. Основными видами повреждений в трансформаторах и автотрансформаторах являются: замыкания между фазами внутри кожуха трансформатора (трехфазного) и на наружных выводах обмоток; замыкания в обмотках между витками одной фазы (витковые замыкания); замыкания на землю обмоток или их наружных выводов; повреждения магнитопровода трансформатора, приводящие к появлению местного нагрева и "пожару стали". Опыт показывает, что КЗ на выводах и витковые замыкания в обмотках происходят наиболее часто. Междуфазные повреждения внутри трансформаторов возникают значительно реже. В трехфазных трансформаторах они хотя и не исключены, но маловероятны вследствие большой прочности междуфазной изоляции. В трансформаторных группах, составленных из трех однофазных трансформаторов, замыкания между обмотками фаз практически невозможны.

При витковых замыканиях токи, идущие к местам повреждения от источников питания, могут быть небольшими. Чем меньше число замкнувшихся витков wa, тем меньше будет ток, приходящий из сети.

Виды ненормальных режимов. Наиболее частым ненормальным режимом работы трансформаторов является появление в них сверхтоков, т. е. токов, превышающих номинальный ток обмоток трансформатора. Сверхтоки в трансформаторе возникают при внешних КЗ, качаниях и перегрузках. Последние возникло вследствие самозапуска электродвигателей, увеличения нагрузки в результате отключения параллельно работающего трансформатора, автоматического подключения нагрузки при действии АВР и т. п.

Внешние КЗ. При внешнем КЗ, вызванном повреждением на шинах трансформатора или не отключившимся повреждением на отходящем от шин присоединении, по трансформатору проходят токи КЗ JK > /Ном> которые нагревают его обмотки сверх допустимого значения, что может привести к повреждению трансформатора. В связи с этим трансформаторы должны иметь РЗ от внешних КЗ, отключающую трансформатор.

Защита от внешних КЗ осуществляется при помощи МТЗ, МТЗ с блокировкой минимального напряжения, дистанционной РЗ, токовых РЗ нулевой и обратной последовательностей. В зону действия РЗ от внешних КЗ должны входить шины подстанций (I участок) и присоединения, отходящие от этих шин (II участок). Эти РЗ являются также резервными от повреждений в трансформаторе.

Перегрузка. Время действия РЗ от перегрузки определяется только нагревом изоляции обмоток. Масляные трансформаторы допускают длительную перегрузку на 5%. В аварийных режимах допускается кратковременная перегрузка в следующих пределах:

Кратность перегрузки............ ……….. 1,3 1,6 1,75 2 3

Допустимое время перегрузки, мин . . 120 45 20 10 1,5

Из этих данных видно, что перегрузку порядка (1,5-2)Iном можно допускать в течение значительного времени, измеряемого десятками минут. Наиболее часто возникают кратковременные, само ликвидирующиеся перегрузки, неопасные для трансформатора ввиду их непродолжительности, например перегрузки, вызванные самозапуском электродвигателей или толчкообразной нагрузкой (электропоезда, подъемники и т. п.). Отключения трансформатора при таких перегрузках не требуется. Более длительные перегрузки, вызванные, например, автоматическим подключением нагрузки от АВР, отключением параллельно работающего трансформатора и др., могут быть ликвидированы обслуживающим персоналом, который располагает для этого достаточным временем. На подстанциях без дежурного персонала ликвидация длительной перегрузки должна производиться автоматически от РЗ отключением менее ответственных потребителей или перегрузившегося

Таким образом, РЗ трансформатора от перегрузки должна действовать на отключение только в том случае, когда перегрузка не может быть устранена персоналом или автоматически.

Токовая отсечка:

Токовая отсечка - простая быстродействующая РЗ от повреждений в трансформаторе. Зона действия отсечки ограничена, она не действует при витковых замыканиях и замыканиях на землю в обмотке, работающей на сеть с малым током замыкания на землю.

Газовая защита трансформаторов:

Принцип действия и устройство газового реле. Газовая защита получила широкое распространение в качестве весьма чувствительной защиты от внутренних повреждений трансформаторов. Повреждения трансформатора, возникающие внутри его кожуха, сопровождаются электрической дугой или нагревом деталей, что приводит к разложению масла и изоляционных материалов и образованию летучих газов. Будучи легче масла, газы поднимаются в расширитель , который является самой высокой частью трансформатора и имеет сообщение с атмосферой. При интенсивном газообразовании, имеющем место при значительных повреждениях, бурно расширяющиеся газы создают сильное давление, под влиянием которого масло в кожухе трансформатора приходит в движение, перемещаясь в сторону расширителя.

Таким образом, образование газов в кожухе трансформатора и движение масла в сторону расширителя могут служить признаком повреждения внутри трансформатора.

Особенности защиты трансформаторов, не имеющих выключателей на стороне высшего напряжения:

Основные принципы выполнения РЗ на ЛЭП с ответвлениями, трансформаторы которых подключены к ЛЭП без выключателей. Широкое распространение получили схемы с короткозамыкателями и отделителями. При этом важной частью РЗ трансформаторов является схема действия на короткозамыкатель и отделитель.

Действие РЗ на короткозамыкатель и отделитель должно происходить в определенной последовательности, обеспечивающей работу отделителя в бес токовую паузу АПВ ЛЭП, т. е. в тот момент, когда по отделителю не проходит ток. Схема управления отделителя выполняется таким образом, чтобы импульс на его отключение подавался после срабатывания короткозамыкателя при условии, что питающая ЛЭП отключилась, и ток КЗ прекратился.

10.1Защита кабельных линий и цеховых трансформаторов

Защита трансформатора с низшей стороны напряжения.

Для защиты трансформатора с низшей стороны используется расцепитель автоматического выключателя типа ВА.

Номинальный ток расцепителя выбирается по следующему условию:

Iрц.ном.? Котс •Iраб.max, (10.1)

где : Iраб.max - максимальный рабочий ток.

Котс - коэффициент отстройки (для выключателей типа ВА равен 1.1).

Наибольший расчетный ток нагрузки, длительно протекающий по защищаемому элементу определяется по следующему выражению:

Iраб.max= (10.2)

A.

Тогда номинальный ток расцепителя будет следующим:

Iр.ц.ном. ? 1,1•2020,7=2222,8 А

Для полупроводникового расцепителя селективного автоматического выключателя ВА 75-45 ( Iа ном=2500 А ) ближайшее устанавливаемое значение номинального тока Iрц.ном.=2500 А

Первая ступень защиты - токовая отсечка без выдержки времени. Уставка тока срабатывания первой ступени у полупроводникового расцепителя автоматического выключателя ВА75-45 не регулируется и зависит от его номинального тока. Для ВА75-45 он равен 40 кА. Токовая отсечка данного расцепителя чувствительна к повреждениям со стороны низшего напряжения трансформатора, так как значение тока трехфазного КЗ I(3)KB=17,64кА

Вторая ступень - токовая отсечка с выдержкой времени. Для исключения срабатывания второй ступени защиты при кратковременных перегрузках необходимо выполнить условие:

IIIс.з.IIотс. •Iпер (10.3)

При наличий УАВР учитывается режим кратковременной перегрузки после АВР, когда потребители второго трансформатора цеховой трансформаторной подстанций подключаются через секционный выключатель к защищаемому трансформатору:

Iпер.=К•IP1+Kсзп•IP2 (10.4)

где: К - коэффициент, учитывающий некоторое значения тока электродвигателей секции 1 при снижений напряжения на секции вследствие подключения к ней само запускающихся электродвигателей секции 2.

Kсзп - коэффициент самозапуска электродвигателей секции 2.

Расчет:

Iр1=Iр2

Iпер.=1,2•1010,4+2,5•1010,4=3738,48 А

I IIc=1,5•3738,48=5607,5 А

Так как у полупроводникового расцепителя автоматического выключателя ток срабатывания второй ступени связан с номинальным током расцепителя коэффициентом кратности (к=2,3,5,7 для ВА75-45)[13], то выбирается ближайшее устанавливаемое значение. Требуемый коэффициент кратности:

ктреб.=I IIc / Iр.ц.ном. (10.5)

ктреб.=5607,5 / 2500=2,24

Выбирается ближайшее стандартное значение к=3 , тогда ток срабатывания второй ступени и определяется по следующей формуле:

I IIc=к•Iр.ц.ном.=3•2500=7500 (10.6)

Выдержка времени второй ступени защиты может быть установлена равной 0,1; 0,2: 0,3 с. Принимается среднее время срабатывания защиты tIIс.з.(SF13)=0,2 с.

Третья ступень - максимальная токовая защита. У полупроводниковых расцепителей уставка тока срабатывания третей ступени связана с номинальным током расцепителя:

IIIIc=1,25•Iр.ц.ном (10.6)

IIIIc=1,25•2500=3125 А.

В сетях, защищаемых от токов КЗ, расцепитель с выбранными уставками тока срабатывания должен удовлетворять требованию чувствительности.

Iк.min ? 3 IIIIс.з (10.7)

I (2)п.о.к > 3•3125=9375 А

Чувствительность выбранного полупроводникового расцепителя достаточна, т.к. I (2)п.о.к=15,28кА.

10.2 Токовая отсечка

Ток срабатывания токовой отсечки можно выбирать по выражению:

(10.8)

где Котс - коэффициент отстройки зависящий от типа применяемого реле тока, Котс =1,2 - 1,3 при РТ-40;

I(3)пок3 - ток протекающий в месте установке защиты при 3х фазном КЗ на стороне НН в максимальном режиме работы системы приведенное к 6кВ,

I(3)пок3 = 1,12кА

кА

Коэффициент чувствительности защиты определяется для случая 2х фазного КЗ в месте ее установки.

, (10.9)

где I(2)пок2 - ток 2х фазного КЗ на выводах ВН трансформатора

I(2)пок2=5,46кА

По коэффициенту чувствительности отсечка должна быть >2.

10.3 Максимальная токовая защита на стороне высшего напряжения

Ток срабатывания максимальной токовой защиты на стороне высшего напряжения IСЗ:

, (10.10)

где Котс - коэффициент отстройки, Котс = 1,2

Кв - коэффициент возврата токового реле защиты: для РТ-40 = 0,85;

Кзап - коэффициент самозапуска электродвигателей обобщенной нагрузки; если двигатели не оборудованы устройством самозапуска, Кзап применяется 1,2 - 1,3;

Iс.з. = Kотс(Iраб.макс+Kзап. Iрабмакс.резерв), (10.11)

где Iраб.макс.резерв. - максимальный рабочий ток секции 0,4 кВ, который подключается к рассчитываемому трансформатору при срабатывании АВР; принимается равным 0,6-0,7 Iном.тр.

А

Ic.з. ? 1,2(1,2 • 64,4 + 92) = 203,13 А. при отсутствии самозапуска

Выбираем трансформаторы тока ТОЛК - 6 300/5;

; применяется Iср=4А,

Время срабатывания максимальной токовой защиты применяем на ступень селективности ?t = 0.4c ,чем время срабатывания 1 ступени ввода 0,4кВ (tc.з.=0,6с).

tс.з.= (i-1)max =tс.з.ввода 0,4кВ = 0,6 сек;

tс.з тр-ра.= tс.з.ввода 0,4кВ +?t;

tс.з тр-ра =0,6+0,4=1,0с

Для РТ - 40/10 принимаем уставки: Icр= 10А

Iсз= 4•60 = 240A

tс.з.=1,0c - реле времени с замыканием, замыкающим контактом на постоянном токе РВ - 112 или РВ - 122, РВ - 01.

10.4 Специальная токовая защита нулевой последовательности трансформаторов со схемой соединения обмоток ?/Y-11 -10(6)/0,4 кВ

При однофазном КЗ для трансформатора расчетный ток в реле определяется по току однофазного короткого замыкания , который обычно вычисляется без учета сопротивления питающей сети по выражению:

(10.12)

Для практических расчетов по выражению:

(10.13)

В таблице П-4 значения I/Zт для трансформаторов с соединением ?/Y:

Мощностью 1000кВА равно 0,009Ом.

Мощностью 1600кВА равно 0,006Ом.

На стороне 0,4кВ для трансформаторов 1000кВА

кА

Для трансформаторов со схемой соединения обмоток ?/Y-11 ток, поскольку у этих трансформаторов , (причем этот ток вычислен с учетом сопротивления питающей сети), т.е. для трансформаторов 1000кВА.

Выбирается ток и время срабатывания специальной защиты нулевой последовательности на стороне 0,4кВ.

где Котс = 1,1ч1,2

Кп - коэффициент учитывающий кратковременную перегрузку трансформатора по ГОСТ 1402-69 и ПУЭ.

iht - номинальный ток трансформатора;

кта - коэффициент трансформации.

Выбираем трансформатор ТШП-0,66 , кта - 500/5 [15]

Динамическая устойчивость - 130

1-но секундная термическая устойчивость - 50.

Применяем

1ср = 16 А

Iсз =16-100 = 1600 А

реле РТ-40/20

Коэффициент чувствительности:

,

где - минимальное значение тока однофазного КЗ на сборных шинах или вблизи них на стороне НН ТП

Ic.з.- первичный ток срабатывания защиты

11 Безопасность жизнедеятельности

11.1 Общие требования безопасности к производственному оборудованию

В данном разделе рассматриваются вопросы обеспечения безопасности жизнедеятальности в проектируемом предприятии. Машины, аппараты и другое оборудование, применяемое в нефтехимической промышленности, чрезвычайно разнообразно по принципу действия, конструкции, типам и размерам. Однако существуют некоторые общие требования, соблюдение которых при конструировании оборудования позволяет обеспечить безопасность его эксплуатации. Эти требования сформулированы в ГОСТ 12.2.003-74.

Безопасность производственного оборудования обеспечивается правильным выбором принципов действия, конструктивных схем, материалов, рабочих процессов и т. п.; максимальным использованием средств механизации, автоматизации, дистанционного управления; применением в конструкции специальных защитных средств; выполнением эргономических требований; включением требований безопасности в техническую документацию по монтажу, эксплуатации, ремонту, транспортированию и хранению.

В процессе эксплуатации оборудование не должно загрязнять окружающую среду вредными веществами выше установленных норм и не должно представлять опасности с точки зрения взрыва и пожара.

Представляющие опасность движущиеся части оборудования должны быть ограждены или снабжены средствами защиты, за исключением частей, ограждение которых не допускается их функциональным назначением. В этом случае нужно предусматривать специальные меры защиты.

Оборудование не должно служить источником выделения в рабочую, зону производственных помещений вредных веществ, различного рода излучений выше предельно допустимых уровней (концентраций) больших количеств теплоты и влаги. Для функционального удаления и аварийного сброса вредных, взрыво- и пожароопасных веществ оборудование следует оснащать специальными устройствами.

Конструкция оборудования должна обеспечивать исключение или снижение до регламентированных уровней шума, ультразвука, инфразвука, вибраций.

Элементы оборудования, с которыми может контактировать человек, не должны иметь острых кромок, углов, неровных, горючих и переохлажденных поверхностей.

Входящие в конструкцию оборудования рабочие места и их элементы должны обеспечивать удобство и безопасность работающему.

При необходимости передвижения оператора во время обслуживания оборудования оно должно быть снабжено безопасными проходами, площадками, переходами, лестницами, перилами и т. п.

Оборудование должно иметь средства сигнализации о нарушении нормального режима работы, а в необходимых случаях - средства автоматического останова, торможения и отключения отключения от источников энергии.

Для предотвращения опасности при внезапном отключении источником энергии все рабочии органы, захватывающие, зажимные и подъемные устройства оборудования или их приводы должны быть снабжены специальными защитными приспособлениями. Причем нужно предотвращать возможность самопроизвольного включения приводов рабочих органов при восстановлении подачи энергии.

Конструкция оборудования должна обеспечивать защиту человека от поражения электрическим током.

Органы управления оборудованием должны соответствовать следующим основным требованиям: иметь форму, размеры и поверхность, безопасные и удобные для работы; удобно располагаться в рабочей зоне; размещаться с учетом требуемых для их перемещения усилий, не превышающих установленных стандартами, а также последовательности и частоты использвания; исключать возможность непроизвольного и самопроизвольного включения и выключения оборудования.

Управление однородным оборудованием должно быть унифицировано, а направление вращения маховичков, штурвалов, перемещение рычагов, педалей и т. п. -- соответствовать установленным правилам.

Во всех функционально возможных случаях направление перемещения органов управления должно быть естественно связано с направлением движения рабочих органов оборудования.

Органы управления своей конструкцией (блокировками) должны исключать возможность осуществления неправильной последовательности операций или иметь схемы и надписи, наглядно указывающие правильную последовательность операций.

Органы аварийного выключения (кнопки, рычаги и т. п.) должны быть красного цвета, иметь указатели, облегчающие их поиск, надписи о назначении и быть легкодоступными для обслуживающего персонала.

11.2 Производственная санитария

Основные требования к зданиям производственного назначения изложены в СН 245-71 и СНиП И-90-81.При планировке производственных помещений нужно учитывать санитарную характеристику производственных процессов, соблюдать нормы полезной площади для работающих, а также нормативы площадей для размещения оборудования и необходимую ширину проходов, обеспечивающих безопасную работу и удобное обслуживание оборудования.

Объем производственного помещения на одного работающего должен составлять не менее 15 м3, площадь -- не менее 4,5 м2.

Устройство рабочих помещений в подвальных этажах, как правило, запрещается. Для исключения пересечения технологических потоков наиболее целесообразно располагать помещения с учетом последовательности производственных операций.

Высота цехов выбирается в зависимости от характера технологического процесса такой, чтобы было обеспечено удаление избыточной теплоты, влаги и газов, но не менее 3,0 м. Помещения, в которых предполагается устройство естественной организованной вентиляции (аэрации), для обеспечения необходимого теплового напора должны иметь высоту не менее 4…6 м от расположения теплоизлучающей поверхности.

Производственные процессы, сопровождающиеся шумом, вибрацией, а также выделением пыли, вредных газов, необходимо изолировать, размещая их в кабинах или специальных помещениях.

Конструкция стен, потолков, полов и т. п. в производственных помещениях должна предусматривать создание для работающих наиболее благоприятных условий труда. С этой же точки зрения санитарные нормы, например, ограничивают площадь остекления промышленных зданий требованием создания необходимой естественной освещенности, учитывая при этом, что слишком большая площадь остекления «имеет свои недостатки, связанные с избытком солнечного освещения в южных районах страны и возможностью значительного охлаждения зимой в северных районах рабочих мест, расположенных вблизи окон. В случае, если оконные проемы заполнены стеклоблоками или стеклопрофилитом, должны быть предусмотрены устройства для естественного проветривания. В зданиях с верхним светом, при наличии больших площадей остекления, нужно предусматривать специальные механизированные устройства для открывания окон и фрамуг.

В последние годы все большее распространение получают производственные здания очень большой площади, имеющие определенные экономические и технологические преимущества. Однако при этом значительно затрудняется устройство аэрации и механической вентиляции. Внутренние части таких зданий обычно имеют недостаточную естественную освещенность, усложняется изоляция участков с вредными выделениями. Поэтому в таких зданиях реко-мендуется располагать производства с незначительными выделениями вредных веществ (например, инструментальные, механосборочные, деревообрабатывающие и т. п.). В таких зданиях цехи, где имеются теплоизбытки или выделяются вредные вещества, должны располагаться у наружных стен, а в многоэтажных корпусах -- на верхнем этаже.

Большое значение имеет рациональная цветовая отделка производственных помещений, которую следует производить в соответствии с «Указаниями по проектированию цветовой отделки интерьеров производственных зданий промышленных предприятий» (СН 181 - 70).

11.3 Основы пожарной безопасности

Пожарная профилактика основывается на исключении условий, необходимых для горения, и использовании принципов обеспечения безопасности. При обеспечении пожарной безопасности решаются четыре задачи: предотвращение пожаров и загораний, локализация возникших пожаров, защита людей и материальных ценностей, тушение пожаров. Пожарная безопасность обеспечивается предотвращением пожаров и пожарной защитой. Предотвращение пожара достигается исключением образования горючей среды и источников зажигания, а также поддержанием параметров среды в пределах, исключающих горение.

Предотвращение образования источников зажигания достигается следующими мероприятиями: соответствующим исполнением, применением и режимом эксплуатации машин и механизмов; устройством молниезащиты зданий и сооружений; ликвидацией условий для самовозгорания; регламентацией допустимой температуры и энергии искрового разряда и др.

Пожарная защита реализуется следующими мероприятиями: применением негорючих и трудногорючих веществ и материалов, ограничением количества горючих веществ, ограничением распространения пожара, применением средств пожаротушения, регламентацией пределов огнестойкости; созданием условий для эвакуации людей, а также применением противодымной защиты, пожарной сигнализации и др.

Взрывопожарная и пожарная опасность. Производства (помещения) по взрывопожарной и пожарной опасности делятся на категории в соответствии с «Общесоюзными нормами технологического проектирования ОНТП 24-86» (Приложение VII).

Огнестойкость зданий и сооружений. Сопротивляемость зданий огню оценивается огнестойкостью. По огнестойкости здания делятся на пять степеней (I--V). Степень огнестойкости зданий и сооружений характеризуется группой горючести и пределом огнестойкости.

Предел огнестойкости конструкции -- это время, выраженное в часах, от начала испытания ее по стандартному температурному режиму до возникновения одного из следующих признаков: 1) образования в конструкции сквозных трещин или отверстий; 2) повышения температуры на необогреваемой поверхности конструкции в среднем более, чем на 140°С или в любой точке этой поверхности более, чем на 180 °С; 3) потери конструкцией несущей способности.

Предел огнестойкости определяется экспериментально. Зная предел огнестойкости, можно определить требуемый предел огнестойкости строительных элементов проектируемого здания и группу возгораемости материалов. Сгораемые конструкции не имеют пределов огнестойкости.

Повысить огнестойкость зданий можно облицовкой или оштукатуриванием строительных конструкций. Особое значение имеет защита деревянных конструкций. Защищенные известково-цементной, асбесто-цементной или гипсовой штукатуркой такие конструкции относятся к трудносгораемым. Эффективным видом огнезащитной обработки древесины является пропитка антипиренами, которые представляют собой химические вещества, снижающие горючесть. Антиперенами являются фосфорнокислый аммоний (NH4)2HPO4, сернокислый аммоний (NH4)2SO4.

Взрывоопасные и пожароопасные зоны. В соответствии с ПУЭ выбор и установку электрооборудования производят с учетом классификации взрывоопасных и пожароопасных зон.

Зона класса В-1. К ней относят помещения, в которых могут образовываться взрывоопасные смеси паров и газов с воздухом при нормальных условиях работы (например, помещения, в которых производится слив ЛВЖ в открытые сосуды).

Зона класса В-Ia. В эту зону входят помещения, в которых взрывоопасные смеси не образуются при нормальных условиях эксплуатации оборудования, но могут образовываться при авариях или неисправностях.

Зона класса B-I6. К этому классу относят: а) помещения, в которых могут содержаться горючие пары и газы с высоким нижним пределом воспламенения (15 % и более), обладающие резким запахом (например, помещения аммиачных компрессоров); б) помещения, в которых возможно образование лишь локальных взрывоопасных смесей в объеме менее 5 % от объема помещения.

Зона класса В-1г. В эту зону входят наружные установки, в которых находятся взрывоопасные газы, пары и легко воспламеняющиеся жидкости (ЛВЖ) (например, газгольдеры, сливоналивные эстакады и т. п.).

Зона класса В-II. К ней относят помещения, в которых производится обработка горючих пылей и волокон, способных образовывать взрывоопасные смеси с воздухом при нормальных режимах работы (например, открытая загрузка и выгрузка из оборудования мелкодисперсных горючих материалов).

Зона класса В-IIa. В эту зону входят помещения, в которых взрывоопасные пылевоздушные смеси могут образовываться только в результате аварий и неисправностей (например, разгерматизация пневмотранспортирующего оборудования с применением азота, сепарационные установки с механической загрузкой и т. п.).

Помещения и установки, в которых содержатся горючие жидкости (ГЖ) и горючие пыли, нижний концентрационный предел которых выше 65г/м3, относят к пожароопасным и классифицируют. Классификационные зоны и установки приводятся ниже.

Зона класса П-I. К ней относят помещения, в которых содержатся ГЖ (например, минеральные масла).

Зона класса П-II. В эту зону входят помещения, в которых содержатся горючие пыли с нижним концентрационным пределом выше 65 г/м3.

Зона класса П-II а. К ней относят помещения, в которых содержатся твердые горючие вещества, неспособные переходить во взвешенное состояние.

Установки класса П-III. К ним относят наружные установки, в которых содержатся ГЖ (с температурой вспышки выше 61°С) или твердые горючие вещества.

Рассмотрим противопожарные требования к системам отопления, вентиляции, освещения и электроустановок. Наибольшую пожарную опасность представляет местное отопление, когда печи устанавливаются непосредственно в помещениях. При этом нагрев наружной поверхности может достигать 500°С. Наиболее безопасны в пожарном отношении центральные системы отопления и воздушное калориферное отопление. Дымовые трубы котельных, из которых могут вылетать искры, необходимо оборудовать искроуловителями. Значительную пожарную опасность имеют рециркуляционные системы, так как продукты горения из них поступают в проточную камеру, откуда нагнетаются во все помещения.

Защита от распространения пламени в вентиляционных установках достигается с помощью огнепреградителей, быстродействующих заслонок, шиберов, отсекателей и т. п. Действие огнепреградителей основано на том, что струя горючей смеси разбивается на большое число струек с таким малым диаметром, при котором пламя взрыва распространяться не может. Существуют различные конструкции огнепреградителей.

По данным статистики из общего числа пожаров, происходящих от электрооборудования, около 45 % возникает из-за коротких замыканий, 35 % от электронагревательных приборов, 13 % -- от перегрузки электродвигателей и сетей, 5 % -- от больших переходных сопротивлений.

Выбор общепромышленного или взрывозащищенного электрооборудования зависит от класса помещения. К взрывозащищенному относится электрооборудование, которое имеет устройства, обеспечивающие безопасность его применения в условиях взрывоопасных помещений и наружных установок.

Взрывозащищенное электрооборудование делится на взрывонепроницаемое, повышенной надежности против взрыва, маслонаполненное, продуваемое, искробезопасное и специальное. Взрывозащищенное оборудование имеет более высокую стоимость. Значительную пожарную опасность представляют светильники. Лампы накаливания более пожароопасны, чем лампы дневного света, так как температура поверхности колб первых достигает 500°С, а вторых -- только 40--50°С. К противопожарным мероприятиям в электроосвещении относится правильный выбор типов светильников с учетом условий, в которых они эксплуатируются. Светильники делятся на открытые, защищенные (лампа закрыта стеклянным колпаком), пыленепроницаемые, взрывозащищенпые (допускается применение во взрывоопасной среде). Важное значение имеют правильный выбор и соблюдение режима эксплуатации электросетей, которые подбираются по допустимым токовым нагрузкам, потерям напряжения и нагреву.

К числу основных противопожарных мер в электросистемах относится правильный подбор аппаратов защиты.

Средства пожаротушения. Различают первичные, стационарные и передвижные средства пожаротушения.

К первичным средствам пожаротушения относятся огнетушители, гидропомпы (небольшие поршневые насосы), ведра, бочки с водой, лопаты, ящики с песком, асбестовые полотна, войлочные маты, кошмы, ломы, пилы, топоры. Огнетушители бывают химические пенные (ОХП-10, ОХПВ-10 и другие), углекислотные (ОУ-2, ОУ-5, ОУ-8), углекислотно-бромэтиловые (ОУБ-3, ОУБ-7), порошковые (ОПС-6, ОПС-10).

Для различных объектов и помещений существуют нормы первичных средств пожаротушения. На каждые 100 м2 пола производственных помещений обычно требуется 1--2 огнетушителя. Время действия пенных огнетушителей 50--70 с, длина струи 6--8 м, кратность пены 5, стойкость 40 мин.

Углекислотные огнетушители наполнены сжиженным углекислым газом, находящимся под давлением 6 МПа. Для приведения их в действие достаточно открыть вентиль. Углекислый газ выходит в виде снега и сразу превращается в газ. Применяется для тушения в электроустановках.

Порошковые огнетушители применяются для тушения горящих щелочных металлов. Выброс порошкового заряда из баллона производится с помощью сжатого воздуха, подаваемого из баллончика.

Для безопасного ведения технологического процесса и защиты обслуживающего персонала на проектируемом предприятии предусмотрены следующие технические решения:

w технология процесса организуется таким образом, чтобы предотвратить возможность взрыва при регламентированных значениях параметров;

w аппаратурное оформление, конструкция технологических аппаратов, их материальное исполнение подобрано таким образом, чтобы максимально снизить уровень взрывопожароопасности;

w в аппаратах, где возможно превышение технологического давления выше расчетного давления аппарата, предусматривается регулирование давления клапанами КиА и защита аппарата предохранительными клапанами

w выбросы от предохранительных клапанов направляются в факельную систему через емкость-сепаратор, установленный на границе установки, откачивание жидкости из сепаратора автоматическое

w все непрерывно работающие насосы имеют 100% резерв для обеспечения непрерывности и надежности процесса

w на нагнетательных и всасывающих трубопроводах установлена запорная арматура

w на нагнетательных трубопроводах насосов установлены обратные клапаны, предотвращающие перемещение продуктов обратным ходом, на линиях всасывания установлены отсечные клапаны с дистанционным управлением;

w центробежные насосы имеют двойные торцевые уплотнения, разработанные фирмой «Анод»

w центробежные насосы с торцевыми уплотнениями оснащены системой контроля температуры подшипников с сигнализацией предельных значений и блокировкой при превышении параметра

w горячая аппаратура и трубопроводы изолированы

w во всех пожароопасных местах установлены пожарные извещатели

w для защиты от статического электричества проектом предусмотрено заземление всей аппаратуры и оборудования


Подобные документы

  • Определение силовых нагрузок цехов. Построение картограммы электрических нагрузок. Выбор напряжения питающей и распределительной сети. Выбор типа и мощности цеховых трансформаторных подстанций. Компенсация реактивной мощности на напряжении до 1 кВ.

    курсовая работа [663,4 K], добавлен 16.05.2016

  • Проект внутреннего и внешнего электроснабжения нефтеперерабатывающего завода. Расчет электрических нагрузок, выбор числа цеховых трансформаторов, силовых кабелей; компенсация реактивной мощности. Выбор оборудования и расчет токов короткого замыкания.

    курсовая работа [452,4 K], добавлен 08.04.2013

  • Расчет электрических нагрузок предприятия. Определение центра электрических нагрузок. Выбор числа и мощности силовых трансформаторов. Выбор рационального напряжения внешнего электроснабжения. Компенсация реактивной мощности в сетях общего назначения.

    курсовая работа [255,8 K], добавлен 12.11.2013

  • Проектирование системы внешнего электроснабжения. Определение центра электрических нагрузок предприятия. Выбор числа и мощности силовых трансформаторов. Расчет потерь в кабельных линиях. Компенсация реактивной мощности. Расчет токов короткого замыкания.

    курсовая работа [273,0 K], добавлен 18.02.2013

  • Характеристика среды производственных помещений и потребителей электроэнергии. Расчет электрических нагрузок, выбор числа и мощности силовых трансформаторов. Проектирование системы внешнего и внутреннего электроснабжения, компенсация реактивной мощности.

    дипломная работа [456,6 K], добавлен 26.09.2011

  • Расчёт нагрузок напряжений. Расчет картограммы нагрузок. Определение центра нагрузок. Компенсация реактивной мощности. Выбор числа и мощности трансформаторов цеховых подстанций. Варианты электроснабжения завода. Расчёт токов короткого замыкания.

    дипломная работа [840,8 K], добавлен 08.06.2015

  • Расчет электрических нагрузок промышленного предприятия. Выбор числа, мощности и типа цеховых трансформаторных подстанций. Технико-экономическое обоснование электрических схем. Компенсация реактивной мощности подстанции, релейная и газовая защита.

    дипломная работа [1,2 M], добавлен 07.03.2012

  • Определение электрических нагрузок. Компенсация реактивной мощности. Выбор числа и мощности силовых трансформаторов. Расчет и выбор сечений жил кабелей механического цеха. Компоновка главной понизительной подстанции. Релейная защита трансформаторов.

    дипломная работа [1,2 M], добавлен 29.05.2015

  • Проектирование электроснабжения завода по изготовлению огнеупоров. Картограмма электрических нагрузок. Компенсация реактивной мощности и выбор числа цеховых трансформаторов. Автоматическое регулирование мощности конденсаторов. Анализ условий труда в цехе.

    дипломная работа [863,8 K], добавлен 05.09.2010

  • Расчет электрических нагрузок групп цеха. Проектирование осветительных установок. Предварительный расчет осветительной нагрузки. Выбор числа, мощности трансформаторов. Компенсация реактивной мощности. Расчет схемы силовой сети, токов короткого замыкания.

    контрольная работа [188,8 K], добавлен 08.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.