Исследование влияния гидродинамически-активных добавок на характеристики течений со свободными границами

Введение в турбулентный поток жидкости примесей. Механическая деструкция макромолекул при длительном пребывании в турбулентном потоке. Структура турбулентных течений с добавками. Влияние добавок полимеров и пав на течения со свободными границами.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 25.08.2014
Размер файла 36,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Исследование влияния гидродинамически-активных добавок на характеристики течений со свободными границами

1. Современное состояние вопроса

Открытие и последовательное осознание того факта, что введение в турбулентный поток жидкости соответствующим образом подобранных добавок приводит к существенному снижению турбулентного трения, относится к работам Б. Томса /8/ и К. Миселса /9/. Эксперименты эти были выполнены в 1945-1946 годах, однако систематическое исследование указанного явления начались лишь в 1954-1959 годах. Обусловлено это было обнаружением высокоэффективных водорастворимых добавок и, в связи с этим, появлением возможности практического использования эффекта снижения сопротивления трения. Интенсивное развитие этого вопроса отражается в многочисленных публикациях теоретического и прикладного плана. В частности, этой проблеме посвящено уже свыше 1000 публикаций. Подробное изложение их является предметом ряда обзорных работ /1ч7; 10ч14/.

Хотя в большинстве случаев в качестве снижающих трение полимерных добавок исследователи используют гуаровую смолу, полиоксиэтилен, полиакриламид и натриевую соль карбоксиметицеллюлозы, было обнаружено, что многие другие высокополимеры с соответствующим растворителем обладают способностью снижать турбулентное трение. Некоторые пары полимер - растворитель, дающие снижение сопротивления приведены в работе Хойта /12/, наиболее полно этот вопрос освящен в работах /2, 14/. Из анализа указанной литературы с полной уверенностью можно считать правильными выводы Хойта, что любые макромолекулярные вещества достаточно большого молекулярного веса (50000 и более) главным образом с линейной структурой молекул будут снижать сопротивление в любой жидкости, в которой они растворяются.

Однако широкому применению полимеров препятствует ряд обнаруженных при их изучении недостатков: механическая деструкция макромолекул при длительном пребывании в турбулентном потоке, невысокая эффективность в трубах большого диаметра, низкая скорость растворения.

Существенное воздействие на пристенную турбулентность оказывают и добавки другой природы: мицеллообразующие поверхностно - активные вещества (ПАВ). Своим названием ПАВ обязаны способности снижать поверхностное и межфазное натяжение из-за адсорбции и ориентации молекул у поверхности раздела. Снижение поверхностного натяжения, как правило, обусловлено дифильностью строения молекул ПАВ, обладающих полярной группой и неполярной углеводородным радикалом.

Впервые сообщение о способности ПАВ снижать гидродинамическое сопротивление (было обнаружено аномальное трение напалма при движении в огнеметной установке) приводится в работах /9/. Способ снижения сопротивления с использование малоподобных веществ был запатентован еще в 1949 году, однако изучение особенностей течения жидкостей с добавками этого класса стало производиться гораздо позже.

Сэвинс /15/ первым обнаружил важное свойство растворов ПАВ, обладающих сниженным сопротивлением - устойчивость к механической деструкции. В работе /15/ приведены результаты исследований, когда свойство снижать сопротивление в растворе ПАВ сохранялось после 88 часов перекачивания его насосом. Было также показано, что при больших сдвиговых напряжениях наблюдается исчезновение эффекта снижения сопротивления и его восстановление при уменьшении напряжений.

К первым публикациям по использованию мицеллообразующих поверхностно - активных веществ для уменьшения турбулентного трения жидкостей у нас в стране следует отнести ряд работ, выполненных под руководством И.Л. Повха и А.Б. Ступина. В имеющихся к настоящему времени сравнительно небольшом количестве работ, посвященных изучению особенностей снижения турбулентного сопротивления добавками ПАВ освещен очень узкий круг вопросов, связанных с интегральными характеристиками потоков и практически отсутствуют сведения об особенностях турбулентности в растворах ПАВ.

С целью расширения класса добавок, снижающих турбулентное трение, изучения особенностей их влияния на поток жидкости, ряд авторов использовали различные специфические добавки: асбестовые, древесные, натуральные и синтетические волокна, глинистые частицы, продукты жизнедеятельности морских организмов и водорослей и т.п. /3, 6, 14/. Однако исследования эти немногочисленны и их данные в ряде случаев противоречивы. Перспективы практического использования указанных добавок весьма проблематичны.

Остановимся на некоторых, наиболее общих особенностях воздействия на турбулентность добавок полимеров и поверхностно - активных веществ.

1.1 Структура турбулентных течений с добавками

В настоящее время не существует единой точки зрения относительно механизма снижения турбулентного трения добавками. Трудности в обосновании гипотез связаны со сложностью изучаемого явления, которое с позиций классической гидродинамики обладает рядом аномалий, а также с отсутствием представительной теории неоднородной пристенной турбулентности.

Для понимания физической природы эффекта снижения сопротивления и построения рациональных схем расчета турбулентных течений с добавками необходимо знать особенности их влияния на структуру пристенной турбулентности. Изучение характерных свойств турбулентной структуры важно также с точки зрения оптимального использования добавок в технических приложениях.

К настоящему времени достаточно полно изучено влияние добавок полимеров на распределение профилей скорости и турбулентные характеристики. Информация о зарубежных работах этого направления содержится в обзорах /10ч14/.

Необходимо отметить, что первые опыты по исследованию турбулентных течений с полимерными добавками были выполнены с помощью трубок Пито и термоанемометра. Однако последующие эксперименты вскрыли определенные недостатки этих приборов. В частности, в растворах полимеров трубки Пито небольшого диаметра (менее 2,5 - 3 мм) дают заниженные показания, что ограничивает их возможности при проведении измерений в пристенной области /12/. При термоанемометрических измерениях возникают аномальные сигналы./12/, цилиндрические и клиновидные датчики в полимерных растворах имеют очень низкие значения коэффициентов теплоотдачи /12/. Кроме того, в процессе эксперимента наблюдался временный ход показаний термоанемометра /12/.

Отмеченные недостатки трубок Пито и термоанемометра ограничивают их применение для измерения осредненных и пульсационных скоростей в потоках с добавками. Данное обстоятельство стимулировал работы по разработке и применению для исследования структуры течений с добавками бесконтактных методов измерения гидродинамических величин. Наиболее перспективными из них оказались метод стробоскопической визуализации потока и ОДИС - метод (лазерная доплеровскяа анемометрия), с помощью которых были измерены профили средней скорости и турбулентные характеристики в растворах полимеров по всему сечению потока, включая область вязкого подслоя и переходную зону.

Профили средней скорости. Проведенные исследования показали, что добавки полимеров оказывают существенное влияние на пристенную турбулентность. Профили средней скорости в растворах полимеров значительно трансформируются, относительные размеры пристенной области, включающей вязкий подслой и переходную зону, значительно возрастают. В работах /10,11/ введено понятие о трех зонах профиля скорости в снижающем трении полимерном потоке. Это ньютоновский вязкий подслой с линейным профилем скорости, переходная область (зона взаимодействия добавок с потоком или «упругий» подслой), которая идет по прямой наибольшего или максимально достижимого снижения сопротивления и внешнюю область с ньютоновской постоянной Кармана ?= 0,4 (турбулентное ядро течения).

При достаточно высоких числах Рейнольдса и малом снижении сопротивления в турбулентном ядре потока сохраняется логарифмическое распределение скорости с увеличенным значением параметра (по сравнению со случаем турбулентного течения обычной ньютоновской жидкости, когда В = 5,5)

U+ = 2.5 ln y+ +B

U+ = ; U* = , y+ = ,

где U - локальная осредненная скорость, у - расстояние по нормали от стенки. С увеличением величины эффекта снижения сопротивления имеет место прогрессивное сжатие области турбулентного ядра течения, ее внутренняя граница смещается по направлению к оси трубы, пока не произойдет полное исчезновение этой области при максимальном уменьшении сопротивления. Это означает соответствующее увеличение протяженности упругого подслоя, выражение для которого при максимальном снижении сопротивления получено П. Вирком /10/ в виде:

U+ = 11.7 ln y+ - 17.0

Аналогичное влияние добавок ПАВ на профиль скорости отмечено в имеющихся к настоящему времени ограниченном количестве работ, в основном советских авторов /6, 7/.

Турбулентные характеристики. Информация о структуре турбулентности в растворах с добавками, имеющаяся только применительно к режиму со снижением сопротивления, свидетельствует о существовании трех радиальных зон, аналогичных (но не тождественных) зонам, наблюдаемым на профилях средней скорости: вязкий подслой, упругий подслой и турбулентное ядро течения.

Турбулентное течение ньютоновской жидкости в вязком подслое обладает квазирегулярной пространственно-временной структурой. Существуют периоды спокойного, почти ламинарного течения, сменяющиеся периодами интенсивного разрушения вязкого подслоя («взрывы») /25/. Сравнение течений полимерного раствора и воды в вязком подслое показывает /18ч22/, что при одном и том же значении динамической скорости U* добавки полимера приводят к увеличению пространственных размеров пристенных структур, к увеличению промежутка времени между пристенными выбросами и к уменьшению характерной скорости их движения. Величина отношения масштабов в продольном и поперечном направлениях превышает аналогичную величину в потоках воды без добавок, т.е. полимерные добавки увеличивают степень анизотропии турбулентности в пристенной области течения. С возрастанием величины снижения сопротивления в полимерных растворах происходит уменьшение продольной и трансверсальной составляющих пульсаций градиента скорости на стенке /6/.

Полимерные добавки приводят к повышению уровня низкочастотных и к снижению уровня высокочастотных составляющих флуктуаций напряжения трения. В присутствии макромолекул происходит значительное увеличение интегральных масштабов корреляции флуктуаций градиента скорости как в продольном, так и трансверсальном направлениях.

В переходной зоне («упругий» подслой) структура турбулентности при уменьшении сопротивления значительно отличается от ньютоновского случая. При фиксированной величине напряжения трения на стенке трансверсальная и особенно поперечная составляющая пульсаций скорости уменьшаются, продольная составляющая в зависимости от типа полимера и режима течения либо очень незначительно снижается, либо несколько возрастает. Введение полимерных добавок в поток приводит к увеличению анизотропии турбулентных пульсаций скорости, снижению корреляционной связи между продольными и поперечными пульсациями, уменьшению турбулентных касательных напряжений /18, 19/. В работах /18, 19/ получены гистограммы продольных пульсаций скорости. Вблизи стенки распределение плотности вероятности продольной пульсации скорости асимметрично. Как и при течении воды без полимерных добавок, максимум на кривой распределения несколько сдвинут влево. Это показывает, что вблизи стенки наиболее вероятными являются скорости немного меньше средней. В то же время крупные пульсации чаще имеют положительный знак, свидетельствуя о прорыве к стенке вихрей из промежуточного слоя, имеющих большую продольную скорость. По мере удаления от стенки распределение плотности вероятности приближается к нормальному. Значения коэффициентов асимметрии продольной пульсации скорости, измеренные в потоках воды и раствора полимера показывают, что добавки полимера усиливают асимметрию в распределении плотности вероятности в продольной пульсации скорости. Кроме того, расстояние от стенки, на котором коэффициент асимметрии обращается в ноль, а затем меняет знак, при течении раствора полимера несколько больше, чем при течении воды. Это согласуется сданными по профилям скорости, из которых видно, что добавка полимера увеличивает размеры промежуточного слоя.

Данные измерений автокорреляционной функции пульсаций температуры и скорости /16, 21/ показали, что интегральный временной масштаб в растворах полимера больше, чем для воды при тех же числах Рейнольдса. Спектр пульсаций температуры и скорости смещается в сторону меньших частот, свидетельствуя о том, что добавки полимера снижают интенсивность высокочастотных пульсаций.

В работе /29/ на основании полученных экспериментальных данных проведен анализ влияния полимерных добавок непосредственно на порождение турбулентной энергии, диссипацию энергии осредненного движения, плотность потока кинетической энергии турбулентности. Наличие в турбулентном потоке полимера существенно меняет соотношение между порождением турбулентной энергии и диссипацией энергии осредненного движения. Плотность потока кинетической энергии по глубине течения под влиянием полимерной добавки уменьшается, что в свою очередь вызывает уменьшение притока энергии от осредненного движения к пульсационному.

Авторами работ /18, 19, 26/ на основе данных измерений распределения суммарных и турбулентных напряжений по сечению канала показано, что осредненное уравнение Рейнольдса и, следовательно, уравнение Новье-Стокса оказываются неприменимыми для описания течения растворов полимеров и ПАВ даже в том случае, когда вязкость растворов практически не отличается от вязкости воды. Как следует из данных этих опытов сумма вязких напряжений сн и рейнольдсовых (турбулентных) - с<u*v*> оказывается меньше суммарных напряжений

фw (1-y/н) > сн - с<u*v*>,

где н - полувысота канала; u*v* - продольная и поперечная составляющие пульсаций скорости, соответственно. Эти данные указывают, что в турбулентном потоке полимерных растворов действуют дополнительные напряжения, имеющие вязкоупругую природу.

В турбулентном ядре течения структура турбулентности при уменьшении сопротивления является, по-видимому, такой же, что и в ньютоновском случае, если исходить из результатов измерений осевой и радиальной интенсивностей турбулентности /10/.

Добавки полимеров и ПАВ оказывают заметное влияние на акустику турбулентных потоков. В частности, они существенно снижают спектральный уровень пульсаций давления в потоке, оказывая воздействие как на высокочастотную, так и низкочастотную части спектра /31/. При этом в растворах полиэтиленоксида низкой концентрации (Су = 7•10-5 и 1,5•10-4 г/см3) наибольшее снижение спектральных уровней наблюдается на высоких частотах, а при Су = 3•10-4 и Су = 5•10-4 г/см3 - на низких частотах /24/.

Сильное влияние добавок полимеров и Пав на прстенную турбулентность приводит не только к снижению турбулентного трения, но и к значительному уменьшению вынужденного конвективного тепломассообмена /6, 20/. В частности, опытные данные показывают, что в пристенных турбулентных течениях полимерных растворов снижение интенсивности теплообмена в процентном отношении совпадает или даже превышает величину снижения турбулентного трения. Библиография работ и подробный анализ исследований в этой области приведен в /6, 18, 20/.

1.2 Влияние добавок на кавитацию

Влияние добавок высокомолекулярных полимеров на возникновение кавитации и течение со свободными границами (струи, каверны) представляет собой область, о которой имеется мало сведений. Основные данные, полученные к настоящему времени приведены в обзорных работах /6,11/.

В работах А. Эллиса /27, 28/ было исследовано возникновение кавитации на цилиндрическом теле с полусферической носовой частью и найдено, что число начала кавитации может уменьшиться в два раза после введения в поток полимеров (гуаровой смолы и полиоксиэтилена). Несколько ранее в работе /29/ исследовалась кавитация в трубах Вентури; было установлено, что растворы полимеров заметно уменьшают число кавитации. В работе /30/ показано, что в гидродинамической трубе возникновение кавитации на теле из нержавеющей стали с полусферической носовой частью в значительной мере задерживается, если в жидкости присутствует полиоксиэтилен, тогда как тефлоновое покрытие тела значительно меньше влияет на момент установления кавитации. В работе /31/ отмечалось, что уменьшение числа начала кавитации при добавке полиэтиленоксида было значительно меньше, когда в гидродинамической трубе использовалась большая (диаметром 10,16 см) модель. Масштабный эффект наблюдался также в работах Дж. Хойта /33/ и Дж. Уайта /32/. Хойт исследовал кавитацию в струе жидкости, вытекающей под поверхностью подобной жидкости. В опытах использовались вода и слабые (0,0001%) растворы уменьшающего сопротивления трения полимера (полиэтиленоксида). В растворах полимера почти наполовину по сравнению с водой уменьшается число начала кавитации. Увеличение турбулентности на участке вверх по течению от струи приводит к увеличению числа начала кавитации для воды, однако не оказывает влияние на начало кавитации в растворах полимеров. Найдено, что вязкость, содержание воздуха, число кавитационных зародышей и прочность на разрыв растворов полимеров в основном те же, что и у воды, а поверхностное натяжение ниже. Следовательно, объяснение уменьшения числа начала кавитации, наблюдаемое в растворах полимеров, следует искать в изменении динамических характеристик течения струи раствора полимера. Данные работ /33/ показывают, что статистические характеристики турбулентности водяных струй остаются неизменными при добавлении полимеров. В работе /12/ показано, что полимерные добавки придают значительно большую монолитность струям, вытекающим из моделей пожарных стволов. Автор делает предположение, что молекулы полимера, взаимодействуя с турбулентными вихрями на поверхности струи, уменьшают интенсивности перемешивания и толщину вязкого слоя на границе струи. Это уменьшение интенсивности перемешивания отражается в уменьшении значения числа начала кавитации.

2. Влияние добавок полимеров и пав на течения со свободными границами

турбулентный добавка полимер макромолекула

Эксперименты по влиянию добавок полимеров и ПАВ на течения со свободными границами (каверны, струи) проводились с немасштабными макетами в гидротрубе гравитационного типа лаборатории гидродинамики больших скоростей Института гидромеханики НАН Украины. Сечение рабочего участка 340 Ч 340 мм.

Скорость потока 8,9 м/сек. Стенки и дно лотка выполнены из стекла, что позволяло изучать геометрию пространственных каверн за кавитатором.

Каверна создавалась путем поддува воздуха в область разрежения за кавернообразующим насадком, установленном по оси потока с помощью ножа и державки. По каналам в ноже и державке подавался сжатый воздух к насадку, полимерный раствор в кольцевую щель перед ним и давление в каверне Рк измерялось водяным пьезометром.

Эксперименты проводились с кольцевым насадком диаметром равным 57 мм. Число Рейнольдса в опытах равно Re = 4,45•106, число Фруда Fr = 11,9. Число кавитации определялось по формуле

? = = ,

где Н = 165 мм - глубина погружения насадка.

В водометную струю раствор полимера подавался через смеситель, расположенный на подводящем трубопроводе.

Заключение

Введение снижающих турбулентное трение жидкостей добавок полимеров и поверхностно - активных веществ в поток воды на границе с каверной увеличивает геометрические размеры каверны или уменьшает количество потребляемого газа на ее поддержание.

Добавки высокомолекулярных полимеров более эффективны для стабилизации каверны по сравнению с добавками ПАВ. Для достижения одинаковых эффектов по увеличению размеров каверны или уменьшению количества потребляемого для ее поддержания газа концентрация ПАВ (метаупона) должна быть на порядок больше концентрации полимера (полиэтиленоксида).

Список литературы

1. Грейнер Л. Гидродинамика и энергетика подводных аппаратов.- Л.: «Судостроение». 2008. 384 с.

2. Титов И.А., Егоров И.Т., Дробленков В.Ф. Ходкость быстроходных судов. - Л.:» Судостроение», 2009, 256 с.

3. Басин А.М., Короткин А.И., Козлов Л.Ф. Управление пограничным слоем судна. - Л.: «Судостроение», 2010, 491 с.

4. Повх И.Л. Гидродинамика и жизнь. - Киев: о-во «Знание» УССР, 1981, 64 с.

5. Повх И.Л. Снижение сопротивления трения - основной источник экономии энергии. - Изв.высш. учебн. заведений СССР. Энергетика, 1984, №5, с. 59-68.

6. Пилипенко В.Н. Влияние добавок на пристенные турбулентные течения. - В кн.: Итоги науки и техники. ВИНИТИ АН СССР. Сер.: Механика жидкости и газа, 1980, с. 156-257.

7. Повх І.Л., Ступін О.Б. Проблема зменшення турбулентного тертя добавками. - Вісник АН УРСР, 1979, №10, с. 55-65.

8. Tome B.A. Some obocrvations on the blow of linear polymer solutions through straight tubes at large Reynolds number. - In: Proc. Intern. Congr. Rheol., Sheninger, 1948. Amsterdam: Horth-Hollend Publ. Co., 1949, vol. 11, p. 135-142.

9. Mysels K.I. Early experiments with viscous drag reduction. - Chom. Eng. Prod. Symp. Ser., 1971, vol.67, p. 45-49/

10. Virk P.S. Drag reduction fundamentals, - AICHE Iournal, 1975, vol.21, p, 625-656

11. Ламли Дж.Л. Эффект Томса: аномальное явление при турбулентном течении разбавленных растворов линейных высокомолекулярных полимеров. - В об. переп.: Механика, 1969, т. 114, №2, с. 70-89.

12. Хойт Дж.У. Влияние добавок на сопротивление трения в жидкости. - Теор.основы инж. расчетов, 2009, т. 94, №2, с. 1-31.

13. Hoyt I.W. Rocent progress in polymer drag reduction. - Collog.int CNRS, 1975, p. 133-215.

14. Петрова И.М. Гидробионика в судостроении. - ЦНИИТЭИС, 1970, с. 165-220.

Размещено на Allbest.ru


Подобные документы

  • Ламинарный и турбулентный режимы движения жидкости. Локальный критерий Нуссельта. Влияние физических свойств жидкости на теплоотдачу. Плотности потоков теплоты и импульса при турбулентном режиме течения вдоль плоской стенки. Конвективный теплообмен шара.

    лекция [3,1 M], добавлен 15.03.2014

  • Проведение численных исследований конвективных течений в программном комплексе ANSYS, формирующихся вследствие локализованного нагрева в цилиндрическом слое жидкости. Сравнение основных результатов расчетов в CFX и FLUENT для различных режимов течения.

    дипломная работа [4,1 M], добавлен 27.03.2015

  • Сущность метода Стокса по определению коэффициента вязкости. Определение сил, действующих на шарик при его движении в жидкости. Оценка зависимости коэффициента внутреннего трения жидкостей от температуры. Изучение ламинарных и турбулентных течений.

    лабораторная работа [1001,4 K], добавлен 15.10.2010

  • Методы изучения движения жидкости. Основная теорема кинематики (Гельмгольца). Уравнение движения сплошной среды в напряжениях. Понятия и определения потенциальных течений. Моделирование гидрогазодинамических явлений, ламинарное и турбулентное движение.

    шпаргалка [782,6 K], добавлен 04.09.2010

  • Расчет потерь напора при турбулентном режиме движения жидкости в круглых трубопроводах и давления нагнетания насоса, учитывая только сопротивление трения по длине. Определение вакуума в сечении, перемешивания жидкости, пульсации скоростей и давлений.

    контрольная работа [269,2 K], добавлен 30.06.2011

  • Сущность осредненного и пульсационного движения. Расчет сопротивления при турбулентном течении жидкости по каналам. Изучение понятия относительной и эквивалентной абсолютной шероховатости поверхности. Определение потери энергии в местных сопротивлениях.

    презентация [121,2 K], добавлен 14.10.2013

  • Определение вязкости биологических жидкостей. Метод Стокса (метод падающего шарика). Капиллярные методы, основанные на применении формулы Пуазейля. Основные достоинства ротационных методов. Условия перехода ламинарного течения жидкости в турбулентное.

    презентация [571,8 K], добавлен 06.04.2015

  • Применение теоремы комплексных переменных. Примеры простейших течений: одномерный равномерный поток, источник, вихрь, диполь, бесциркуляционное обтекание круглого цилиндра. Решение задачи обтекания крылового профиля по методу конформных отображений.

    презентация [299,1 K], добавлен 16.04.2016

  • Поглощение света свободными носителями заряда. Электрография и фотопроводимость полупроводников. Влияние сильных электрических попей на электропроводность полупроводников. Подвижность носителей в ионных кристаллах и полупроводниках с атомной решеткой.

    реферат [1,6 M], добавлен 28.03.2012

  • Выведение уравнения движения вязкой несжимаемой жидкости - уравнения Стокса. Рассмотрение основных режимов движения жидкости в горизонтальных трубах постоянного поперечного сечения - ламинарного и турбулентного. Определение понятия профиля скорости.

    презентация [1,4 M], добавлен 14.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.