Дослідне вивчення властивостей математичного маятника

Математичний маятник та матеріальна точка. Перевірка справедливості формули періоду коливань математичного маятника для різних довжин маятника і різних кутів відхилення від положення рівноваги. Механічні гармонічні коливання та умови їх виникнення.

Рубрика Физика и энергетика
Вид лабораторная работа
Язык украинский
Дата добавления 20.09.2008
Размер файла 89,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Лабораторна робота № 7.

ДОСЛІДНЕ ВИВЧЕННЯ ВЛАСТИВОСТЕЙ МАТЕМАТИЧНОГО МАЯТНИКА.

Мета роботи: Перевірити справедливість формули періоду коливань математичного маятника для різних довжин маятника і різних кутів відхилення від положення рівноваги.

Прилади і матеріали: Штатив, сталева кулька на нитці, рулетка, секундомір, транспортир.

Теоретичні відомості.

Математичним маятником називається матеріальна точка, підвішена на невагомій нерозтяжній нитці. Гарним наближенням до цієї моделі є маленька кулька, підвішена на тонкій міцній нитці (тонка сталева дротина, рибальська волосінь, тощо). Як було показано в курсі фізики, при відхиленні маятника на малий кут він буде здійснювати гармонічні коливання. Період цих коливань визначається виразом:

(1)

де l - довжина маятника.

В даній роботі пропонується перевірити справедливість формули (1) для різних довжин і різних кутів відхилення.

Оскільки частота коливань ? обернена до періоду Т, то з формули (1) одержимо:

(2)

З (2) випливає, що добуток частоти маятника ? на корінь квадратний з його довжини повинен бути сталою величиною:

(3)

Якщо g=9,81то ця константа дорівнює (0,4985±0,0005) .

Хід роботи.

Завдання 1. Дослідження залежності частоти коливань математичного маятника від його довжини.

1. Змінюючи довжину нитки, встановіть її приблизно рівною 1м. Ретельно виміряйте довжину маятника l - це відстань від точки підвісу до центра кульки (див. рис.1). Під час вимірювання намагайтесь забезпечити точність 1-2мм. Оскільки довжину близько 1м одному вимірювати незручно, то запросіть на допомогу ще одного студента.

2. Відхиліть маятник від положення рівноваги на кут =3?5? і відпустіть маятник. Пропустіть декілька коливань і з рахунком "нуль" включіть секундомір. Зручно включати секундомір в момент, коли маятник перебуває в положенні максимального відхилення. Виміряйте час t для 30?50 коливань.

3. Повторіть дослід ще один раз.

4. Зменште довжину маятника приблизно вдвічі і повторіть вимірювання довжини і часу.

5. Ще раз зменште вдвічі довжину маятника, виміряйте її і визначте час 50 коливань. Оскільки період коливань зменшується, то для підвищення точності вимірювань число коливань слід збільшити.

6. Для кожного досліду обчисліть частоту , і добуток . Результати вимірювань і обчислень зручно подати у виді таблиці 1.

Табл.1.

l, м

N

t, с

?, с-1

1

2

3

Завдання 2. Дослідження залежності частоти коливань маятника від амплітуди його коливань.

1. Встановіть довжину маятника рівною приблизно 1м. Виміряйте довжину маятника і визначте час 30?50 коливань, як це описано в п.п.1 і 2 завдання 1.

2. Обчисліть частоту коливань маятника, одержану з досліду (експериментальну):

3. Повторіть визначення частоти для кутів відхилення 20?, 40? і 60? від вертикалі. Оскільки при великих кутах відхилення стабільність коливань зменшується, то можна обмежитись меншим числом коливань (але не менше 20).

4. Обчисліть теоретичну частоту ? коливань маятника за формулою (2) . Візьміть = 3,1416 і g = 9,81

5. Знайдіть відносне відхилення результатів експерименту від теоретичного значення:

6. Результати вимірювань і обчислень зручно подати у вигляді таблиці 2.

Табл.2

l, м

N

t, с

?е-1

?, с-1

E,%

1

2

3

4

7. Зробіть висновки до кожного з завдань.

Контрольні запитання.

1. Які коливання називають гармонічними?

2. При яких умовах виникають механічні гармонічні коливання?

3. Чи підтвердив експеримент передбачену теорією залежність частоти коливань математичного маятника від його довжини?

4. Чи відрізняється частота коливань маятника при великих кутах відхилення від теоретичного значення, обчисленого за формулою (2)?


Подобные документы

  • Використання фізичного маятника з нерухомою віссю обертання античними будівельниками. Принцип дії фізичного маятника. Пошук обертаючого моменту. Період коливань фізичного маятника та їх гармонійність. Диференціальне рівняння руху фізичного маятника.

    реферат [81,9 K], добавлен 29.04.2010

  • Изучение законов колебательного движения на примере физического маятника. Определение механических, электромагнитных и электромеханических колебательных процессов. Уравнение классического гармонического осциллятора и длины математического маятника.

    контрольная работа [44,6 K], добавлен 25.12.2010

  • Оборудование и измерительные приборы, определение периода колебаний физического маятника при помощи метода прямых и косвенных измерений с учетом погрешности. Алгоритм оценки его коэффициента затухания. Особенности вычисления момента инерции для маятника.

    лабораторная работа [47,5 K], добавлен 06.04.2014

  • Анализ уравнения движения математического маятника. Постановка прямого вычислительного эксперимента. Применение теории размерностей для поиска аналитического вида функции. Разработка программы с целью нахождения периода колебаний математического маятника.

    реферат [125,4 K], добавлен 24.08.2015

  • Законы изменения и сохранения момента импульса и полной механической энергии системы. Измерение скорости пули с помощью баллистического маятника. Период колебаний физического маятника. Расчет погрешности прямых и косвенных измерений и вычислений.

    лабораторная работа [39,7 K], добавлен 25.03.2013

  • Визначення кінетичної та потенціальної енергії точки. Вирішення рівняння коливання математичного маятника. Визначення сили світла прожектора, відстані предмета і зображення від лінзи. Вираження енергії розсіяного фотона, а також швидкості протона.

    контрольная работа [299,7 K], добавлен 22.04.2015

  • Исследование динамики затухающего колебательного движения на примере крутильного маятника, определение основных характеристик диссипативной системы. Крутильный маятник как диссипативная система. Расчет периода колебаний маятника без кольца и с кольцом.

    лабораторная работа [273,7 K], добавлен 13.10.2011

  • Исследование момента инерции системы физических тел с помощью маятника Обербека. Скорость падения физического тела. Направление вектора вращения крестовины маятника Обербека. Момент инерции крестовины с грузами. Значения абсолютных погрешностей.

    доклад [23,1 K], добавлен 20.09.2011

  • Законы динамики вращательного движения и определение скорости полета пули. Расчет угла поворота и периода колебаний крутильно-баллистического маятника. Определение момента инерции маятника, прямопропорционального расстоянию от центра масс до оси качания.

    контрольная работа [139,2 K], добавлен 24.10.2013

  • Кинематика и динамика колебаний физического маятника. Изучение механических, электромагнитных, химических и термодинамических колебаний. Нахождение суммы потенциальной и кинетической энергий. Фрикционный маятник Фроуда. Использование его в часах.

    курсовая работа [177,8 K], добавлен 19.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.