Электроснабжение и электрооборудование куста скважины №145 Самотлорского месторождения ОАО "ТНК-ВР" с внедрением станции управления "Электон-М"
Краткая характеристика объекта и применяемого оборудования. Описание технологического процесса. Расчет мощности и выбор электродвигателя. Число и мощность силовых трансформаторов. Техника безопасности при монтаже электрооборудования и электросетей.
Рубрика | Физика и энергетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 22.06.2008 |
Размер файла | 383,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Министерство образования РБ
Ишимбайский нефтяной колледж
ДОПУЩЕН К ЗАЩИТЕ
Зам. директора по УР
ЭЛЕКТРОСНАБЖЕНИЕ И ЭЛЕКТРООБОРУДОВАНИЕ
КУСТА СКВАЖИНЫ №145 САМОТЛОРСКОГО МЕСТОРОЖДЕНИЯ ОАО “ТНК-ВР” С ВНЕДРЕНИЕМ СТАНЦИИ УПРАВЛЕНИЯ “ЭЛЕКТОН-М”
Дипломный проект
Пояснительная записка
140613 ЭП-04
Дипломник /Ю.В. Колеганов/
Руководитель проекта /Л.П. Мохова/
Консультант по экономической части / Г.Я. Ишбаева/
Ст.консультант / Л.П. Мохова/
Нормоконтроль / В.Г. Аркаева/
Рецензент / /
2008
СОДЕРЖАНИЕ
- ВВЕДЕНИЕ 5
- 1. ОБЩАЯ ЧАСТЬ 7
- 1.1 Описание технологического процесса 7
- 1.2 Краткая характеристика объекта и применяемого оборудования 8
- 2 РАСЧЕТНО-ТЕХНИЧЕСКАЯ ЧАСТЬ 9
- 2.1 Выбор насоса 9
- 2.2 Расчет мощности и выбор электродвигателя 11
- 2.3 Технико-экономическое обоснование выбранного типа двигателя 12
- 2.4 Расчет электрических нагрузок 15
- 2.5 Расчёт компенсации реактивной мощности 16
- 2.6 Выбор числа и мощности силовых трансформаторов 20
- 2.7 Технико-экономическое обоснование выбранного типа трансформатора и величины напряжения 24
- 2.8 Расчет токов короткого замыкания 30
- 2.9 Расчет и выбор питающей линии 35
- 2.10 Расчет распределительной сети 37
- 2.11 Выбор высоковольтного электрооборудования с проверкой на устойчивость к токам короткого замыкания 39
- 2.12 Выбор пусковой и защитной аппаратуры на 0,38 кВ 41
- 2.13 Выбор и описание схемы управления ПЭД 43
- 2.14 Учет и экономия электроэнергии 47
- 2.15 Расчет заземляющих устройств 49
- 2.16 Спецификация на электрооборудование и материалы 51
- 3 ОХРАНА ТРУДА И ПРОТИВОПОЖАРНАЯ ЗАЩИТА 52
- 3.1 Техника безопасности при монтаже электрооборудования и электросетей 52
- 3.2 Техника безопасности при эксплуатации электрооборудования и электросетей 53
- 3.3 Техника безопасности при ремонте электрооборудования и электросетей 57
- 3.4 Мероприятия по противопожарной безопасности 58
- 4. ОХРАНА НЕДР И ОКРУЖАЮЩЕЙ СРЕДЫ 60
- 4.1 Экологические проблемы в нефтяной промышленности. 60
- 4.2 Охрана окружающей среды на объекте. 61
- 5. ОРГАНИЗАЦИОННЫЯ ЧАСТЬ 63
- 5. ОРГАНИЗАЦИОННЫЯ ЧАСТЬ 63
- 5.1 Организация монтажа электрооборудования и электросетей 63
- 5.2 Организация обслуживания электрооборудования и электросетей 65
- 5.3 Организация ремонта электрооборудования и электросетей 66
- 6 ЭКОНОМИЧЕСКАЯ ЧАСТЬ 69
- 6.1 Расчет численности ремонтного и и обслуживающего персонала 69
- 6.2 Расчет годового фонда заработной платы 79
- 6.3 Расчет потребности материальных ресурсов и запасных частей 81
- 6.4 Составление плановой калькуляции на ремонт оборудования 83
- ВЫВОДЫ И ЗАКЛЮЧЕНИЕ 85
- НОРМОКОНТРОЛЬ 86
- ОТЗЫВ 88
- РЕЦЕНЗИЯ 90
- СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 95
ВВЕДЕНИЕ
Электроэнергетика - отрасль промышленности, занимающая производством электроэнергии на электростанциях и передачей ее потребителям. Она является основой развития производственных сил в любом государстве. Энергетика обеспечивает бесперебойную работу промышленности, сельского хозяйства, транспорта, коммунальных хозяйств. Стабильное развитие экономики России невозможно без постоянно развивающейся энергетики. Энергетическая промышленность тесно связана с комплексом топливной промышленности.
Российская энергетика - это более 600 тепловых, свыше100 гидравлических и 9 атомных электростанций. Ежегодно ими вырабатывается свыше 1 триллиона кВт/ч электроэнергии и более 1 миллиарда Гкал тепла. Общая длина линий электропередач превысила 2,5 млн. километров.
Для обеспечения надежного электроснабжения объектов добычи нефти на новых месторождениях приходится создавать мощные энергетические базы. Трудность создания таких баз часто заключается в значительной удаленности нефтяных промыслов от энергетических центров. Поэтому при проектировании электроснабжения нефтяного месторождения, разрабатывают такую систему, которая обеспечивала бы возможность роста потребления электроэнергии без коренной реконструкции всей системы электроснабжения. Запроектированная система электроснабжения должна обеспечивать в условиях после аварийного режима, путем соответствующих переключений, питание электроэнергией тех приемников электроэнергии, работа которых необходима для продолжения производства.
Питание электрической энергией потребителей нефтяной промышленности осуществляется от сетей энергосистем или от собственных местных электрических станций. Потребители с большой установленной мощностью электрифицированных механизмов, например перекачивающие насосные станции магистральных трубопроводов, комплекс установок нефтяных промыслов, как правило, питаются от энергосистем.
На нефтяных промыслах в настоящее время находятся в эксплуатации несколько десятков типоразмеров отечественных и импортных погружных центробежных электронасосов с двигателями погружного типа. С помощью этих насосов получают свыше 70% общего количества нефти, добытого механизированным способом. Разработан и находится в эксплуатации широкий ряд оборудования для управления установками ЭЦН: станции управления, тиристорные станции плавного пуска, выходные фильтры, системы погружной телеметрии и т.д.
1. ОБЩАЯ ЧАСТЬ
1.1 Описание технологического процесса
Выбор электрооборудования скважины определяется способом добычи нефти. Если скважина имеет хороший приток жидкости к забою и статический ее уровень постоянен, то добыча осуществляется установкой электроцентробежного насоса.
Состав погружной части определяется опять же параметрами скважины, но к основному подземному электрооборудованию относят электроцентробежный насос (ЭЦН) и погружной электродвигатель (ПЭД). Если скважина высокодебитная, то для того, чтобы улучшить контроль за ее состоянием в скважину спускают телеметрическую систему (ТМС). Наличие большого количества газа в нефти заставляет использовать газосепаратор, а отсутствие газа или малое его количество допускает установку модуля. Питание к двигателю подводится погружным кабелем типа КПБП и КРБК с сечением 10, 16, 25 и 35 мм2.
На поверхности земли от клеммной коробки, в которой производится соединение погружного кабеля с кабельной линией, установлена кабельная эстакада. По этой эстакаде, по нижним полкам, укладывается кабельная линия установки ЭЦН. Наземное оборудование установлено на площадке механизированной добычи (ПМД). К наземному оборудованию относят трансформатор питания погружных насосов (типа ТМП и ТМПН), станцию управления установкой (СУ типа Электон-М, Электон-04, Электон-07,Борец-01,ШГС-5805 и т.п) и выходной фильтр (L-C фильтр не установлен).
Так же к наземному оборудованию относят кабели, играющие роль перемычек между станцией управления и трансформатором, и питающие кабели, соединяющие станцию управления с кустовой трансформаторной подстанцией (КТПН).
1.2 Краткая характеристика объекта и применяемого оборудования
Куст скважины №145 находится в собственности ОАО «ТНК-ВР». Эта организация занимается бурением и добычи нефти. Куст представляет собой земельный участок с размером 260м15 обведенным песчаным валом - обваловкой. Куст получает питание от одной ЛЭП 10 кВ. На концевых опорах ЛЭП установлены разъединители с заземляющими ножами типа РЛНДЗ-10/400 У1. На площадке куста установлена трансформаторная подстанции типа КТПН. В оборудование подстанции входит силовой понижающий трансформатор 10/0.4 типа ТМ-160/10. С высокой стороны в каждой фазе установлены предохранители и разрядники типа ОПН-КР/400 У1 для ограничения внутренних и атмосферных перенапряжений. С низкой стороны установлены вводной автомат, автоматы на каждую отходящую линию одного типа ВА 51Г-31, трансформаторы тока для подключения устройств защиты, измерения и учета электроэнергии.
Применение напряжения 10 кВ обусловлено тем, что куст находится на значительном удалении от ГПП (около 10 км) и применение напряжения 10 кВ экономически более выгодна, так как снижается потери при передачи по ЛЭП.
Рядом с площадкой ТП установлена площадка механической добычи (ПМД). На ПМД установлено наземное оборудование скважин, эксплуатируемых ЭЦН. На кусту установлены 5 комплектов наземного оборудования, т.е 5 станций управления Электон-М и 5 повышающих силовых трансформатора марки ТМП 100/1170. Питание от ТП до СУ обеспечивается кабелями марки КПБП 3м16, проложенных в несколько ниток (2-3). Перемычки между СУ и ТМП такие же, как и питающие кабели. Применение несколько ниток обусловлено повышенным током, вследствие пониженного до 0.4 кВ напряжения.
2 РАСЧЕТНО-ТЕХНИЧЕСКАЯ ЧАСТЬ
2.1 Выбор насоса
Электроцентробежные насосы используют для механизированной добычи жидкости из скважины и выбирают в зависимости от параметров скважины по условию:
, (2.1)
где Qск - дебит скважины, ;
Нск-напор, необходимый для подъема жидкости из скважины, м;
Qн-номинальная подача насоса, ;
Нн-номинальный напор насоса, м.
Определяем депрессию Нд, м:
, (2.2)
где К-коэффициент продуктивности скважины.
Находим динамический уровень жидкости в скважине Н ,м:
, (2.3)
где Нст - статический уровень жидкости в скважине, м.
Определяем глубину погружения насоса L, м:
(2.4)
Находим потери напора из-за трения жидкости о стенки насосно-компрессорных труб (НКТ) , м:
, (2.5)
где - коэффициент трения жидкости в НКТ;
L - глубина погружения насоса, м;
l - расстояние от устья скважины до сепаратора, м;
d - диаметр насосных труб, м.
Находим напор, необходимый для поднятия жидкости из скважины
Нск , м:
, (2.6)
где Нг - разность геодезических уровней скважины и
сепаратора, м;
Нт - потеря напора в трапе, м.
При выборе насоса необходимо соблюдение условия 2.1.
Выбираем насос ЭЦН5-160-1100,паспортные данные которых приведены в таблице 2.1.
Таблица 2.1
Тип |
Подача, м 3/сут |
Напор, м |
Внутренний диаметр обсадной колонны, мм |
КПД, % |
Число ступеней |
||
ЭЦН5-160-1100 |
160 |
49,8 |
117 |
45 |
58,7 |
224 |
Для насоса ЭЦН5-160-1100 строим график зависимости напора от подачи:
Рисунок 2.1 - График зависимости напора, создаваемого насосом ЭЦН5-160-1100 от его подачи
Характеристику насоса можно приблизить к условной характеристике скважины путем уменьшения числа ступеней насоса.
Находим число ступеней, которые нужно снять с насоса для получения необходимого напора Z1 , шт:
(2.7)
где Zн - число ступеней насоса в полной сборке по
паспорту, шт;
Нн - номинальный напор насоса в полной сборке по
паспорту, м.
Находим число ступеней насоса после снятия лишних ступеней
Z1 , шт:
, (2.8)
Значит, насос ЭЦН5-80-850 должен иметь 158 ступеней. Вместо снятых 37 ступеней устанавливаются проставки.
2.2 Расчет мощности и выбор электродвигателя
Для привода центробежных погружных насосов изготовляются погружные асинхронные электродвигатели типа ПЭД, которые удовлетворяют следующим требованиям. Их диаметр несколько меньше нормальных диаметров применяемых обсадных колонн. Двигатели защищены от попадания внутрь пластовой жидкости, что достигается заполнением их трансформаторным маслом, находящимся под избыточным давлением 0,2 МПа относительно внешнего гидростатического давления в скважине.
Полная мощность двигателя, необходимая для работы насоса определяется по формуле:
, (2.9)
где kз - коэффициент запаса kз=1,1 - 1,35;
- плотность жидкости в скважине, кг/м3;
- КПД насоса.
Предварительно выбираем два двигателя, подходящие по номинальной мощности. Их паспортные данные заносим в таблицу 2.2.
Таблица 2.2
Параметры |
ПЭД28-103 (I) |
ПЭД32-117ЛВ5 (II) |
|
Мощность, кВт Напряжение, В Рабочий ток, А КПД, % |
28 850 35,7 0,73 73 |
32 1000 25,5 0,86 84 |
2.3 Технико-экономическое обоснование выбранного типа двигателя
1. Вычислим приведенные потери первого двигателя:
Находим потери активной мощности I двигателя по формуле:
, (2.10)
Реактивную нагрузку определяем по формуле:
, (2.11)
Вследствие того, что требуется компенсация реактивной мощности, то экономический эквивалент реактивной мощности Кэк, кВт/кВАр находим по формуле:
, (2.12)
где - удельные приведенные потери;
- значение коэффициента отчислений (для статических конденсаторов р=0,225);
- капитальные вложения на установку конденсаторов (Кук=616,9 руб/кВАр);
- стоимость 1 кВТ/год электроэнергии;
- удельные потери );
, (2.13)
где - стоимость 1 кВт/час электроэнергии
( )
Тг- число часов работы установки в году
(для трехсменной работы );
;
;
Приведенные потери активной мощности находим по формуле:
, (2.14)
Вычислим приведенные потери второго двигателя:
Находим потери активной мощности:
Определяем реактивную нагрузку:
Находим приведенные потери активной мощности:
Определяем годовые затраты:
(2.15)
;
;
Определяем степень экономичности:
; (2.16)
где ри - нормированный коэффициент экономичности;
;
Следовательно, двигатель ПЭД32-117ЛВ5 более экономичен при данных параметрах скважины и насоса, на его содержание требуется меньше денежных затрат, его энергетические показатели лучше. Значит, выбираем двигатель ПЭД32-117ЛВ5.
Производим проверку по мощности, передаваемой с земли:
; (2.17)
где - потери мощности в кабеле, кВт;
;
27,3 кВт < 32 кВт
Значит, выбранный двигатель подходит по потерям мощности, передаваемой с земли.
Составляем таблицу технико-экономического обоснования выбранного типа двигателя.
Таблица 2.3
Показатели |
Ед. изм. |
Обозн. |
Источник |
I дв. |
II дв. |
|
Номинальная мощность |
кВт |
Рном |
Паспорта |
28 |
32 |
|
Нагрузка на валу |
кВт |
Р |
27,3 |
27,3 |
||
Коэф. загр. двигателя |
- |
Кз |
Р/Рном |
0,92 |
0,81 |
|
Капитальные вложения |
руб |
К |
Прайс-лист |
6426 |
8813,3 |
|
Суммарный коэф. отчислений |
- |
р |
Справочник |
0,225 |
||
КПД двигателя |
% |
Паспорт |
73 |
84 |
||
Коэф. мощности |
- |
Паспорт |
0,73 |
0,86 |
||
Потери активной Мощности |
кВт |
9.54 |
4,2 |
|||
Реактивная нагрузка |
кВАр |
33.22 |
17.8 |
|||
Экономический эквивалент реактивной мощности |
кВт/кВАр |
nэк |
0,1333 |
|||
Приведенные потери активной мощности |
кВт |
8,05 |
6,6 |
|||
Стоимость 1 кВт/год электроэнергии |
руб |
Расчеты и исходные данные |
1.85 |
|||
Стоимость годовых потерь электроэнергии |
руб/год |
Сэ |
11100 |
11100 |
||
Годовые затраты |
руб/год |
З |
107339.8 |
48602.99 |
||
Разность годовых Затрат |
руб/год |
З2-З1 |
58736.9 |
58736.9 |
||
Нормир. коэф. эффек. |
- |
Рн |
Исх. формула |
1,5 |
1,5 |
|
Степень экономичности |
% |
16.4 |
16.4 |
2.4 Расчет электрических нагрузок
Электрическая нагрузка характеризует потребление электроэнергии отдельными приемниками, группой приемников, и объектом в целом.
Значения электрических нагрузок определяют выбор всех элементов проектируемой системы электроснабжения и ее технико-экономические показатели. От правильной оценки ожидаемых нагрузок зависят капитальные затраты в системе электроснабжения, расход цветного металла, потери электроэнергии и эксплуатационные расходы.
Характеристики электрических нагрузок кустовой площадки приведены в таблице 2.3.
Таблица 2.4
№ |
Потребители |
Кол-во, шт |
Мощность, кВт |
, кВт |
cos |
tg |
Kc |
|
1 |
ЭЦН |
5 |
32 |
160 |
0,86 |
0,59 |
0,65 |
|
2 |
АГЗУ |
1 |
10 |
10 |
0,8 |
0,75 |
0,7 |
Определяем расчетную активную мощность от первой ТП, с которой записывается АГЗУ:
, (2.18)
где Рн- номинальная мощность потребителя, кВт;
Кс- коэффициент спроса;
Находим реактивную нагрузку за смену по формуле:
, (2.19)
Находим полную расчетную мощность по формуле:
, (2.20)
Определяем максимальную полную мощность:
(2.21)
2.5 Расчёт компенсации реактивной мощности
В электрической цепи переменного тока, имеющей чисто активную нагрузку, ток совпадает по фазе с приложенным напряжением. Если в цепь включить электроприемник, обладающий активным и индуктивным сопротивлениями (АД, сварочные и силовые трансформаторы), то ток будет отставать по фазе от напряжения на угол , называемый углом сдвига фаз. Косинус этого угла называют коэффициентом мощности.
Рисунок 2.2 - Векторные диаграммы.
Величина характеризует степень использования мощности источника:
, (2.22)
где Р - активная мощность потребителя, кВт;
Sном - номинальная мощность источника, кВА.
С увеличением активной слагающей тока, что соответствует увеличению активной мощности, и при неизменной величине реактивного тока или реактивной мощности угол сдвига фаз будет уменьшаться, следовательно, значение коэффициента мощности будет увеличиваться. Чем выше электроприемников, тем лучше используются генераторы электростанций и их первичные двигатели. Повышение электроустановок промышленных предприятий имеет большое народно-хозяйственное значение и является частью общей проблемы повышения КПД работы систем электроснабжения и улучшения качества отпускаемой потребителю электроэнергии.
Мероприятия, не требующие применения компенсирующих устройств:
1) Упорядочение технологического процесса;
2) Переключение статорных обмоток АД напряжением до 1кВ с треугольника на звезду, если их нагрузка составляет менее 40%;
3) Устранение режима холостого хода АД;
4) Замена, перестановка и отключение трансформаторов, загружаемых в среднем менее чем на 30% от их номинальной мощности;
5) Замена малозагружаемых двигателей меньшей мощности при условии, что изъятие избыточной мощности влечет за собой уменьшение суммарных потерь активной энергии в энергосистеме и двигателе;
6) Замена АД на СД той же мощности;
7) Применение СД для всех новых установок электропривода.
В курсовом проекте в качестве компенсирующего устройства применяются комплектные конденсаторные установки. Достоинства таких компенсирующих устройств в следующем:
- небольшие потери активной энергии в конденсаторах;
- простота монтажа и эксплуатации;
- возможность легкого изменения мощности конденсаторной установки путем повышения или понижения количества конденсаторов;
- возможность легкой замены поврежденного конденсатора.
Недостатки:
- конденсаторы неустойчивы к динамическим усилиям, возникающим при КЗ;
- при включении конденсаторной установки возникают большие пусковые токи;
- после отключения конденсаторной установки от сети на ее шинах остается заряд;
- конденсаторы весьма чувствительны к повышению напряжения, то есть при его повышении может произойти пробой диэлектрика;
- после пробоя диэлектрика конденсаторы довольно трудно ремонтировать, поэтому их заменяют новыми.
Определяем действительный cos при работе всех установок без применения компенсирующих устройств:
, (2..23)
Для экономичной работы установки и снижения бесполезной реактивной нагрузки в сети электроснабжения, необходима компенсация реактивной мощности с помощью батареи статических конденсаторов.
Определяем мощность компенсирующих устройств:
(2.24)
, (2.25)
, (2.26)
Выбираем компенсирующую установку КС-0,38-36 с номинальной мощностью 36 кВАр.
Полная мощность после компенсации:
, (2.27)
; (2.28)
.
Коэффициент мощности после компенсации:
, (2.29)
Значение коэффициента мощности равное 0,96 удовлетворительно для работы электроустановок, значит, компенсация произведена правильно.
2.6 Выбор числа и мощности силовых трансформаторов
На нефтепромысловых подстанциях применяются силовые понижающие трансформаторы 110/35; 110/6; 35/6; 35/0,4 - 0,69; 6 - 10/0,4 - 0,69 кВ. Мощности трансформаторов могут быть от нескольких киловольт-ампер до десятков мегавольт-ампер; число типов и конструкций этих трансформаторов велико. Наибольшее распространение в нефтяной промышленности имеют трехфазные масляные трансформаторы. Сухие трансформаторы с воздушным охлаждением в нефтяной промышленности мало распространены, для силовых трехфазных трансформаторов мощностью от 10 кВА в настоящее время принята шкала с шагом 1,6, т. е. номинальные мощности в кВА. Таким образом, нижний предел номинальной мощности равен 10, а верхний - 63000 кВА. Современный понижающий трехфазный трансформатор мощностью 250 кВА для первичных напряжений 6 - 10 кВ с естественным масляным охлаждением. Для трансформатора допускаются длительные систематические перегрузки, определяемые в зависимости от графика нагрузки и недогрузки трансформаторов в летнее время. Так как в летнее время нагрузка трансформаторов меньше, чем зимой, и меньше номинальной, то и износ изоляции летом меньше нормального. Поэтому в зимние месяцы (декабрь - февраль) можно, не уменьшая срок службы трансформатора, увеличить его нагрузку, сверх определенной по диаграмме нагрузочной способности на столько процентов, на сколько летом (июль -- август) нагрузка была меньше номинальной. Однако суммарная перегрузка трансформатора не должна превышать 30%. При выходе из строя одного из параллельно работающих трансформаторов и отсутствии резерва допускаются аварийные кратковременные перегрузки, независимо от предшествующей нагрузки, температуры охлаждающей среды и места установки.
В аварийных режимах допускается кратковременная перегрузка масляных трансформаторов сверх номинального тока при всех системах охлаждения независимо от длительности и значения предшествующей нагрузки и температуры охлаждающей среды: допускается перегрузка масляных трансформаторов сверх номинального тока до 40% общей продолжительностью не более 6 ч в сутки в течение 5 суток подряд при условии, что коэффициент начальной нагрузки не превышает 0,93 (при этом должны быть использованы полностью все устройства охлаждения трансформатора).
Выбор трансформаторов для ТП.
На данном кусту №125 установлены два силовых трансформатора, каждый из которых питает по 3 погружных электродвигателя, в целях надежности электроснабжения.
Так как двигатели имеют одинаковые мощности, то выбираем два одинаковых силовых трансформатора.
Трансформаторы выбираем в зависимости от максимальной мощности после компенсации. Так как нагрузки II и III категории, то задаемся коэффициентом загрузки
Выбираем трансформаторов с коэффициентом загрузки кз=0,8
Определяем значение полной мощности:
(2.30)
Предполагаем к установке трансформатор ТМ-160/10.
Проверяем выбранную трансформаторную мощность по коэффициенту загрузки:
; (2.31)
.
Проверяем выбранную мощность трансформатора по коэффициенту на после аварийный режим:
;
т.к. нагрузки 2 и 3 категории составляют 80%, то
; (2.32)
, то
т.е. выбранные трансформаторы подходят по условию проверки на после аварийный режим.
Делаем проверку трансформатора по току вторичной обмотки. Делаем перерасчет тока двигателя от напряжения 1000 В на 380 В.
(2.33)
Ток на вторичной обмотке силового трансформатора:
(2.34)
(2.35)
Выбранный трансформатор по току вторичной обмотки подходит.
Выбор трансформатора для питания ПЭД.
Для повышения напряжения до номинального напряжения двигателя и для компенсации потерь в кабеле и других элементах питающей сети применяются повышающие трансформаторы питания погружных насосов (ТМПН).
Трансформатор выбирается по полной мощности двигателя:
(2.36)
Предполагаем к установке трансформатор ТМП 100/1170.
Проверяем трансформатор по мощности по условию:
(2.10)
Трансформатор по мощности подходит.
Проверяем трансформатор по току, находим ток во вторичной обмотке:
, (2.37)
где U2н - напряжение вторичной обмотки трансформатора, В.
Для нормальной работы необходимо выполнение условия:
(2.38)
Делаем проверку трансформатора по номинальному напряжению на вторичной обмотке:
Трансформатор по току и напряжению подходит, то есть выбранный трансформатор удовлетворяет всем условиям и выбран правильно.
Выбираем трансформатор ТМП 100/1170.
В нижеприведенной таблице указаны паспортные данные выбранного трансформатора.
Таблица 2.5
Тип трансформатора |
Номинальная мощность, кВА |
ВН, В |
НН, В |
|
ТМП 100/1170 |
100 |
380 |
920-1170 |
2.7 Технико-экономическое обоснование выбранного типа трансформатора и величины напряжения
Вариант 1. Напряжение питающей линии- 10 кВ, силовые трансформаторы - ТМ-160/10.
Капитальные затраты установленного оборудования и линии.
Линию принимаем воздушную, со сталеалюминевыми проводами АС и железобетонными опорами.
Экономическое сечение при работе куста в течении за год определяется для экономической плотности тока при расчетном токе одной линии:
, (2.39)
, (2.40)
Принимаем сечение .
Стоимость 1 км воздушной линии указанного сечения, установленного на железобетонных опорах, 60 тыс.руб./км..
Тогда при одной линии l=10км.,
В соответствии с нагрузкой куста установлены два трансформатора типа ТМ-160/10 мощностью по 160 кВА.
Паспортные данные трансформаторов:
Стоимость трансформаторов
На стороне 10 кВ установлены 2 разъединителя, 6 разрядника и 6 предохранителей общей стоимостью
Суммарные капитальные затраты:
, (2.41)
Эксплуатационные расходы.
Потери в линии определяют по удельным потерям, которые для принятого провода АС сечением 16 мм 2 составляют
Тогда для расчетного тока одной линии активные потери в линии:
, (2.42)
Потери в трансформаторах: реактивные потери холостого хода:
, (2.43)
Реактивные потери короткого замыкания:
, (2.44)
Приведенные потери активной мощности при коротком замыкании:
, (2.45)
где
Полные потери в трансформаторах:
, (2.46)
где
Полные потери в линии и трансформаторах:
, (2.47)
Стоимость потерь при
Средняя мощность амортизационных отчислений
[2 с.152 табл.4.1]
Стоимость амортизации:
, (2.48)
Суммарные годовые эксплуатационные расходы:
, (2.49)
Суммарные затраты:
, (2.50)
Потери электроэнергии:
, (2.51)
Расход цветного металла (алюминия):
, (2.52)
где [1 с.459 табл.7.35]
Вариант II. Напряжение питающей линии - 6 кВ, силовых трансформаторы - ТМ-250/6
Капитальные затраты установленного оборудования и линии.
Линию принимаем воздушную, со сталеалюминевыми проводами АС и железобетонными опорами.
Экономическое сечение при работе куста в течении за год определяется для экономической плотности тока при расчетном токе одной линии:
, (2.54)
, (2.55)
Принимаем сечение .
Стоимость 1 км воздушной линии указанного сечения, установленного на железобетонных опорах, 65 тыс.руб./км..
Тогда при одной линии l=10км.,
В соответствии с нагрузкой куста установлены два транс
форматора типа ТМ-250/6 мощностью по 250 кВА.
Паспортные данные трансформаторов:
Стоимость трансформаторов
На стороне 6 кВ установлены 2 разъединителя, 6 разрядника и 6 предохранителей общей стоимостью
Суммарные капитальные затраты:
, (2.56)
Эксплуатационные расходы.
Потери в линии определяют по удельным потерям, которые для принятого провода АС сечением 25 мм 2 составляют
Тогда для расчетного тока одной линии активные потери в линии:
, (2.57)
Потери в трансформаторах: реактивные потери холостого хода:
, (2.58)
Реактивные потери короткого замыкания:
, (2.59)
Приведенные потери активной мощности при коротком замыкании:
, (2.60)
Где
Полные потери в трансформаторах:
, (2.61)
где
Полные потери в линии и трансформаторах:
, (2.62)
Стоимость потерь при
Средняя мощность амортизационных отчислений
[2 с.152 табл.4.1]
Стоимость амортизации:
Суммарные годовые эксплуатационные расходы:
Суммарные затраты:
Потери электроэнергии:
Расход цветного металла (алюминия):
где [1 с.459 табл.7.35]
Таблица 2.6
Варианты |
Показатели |
|||||
капиталь-ные затраты тыс.руб. |
эксплуа-тацонные расходы, тыс.руб. |
суммар-ные затраты, тыс.руб. |
масса цветного металла, кг. |
потери электро-энергии, |
||
Вариант I |
616,9 |
164,73 |
248,84 |
440 |
68,04 |
|
Вариант II |
666,5 |
266,93 |
350,24 |
679 |
121,59 |
Как видно из таблицы I вариант схемы электроснабжения куста технически и экономически более выгодна чем II, поэтому выбираем I вариант электроснабжения.
2.8 Расчет токов короткого замыкания
Коротким замыканием называется всякое случайное или преднамеренное, не предусмотренное нормальным режимом работы, электрическое соединение различных частей электроустановки между собой или землей, при котором токи резко возрастают, превышая наибольший допустимый ток продолжительного режима.
Короткое замыкание в сети может сопровождаться:
- прекращением питания потребителей
- нарушением нормальной работы других потребителей
- нарушением нормального режима работы энергосистемы
Для предотвращения коротких замыканий и уменьшения их последствий необходимо:
- устранить причины, вызывающие короткие замыкания
- уменьшить время действия защиты
- применять быстродействующие выключатели
Рисунок 2.3 - Расчетная схема и схема замещения. Расчет тока короткого замыкания в точке К1
Сопротивление воздушной линии , Ом, вычисляют по формуле
(2.63)
Суммарное сопротивление до точки К1 , Ом, вычисляют по формуле
(2.64)
Силу тока короткого замыкания , кА, вычисляют по формуле
Iк1 = , (2.65)
где - базисное напряжение в точке К1, кВ
Силу ударного тока , кА, вычисляют по формуле
(2.66)
где - ударный коэффициент
Мощность короткого замыкания , МВА, вычисляют по формуле
(2.67)
Расчет тока короткого замыкания в точке К2
Активное сопротивление трансформатора , Ом, вычисляют по формуле
(2.68)
(2.69)
Индуктивное сопротивление трансформатора , Ом, вычисляют по формуле
= (2.70)
(2.71)
х*тр = = 0,024 Ом
Сопротивление хУк1 приводят к U=0,4 кВ по формуле
(2.72)
Суммарное сопротивление до точки К2 вычисляют по формуле
(2.73)
Сила тока короткого замыкания
Сила ударного тока
Мощность короткого замыкания
Расчет тока короткого замыкания в точке К3
Активное сопротивление кабельной линии rкл , Ом, вычисляют по формуле
(2.74)
Индуктивное сопротивление кабельной линии
Суммарное сопротивление до точки К3
(2.75)
Сила тока короткого замыкания
Сила ударного тока
Мощность короткого замыкания
Расчет тока короткого замыкания в точке К4
Активное сопротивление трансформатора
Индуктивное сопротивление трансформатора
Полное сопротивление трансформатора , Ом, вычисляют по формуле
(2.76)
Приводим сопротивление
Суммарное сопротивление до точки К4 вычисляют по формуле
(2.77)
Сила тока короткого замыкания
Сила ударного тока
Мощность короткого замыкания
Расчет тока короткого замыкания в точке К5
Активное сопротивление кабельной линии
Индуктивное сопротивление кабельной линии
Полное сопротивление кабельной линии
Суммарное сопротивление до точки К5
(2.78)
Сила тока короткого замыкания
Сила ударного тока
(2.79)
где - пусковой ток двигателя
Ток подпитки асинхронного двигателя вычисляют по формуле
(2.80)
где = 6,5
Мощность короткого замыкания
2.9 Расчет и выбор питающей линии
Сечение проводов ЛЭП при напряжении выше 1000 В выбирается, согласно ПУЭ, по экономической плотности тока, в зависимости от продолжительности использования линии и проверяется по нагреву, по потере напряжения, на отсутствие короны, на механическую прочность.
При выборе сечения проводов исходят из условия соответствия провода требованиям нормальной работы линии и потребителей.
При выборе площади сечения проводов наиболее выгодной будет площадь, которая соответствует условиям минимума расчетных затрат.
Экономически выгодное сечение , мм2, вычисляют по формуле
, (2.81)
где - экономическая плотность тока, А/мм2
Ток трансформатора I, А, вычисляют по формуле
, (2.82)
Сечение проводов выбирается из условия S ? Sном.. Выбираем провод марки А -16
Таблица 2.7
Провод |
Iдоп , А |
r0 , Ом |
x0 , Ом |
|
АС-16 |
105 |
1,98 |
0,405 |
Проверка провода на потерю напряжения
Потерю напряжения ДU, В, вычисляют по формуле
, (2.83)
где - активное сопротивление, Ом
- индуктивное сопротивление, Ом
(2.84)
(2.85)
Проверка провода по нагреву току нормального режима
(2.86)
где для ВЛ
Проверка провода на механическую прочность
(2.87)
По нормам ПУЭ для линии 10 кВ минимальное сечение провода 16 мм2
Выбираем провод марки АС - 16
2.10 Расчет распределительной сети
Выбор кабеля для питания электродвигателя
Расчет питающего кабеля ведем по экономической плотности тока. В применяемых кабелях КПБП экономическая плотность тока не превышает.
Применение плоского кабеля обусловлено необходимостью уменьшить поперечные размеры погружного устройства.
Питающий кабель прикрепляется к насосным трубам с помощью металлических скоб.
Экономически выгодное сечение кабеля
(2.88)
По таблице выбираем трехжильный бронированный кабель КПБП
Проверяем кабель на потерю мощности. Потерю электрической мощности ДР, кВт, в кабеле КПБП длиной 1000 м определяем по формуле:
(2.89)
где - сопротивление в кабеле, Ом
Сопротивление в кабеле длиной 1000 м можно определить по формуле:
(2.90)
где - удельное сопротивление при температуре Тк Ом•мм2/м
- площадь сечения кабеля, мм2
Удельное сопротивление кабеля Тк = 328 К
(2.91)
с - удельное сопротивление меди при Т293 К
б - температурный коэффициент для меди
Находим полное сопротивление кабеля длиной 1000 м
Найдем длину всего кабеля когда расстояние от устья до станции управления 50 м,запас30 и глубина спуска насоса 900 м.
Из таблицы «Потери напряжения в кабеле в зависимости от температуры и нагрузки» определяют допустимую потерю напряжения в кабеле. В кабеле сечением жил 10 мм2 на каждые 100 м длины допустимые потери составляют . Тогда допустимые потери в кабеле при длине 980 м вычисляют по формуле (2.85)
Кабель выбран верно.
Расчет и выбор шин.
Шины выбираются по номинальному току проверяются на динамическую стойкость к токам короткого замыкания
Определяем номинальный ток
Подбираем стандартное сечение шин. Предполагаем к установке алюминиевые однополосные шины с допустимым током [1 395табл.7.3].
Проверяем выбранное сечение шин на электродинамическую стойкость к токам короткого замыкания.
(2.92)
где расстояние между точками крепления шин, см.
ударные ток, кА
момент сопротивления, ,зависит от укладки шин.
расстояние между фазами, .
Момент сопротивления шин W, см3, считая, что шины уложены плашмя вычисляют по формуле
(2.93)
где, ширина,;
высота,
Определяем динамическое усилие в металле шин
(2.94)
Шины динамически устойчивы к токам короткого замыкания
Выбираем шины
2.11 Выбор высоковольтного электрооборудования с проверкой на устойчивость к токам короткого замыкания
Разъединитель предназначен для создания видимого разрыва электрической цепи.
Разъединитель выбирается по номинальному току и напряжению и проверяется на термическую и динамическую стойкость к токам
короткого замыкания
Таблица 2.8
Расчетные данные |
Табличные данные |
|
Выбираем разъединитель РЛНДЗ-10/400 У1 с приводом [1 с.268. табл.5,5]
Предохранитель выбирается по номинальному току и напряжению и проверяется по отключаемому току и мощности
Расчетные данные |
Табличные данные |
|
Таблица 2.9
Выбираем предохранитель ПКТ 101-10-8-31,5 У3 [1 с.254 табл.5,4]
Разрядник предназначен для защиты электроустановок от перенапряжений.
Разрядник выбирается по номинальному напряжению.
Таблица 2.10
Расчетные данные |
Табличные данные |
|
Uном = 10 кВ |
Uном = 10 кВ |
Выбираем ограничитель перенапряжения ОПН-РС
2.12 Выбор пусковой и защитной аппаратуры на 0,38 кВ
Выбор общего автоматического выключателя. Автоматические выключатели предназначены для защиты электрической цепи от токов перегруза и короткого замыкания.
Номинальный ток электромагнитного или комбинированного расцепителя автоматических выключателей выбирают по длительному расчетному току линии:
(2.95)
Ток срабатывания электромагнитного или комбинированного расцепителя I ср.эл проверяют по максимальному кратковременному току линии:
(2.96)
где - кратковременный ток, А
Кратковременный ток вычисляют по формуле
(2.97)
Суммарный длительный ток вычисляют по формуле
(2.98)
(2.99)
Проверяем выбранный автомат на способность отключения токов короткого замыкания
(2.100)
Выбираю автомат ВА 55-37.
Выбор автоматов на отходящие линии к станциям управления
(2.101)
(2.102)
Проверяем выбранный автомат на способность отключения токов короткого замыкания
Выбираю автомат ВА 51Г-31
Выбор трансформаторов тока
Таблица 2.11
Расчетные данные |
Табличные данные |
|
Выбираю трансформатор тока ТТ-250/5
Выбираем контактор, который предназначен для включения и отключения электродвигателя насоса
Таблица 2.12
Расчетные данные |
Табличные данные |
|
Выбираем контактор КЭМ-250.
Тип |
, А |
Допустимая мощность двигателя, кВт |
Схема управления |
Габаритные размеры, мм |
Масса, кг. |
|
КЭМ-250 |
250 |
132 |
AC/DC |
6,4 |
Таблица 2.13
2.13 Выбор и описание схемы управления ПЭД
Для обеспечения нормальной, долгосрочной работы погружного электродвигателя необходимо строгое соблюдение его номинальных параметров, указанных в паспорте. К этим параметрам относится величина тока, напряжения, температура и давление в скважине, подача насоса и другие. При значительном отклонении этих параметров создаются условия, при которых двигатель снижает срок службы или может быстро выйти из строя. Для контроля за основными параметрами двигателя, правильностью его подключения применяется схема управления ПЭД. В данном курсовом проекте для защиты двигателя применяется станция управления «Электом-М» с номинальным током 250 А. Станция «Электон-М» - модернизированный вариант широко используемой станции управления ШГС-5805. В отличие от своего прототипа она имеет контроллер марки «Электон-04», автоматы защиты цепей управления и т.д.
Станция обеспечивает следующие защиты и регулирование их установок:
1) отключение и запрещение включения электродвигателя при напряжении питающей сети выше или ниже заданных значений;
2) отключение и запрещение включения электродвигателя при превышении выбранной установки дисбаланса напряжения питающей сети;
3) отключение электродвигателя при превышении выбранной установки дисбаланса токов электродвигателя;
4) отключение электродвигателя при недогрузке по активной составляющей тока с выбором минимального тока фазы (по фактической загрузке). При этом уставка выбирается относительно номинального активного тока;
5) отключение электродвигателя при перегрузке любой из фаз с выбором максимального тока фазы по регулируемой ампер секундной характеристике посредством раздельного выбора установок по току и времени перегрузки;
6) отключение и запрещение включения электродвигателя при снижении сопротивления изоляции системы "вторичная обмотка ТМПН - погружной кабель - ПЭД" ниже заданного значения;
7) запрещение включения электродвигателя при турбинном вращении насосной установки с частотой, превышающей установку;
8) запрещение включения электродвигателя при восстановлении напряжения питающей сети с неправильным чередованием фаз;
9) отключение электродвигателя по сигналу контактного манометра;
10) отключение электродвигателя при давлении масла в ПЭД ниже заданного значения (при подключении системы ТМС);
11) отключение электродвигателя при температуре обмотки ПЭД выше заданного значения (при подключении системы ТМС);
12) отключение электродвигателя по сигналу любого из 8 аналоговых входов;
13) предотвращение сброса защит, изменения режимов работы, включения - отключения защит и изменения установок без ввода индивидуального пароля;
14) отключение и запрещение включения электродвигателя при несанкционированном открывании двери.
Станция обеспечивает следующие функции:
1) включение и отключение электродвигателя в "ручном" или в "автоматическом" режиме;
2) работа по программе с отдельно задаваемыми временными интервалами работы и остановки;
3) автоматическое включение электродвигателя с заданной задержкой времени после подачи напряжения питания или при восстановлении напряжения питания в соответствии с нормой;
4) регулируемая задержка отключения отдельно для каждой защиты (кроме защиты по низкому сопротивлению изоляции);
5) регулируемая задержка активации защит сразу после пуска для каждой защиты (кроме защиты по низкому сопротивлению изоляции);
6) регулируемая задержка автоматического повторного включения (АПВ) отдельно после срабатывания каждой защиты (кроме защит по низкому сопротивлению изоляции и по турбинному вращению);
7) возможность выбора режима с АПВ или с блокировкой АПВ после срабатывания отдельно каждой защиты (кроме защит по низкому сопротивлению изоляции и по турбинному вращению);
8) возможность выбора активного и неактивного состояния защит отдельно для каждой защиты;
9) блокировка АПВ после отключения по защите от недогрузки при превышении заданного количества разрешенных повторных пусков за заданный интервал времени;
10) блокировка АПВ после отключения по защите от перегрузки при превышении заданного количества разрешенных повторных пусков за заданный интервал времени;
11) блокировка АПВ после отключения по другим защитам (кроме защит от недогрузки и перегрузки) при превышении заданного количества разрешенных повторных пусков за заданный интервал времени;
12) измерение текущего значения сопротивления изоляции системы "вторичная обмотка ТМПН - погружной кабель - ПЭД" в диапазоне 30кОм - 10МОм;
13) измерение текущей потребляемой мощности;
14) измерение текущего коэффициента мощности (cos);
15) вычисление текущего значения фактической загрузки двигателя;
16) измерение текущего значения частоты вращения электродвигателя;
17) определение порядка чередования фаз напряжения питающей сети (АВС или СВА);
18) отображение в хронологическом порядке 99 последних изменений в состоянии насосной установки с указанием причины и времени включения или отключения ПЭД;
19) запись в реальном масштабе времени в блок памяти информации о причинах включения и отключения электродвигателя с регистрацией текущих линейных значений питающего напряжения, токов фаз электродвигателя, загрузки, сопротивления изоляции, давления, температуры и cos в момент отключения электродвигателя, через 2 секунды после включения и во время работы с двумя регулируемыми периодами записи. Кроме того, фиксируется дата и время изменения установки с регистрацией старого и нового значения, а также дата и время отключения и включения питающего напряжения с регистрацией параметров напряжения сразу после его подачи и далее с регулируемым периодом, если параметры напряжения не позволяют производить включение насосной установки. Накопленная информация может быть считана портативным компьютером, блоком съема информации типа БСИ или блоком съема информации и ввода параметров типа БСИВП;
20) сохранение заданных параметров работы и накопленной информации при отсутствии напряжения питания;
21) световая индикация о состоянии станции ("СТОП", "ОЖИД", "РАБОТА");
Станция управления устанавливается на площадке механической добычи напротив трансформатора питания погружного насоса соответствующей скважины.
2.14 Учет и экономия электроэнергии
В электрических сетях промышленных предприятий осуществляя
ют расчетный учет активной энергии для денежных расчетов за электроэнергию с электроснабжающей организацией и технический учет, служащий для межцеховых расчетов, контроль за соблюдением режима потребления электроэнергии, определения норм расхода энергии на единицу продукции и прочее. Кроме того, учитывают: потребление реактивной энергии для определения скидок и надбавок к тарифу на электроэнергию за компенсацию реактивной мощности.
Расчетным учетом электроэнергии называется учет выработанной, а также отпущенной потребителям электроэнергии для денежного расчета за нее. Счетчики, устанавливаемые для расчетного учета, называются расчетными счетчиками (класса 2), с классом точности измерительных трансформаторов - 0,5.
Техническим (контрольным) учетом электроэнергии называется учет для контроля расхода электроэнергии электростанций, подстанций, предприятий зданий, квартир. Счетчики, устанавливаемые для технического учета, называются контрольными счетчиками (класса 2,5) с классом точности измерительных трансформаторов.
При определении активной энергии необходимо учитывать энергию: выработанную генераторами электростанций; потребленную на собственные нужды электростанций и подстанций; выданную электростанциями в распределительные сети; переданную в другие энергосистемы или полученную от них; отпущенную потребителям и подлежащую оплате.
Расчетные счетчики активной электроэнергии на подстанции энергосистемы должны устанавливаться:
для каждой отходящей линии электропередачи, принадлежащей потребителям;
для межсистемных линий электропередачи по два счетчика, учитывающих полученную и отпущенную электроэнергию;
на трансформаторах собственных нужд;
для линий хозяйственных нужд или посторонних потребителей,
присоединенных к шинам собственных нужд.
Расчетные счетчики активной электроэнергии на подстанциях потребителей должны устанавливаться:
на вводе линии электропередачи в подстанцию;
на стороне высшего напряжения трансформаторов при наличии электрической связи с другой подстанцией энергосистемы;
на границе раздела основного потребителя и субабонента;
Счетчики реактивной энергии должны устанавливаться:
на тех элементах схемы, на которых установлены счетчики активной электроэнергии для потребителей, рассчитывающихся за электроэнергию с учетом разрешенной реактивной мощности;
на присоединениях источников реактивной мощности потребителей, если по ним производится расчет за электроэнергию, выданную энергосистеме;
Контрольные счетчики включают в сеть низшего напряжения что имеет ряд преимуществ:
установка счетчика обходится дешевле;
появляется возможность определить потери в трансформаторах и в сети высшего напряжения;
монтаж и эксплуатация счетчиков проще.
2.15 Расчет заземляющих устройств
Для защиты людей от поражения током при повреждении изоляции применяются следующие меры: заземление и зануление.
Защитное заземление - преднамеренное электрическое соединение металлических нетоковедущих частей электроустановки с заземляющим устройством для обеспечения электробезопасности.
Заземляющее устройство состоит из заземлителя и заземляющих проводников. Заземлитель - проводник (электрод) находящийся в соприкосновении с землей. Заземляющий проводник - проводник, соединяющий заземляющие части с заземлителем.
В качестве заземлителей используются: естественные заземлители - проложенные в земле стальные водопроводные трубы, трубы артезианских скважин, стальная броня и свинцовые оболочки силовых кабелей проложенных в земле, металлические конструкции зданий и сооружений имеющие надежный контакт с землей; искусственные заземлители - заглубленные в землю электроды из труб, уголков или прутков стали.
Различают контурное и выносное защитное заземление. При контурном заземлении электроды вбиваются в землю по контуру здания таким образом чтобы 200 мм электрода оставалось над уровнем земли. Затем вбитые электроды соединяют между собой полосовой сталью на сварке. Для выполнения внутреннего контура полосовую сталь прокладывают по внутренней поверхности стен помещения на любой высоте. Соединение внутреннего контура с внешним контуром можно производить как полосовой сталью так и гибким проводом.
Для выполнения заземляющего устройства в дипломном проекте выбираем трубы диаметром 60 мм и длиной 2,5 м.
Удельное сопротивление грунта , , вычисляют по формуле
, (2.108)
где - измеренное удельное сопротивления грунта
- коэффициент повышения сопротивления
Сопротивление одиночного заземлителя R0 , Ом, вычисляют по формуле
(2.109)
Ток однофазного замыкания на землю Iз , А, вычисляют по формуле
, (2.110)
где Lкаб - длина кабельной линии, км
Lвозд - длина воздушной линии, км
Сопротивление заземляющего устройства Rз , Ом, вычисляют по формуле
, (2.111)
где Uз - напряжение заземляющего устройства относительно земли, В
Сопротивление заземляющего устройства 437,1 Ом является недопустимо большим значением.
По нормам ПУЭ если заземляющее устройство используется одновременно для установок выше и ниже 1000 В, то значение сопротивления заземляющего устройства принимается по наименьшим требованиям правил. Для сетей 0,4 кВ с глухозаземленной нейтралью сопротивление заземляющего устройства в любое время года должно быть не более 4 Ом
Количество электродов n, шт, вычисляют по формуле
(2.112)
где, при (по нормам).
2.16 Спецификация на электрооборудование и материалы
Таблица 2.15
Оборудование |
Тип |
Кол-во |
|
1.Ограничитель перенапряжений |
ОПН |
1 |
|
2.Разрядник |
РВО-10Т1 |
3 |
|
3.Предохранитель |
ПКТ101-10-8-31,5У3 |
3 |
|
4.Трансформатор силовой |
ТМ-160/10 |
1 |
|
5.Автомат общий I=320А |
ВА52-37 |
1 |
|
6.Автомат I=80А |
ВА51Г-31 |
5 |
|
7.Станция управления |
Электон-М-250 |
5 |
|
8.Трансформатор тока |
ТТ-250/5 |
10 |
|
9.Контактор |
КЭМ-250 |
5 |
|
10.Трансформатор повышающий |
ТМП-100/1170 |
5 |
|
11.Погружной электродвигатель |
ПЭД32-117ЛВ5 |
5 |
|
12.Кабель силовой |
КПБП, |
5 |
|
13.Шины |
2 |
||
14.ВЛЭП |
АС-16, |
1 |
|
15.Конденсаторная установка |
КС2-0,38-36 |
1 |
|
16.Электроцентробежный насос |
ЭЦН5-160-1100 |
5 |
|
17.Рубильник |
РЗ2 |
5 |
3 ОХРАНА ТРУДА И ПРОТИВОПОЖАРНАЯ ЗАЩИТА
3.1 Техника безопасности при монтаже электрооборудования и электросетей
Для производства монтажных работ в действующих или находящихся под напряжением электроустановках мастер должен оформить доступ, к работе получив от эксплуатирующей организации соответствующий наряд и совмести с лицом, допущенным к работе проверить наличие условий, обеспечивающих безопасное ведения работ, в местах, где имеется или может появиться высокое напряжение, от эксплуатационного персонала должен быть назначен наблюдающий.
Подобные документы
Описание технологического процесса. Характеристика объекта и применяемого электрооборудования. Выбор насоса. Расчёт мощности и выбора электродвигателя. Охрана труда и противопожарная защита. Организация монтажа электрооборудования и электросетей.
дипломная работа [392,7 K], добавлен 30.07.2008Характеристика электрооборудования, обеспечивающего электроснабжение технологического процесса. Определение расчетной электрической нагрузки от силовых электроприемников. Расчет и выбор высоковольтного электрооборудования, цеховых трансформаторов.
дипломная работа [675,8 K], добавлен 25.09.2013Характеристика технологического процесса и объекта электроснабжения, категория его надежности и схемы. Классификация зданий по взрывобезопасности и пожаробезопасности. Параметры электросети и выбор трансформаторов. Техника безопасности и молниезащита.
курсовая работа [180,5 K], добавлен 17.02.2010Краткая характеристика копировально-фрезерного станка модели ФК2М. Анализ характера основных рабочих движений исполнительных механизмов станка. Расчет требуемой мощности и выбор электродвигателя. Расчет и выбор электрооборудования для схемы управления.
курсовая работа [623,5 K], добавлен 02.12.2013Краткая характеристика электроснабжения и электрооборудования автоматизированного цеха. Расчет электрических нагрузок. Категория надежности и выбор схемы электроснабжения. Расчёт и выбор компенсирующего устройства. Выбор числа и мощности трансформаторов.
курсовая работа [177,2 K], добавлен 25.05.2013Краткая характеристика цеха, описание технологического процесса, определение категории электроснабжения. Выбор величины питающего напряжения и схемы электроснабжения цеха. Расчет электрических нагрузок, выбор компенсирующего устройства, трансформаторов.
курсовая работа [38,5 K], добавлен 10.01.2010Характеристика электрооборудования узловой распределительной подстанции. Расчет электрических нагрузок, компенсация реактивной мощности, выбор типа, числа и мощности силовых трансформаторов и места расположения подстанции. Расчет токов короткого замыкания
курсовая работа [99,3 K], добавлен 05.06.2011Краткая характеристика электрооборудования мостового крана механосборочного цеха. Расчет электрических нагрузок, магистральных и распределительных сетей; выбор числа и мощности трансформаторов. Расчёт технико-экономических показателей по монтажу объекта.
дипломная работа [1,1 M], добавлен 22.09.2012Выбор типа схемы электроснабжения и величины питающих напряжений. Выбор числа и мощности силовых трансформаторов подстанции. Описание принципа работы схемы насосного агрегата. Построение системы планово-предупредительного ремонта электрооборудования.
дипломная работа [231,4 K], добавлен 07.06.2022Разработка схемы распределения электроэнергии для питания местной и удаленной нагрузок. Выбор числа и мощности рабочих трансформаторов. Расчет токов короткого замыкания для проверки электрических аппаратов и проводников; выбор электрооборудования станции.
курсовая работа [1,7 M], добавлен 19.05.2013