Расчёт рекуперативного теплообменного аппарата

Определение внутреннего диаметра корпуса теплообменника. Температура насыщенного сухого водяного пара. График изменения температур теплоносителя вдоль поверхности нагрева. Вычисление площади поверхности теплообмена Fрасч из уравнения теплопередачи.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 29.03.2011
Размер файла 165,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Расчёт рекуперативного теплообменного аппарата

Иваново 2010

1. Расчётная часть

Определим внутренний диаметр корпуса теплообменника.

Исходя из того, что нам задано общее число трубок в теплообменном аппарате n=130, выбираем из таблицы 1 [1] при расположении трубок по концентрическим окружностям число трубок - 130. Тогда число труб по диагонали = 13.

Наружный диаметр трубок задан и равняется dнар=22 мм.

Шаг труб выбираем из соотношения S=(1,31,5) dнар=28.633, принимаем S=30 мм.

k6 мм - кольцевой зазор между трубами и корпусом, принимаем k=10 мм.

мм.

Задаём температуру холодного теплоносителя на выходе из теплообменника.

Температура насыщенного сухого водяного пара при Рн=0.6 бар:

0С.

.

Примем =32.44 0С.

Определяем расход холодного теплоносителя G2 из уравнения неразрывности.

;

м2;

Средняя температура холодного теплоносителя:

0С;

Из таблицы 8 [2] выписываем параметры холодного теплоносителя:

кг/м3;

Дж/кгК;

кг/с.

Из уравнения теплового баланса находим тепловую мощность аппарата Q.

Вт.

Строим график изменения температур теплоносителя вдоль поверхности нагрева t=f(F) и рассчитываем среднюю температуру теплоносителей .

График изменения температуры теплоносителя вдоль поверхности нагрева

;

;

, значит определяется как среднее арифметическое:

;

0С.

Определение коэффициента теплопередачи k.

;

Теплофизические свойства материала трубок таблица 6 [3] (Сталь 2Х13): ;

Толщина стенки ?=0,5 (dнар-dвн)=0,5 (22-16)=3 мм

Определение и .

Задаёмся

,

- коэффициент теплоотдачи при конденсации водяного пара на одиночной горизонтальной трубе.

,

где из таблиц 8 и 9 [2]

при Топр = Тнас = 85,95 0C.

- коэффициент теплопередачи при вынужденном движении текучей среды в прямых гладких трубах.

Определяем критерий Рейнольдса.

0С;

м2/с;

Вт/мК.

>104 режим турбулентный.

Значит, средняя теплоотдача рассчитывается по формуле Михеева:

,

-поправка, учитывающая изменение физических свойств среды от температуры.

Из таблицы 8 [2]:

По t0 = 23,22 0С находим Prf = 6,5048

По tw2 = 53,59 0С находим Prw =3,321

- поправка на изменение коэффициента теплоотдачи на начальном участке гидродинамической стабилизации.

, значит =1.

Тогда, .

.

Определяем k:

Т.к. при расчетах температуры стенок были заданы приближенно, то их необходимо уточнить. Для этого определим удельный тепловой поток исходя из температур теплоносителей:

.

Температуры стенок могут быть найдены из выражений:

,

0С,

0С.

Пересчитаем ?1 и ?2:

При =45,11 0С найдём значения Prw:

Prw=3,917,

.

.

.

Уточним коэффициент теплопередачи:

Ещё раз определим значения температур стенок:

,

0С,

0С.

Пересчитаем ?1 и ?2:

При =46,53 0С найдём значения Prw:

Prw=3,807,

.

.

.

Уточним коэффициент теплопередачи:

Ещё раз определим значения температур стенок:

,

0С,

0С.

Т.к. расхождение с предыдущими температурами менее 1%, то полученную в последнем приближении величину k=2934,02 Вт/м2К будем считать окончательной.

2. Площадь поверхности теплообмена Fрасч из уравнения теплопередачи

,

теплообменник корпус уравнение нагрев

м2,

Сравниваем и .

- действительная площадь поверхности теплообмена.

Т.к. коэффициенты теплопередачи имеют разные порядки, то в качестве берём диаметр, равный м, т. к. <.

м2.

Т.к. >5% то перезадаём значение t2, и производим расчёт заново с пункта 1.

Задаём температуру холодного теплоносителя на выходе из теплообменника. Используя формулу эффективности для конденсации, найдем .

0С.

Определяем расход холодного теплоносителя G2 из уравнения неразрывности.

;

м2;

Средняя температура холодного теплоносителя:

0С;

Из таблицы 8 [4] выписываем параметры холодного теплоносителя:

кг/м3;

Дж/кгК;

кг/с.

Из уравнения теплового баланса находим тепловую мощность аппарата Q.

Вт.

Строим график изменения температур теплоносителя вдоль поверхности нагрева t=f(F) и рассчитываем среднюю температуру теплоносителей .

График изменения температуры теплоносителя вдоль поверхности нагрева

;

;

, значит определяется как среднее арифметическое:

;

0С.

Определение коэффициента теплопередачи k.

;

Теплофизические свойства материала трубок таблица 6 (Сталь 2х13): ;

Толщина стенки ?=0,5 (dнар-dвн)=0,5 (22-16)=3 мм

Определение и .

Задаёмся ,

- коэффициент теплоотдачи при конденсации водяного пара на одиночной горизонтальной трубе.

,

где из таблиц 8 и 9 [2]

при Топр = Тнас = 85,95 0C.

- коэффициент теплопередачи при вынужденном движении текучей среды в прямых гладких трубах.

Определяем критерий Рейнольдса.

0С;

м2/с;

Вт/мК.

>104 режим турбулентный.

Значит, средняя теплоотдача рассчитывается по формуле Михеева:

,

-поправка, учитывающая изменение физических свойств среды от температуры.

Из таблицы 8 [2]:

По t0 = 22,670С находим Prf = 6,5928

По tw2 = 53,310С находим Prw =3,381

- поправка на изменение коэффициента теплоотдачи на начальном участке гидродинамической стабилизации.

, значит =1.

Тогда, .

.

Определяем k:

Т.к. при расчетах температуры стенок были заданы приближенно, то их необходимо уточнить. Для этого определим удельный тепловой поток исходя из температур теплоносителей:

.

Температуры стенок могут быть найдены из выражений:

,

0С,

0С.

Пересчитаем ?1 и ?2:

При =44,79 0С найдём значения Prw:

Prw=3,941,

.

.

.

Уточним коэффициент теплопередачи:

Ещё раз определим значения температур стенок:

,

0С,

0С.

Пересчитаем ?1 и ?2:

При =46,22 0С найдём значения Prw:

Prw=3,831,

.

.

.

Уточним коэффициент теплопередачи:

Ещё раз определим значения температур стенок:

,

0С,

0С.

Т.к. расхождение с предыдущими температурами менее 1%, то полученную в последнем приближении величину k=2928,45 Вт/м2К будем считать окончательной.

Находим площадь поверхности теплообмена Fрасч из уравнения теплопередачи.

,

м2,

Сравниваем и .

- действительная площадь поверхности теплообмена.

Т.к. коэффициенты теплопередачи имеют разные порядки, то в качестве берём диаметр, равный м, т.к. <.

м2.

<5%

Из уравнения теплового баланса находим расход горячего теплоносителя G1.

;

кг/с.

Заключение

В результате расчета получили:

Температуры холодного теплоносителя на выходе -

Расходы горячего и холодного теплоносителей:

G1 = 1,48 кг/с

G2 = 46,86 кг/с

Внутренний диаметр корпуса D = 0,402 м.

Тепловая мощность аппарата Q = Вт

Список литературы

1. Шипилов В.М., Бухмиров В.В., Чухин И.М. Пример расчета теплообменника: Методические указания к курсовой работе. - Иваново, 1988.

2. Бухмиров В.В. Расчет коэффициента конвективной теплоотдачи: Методические указания к выполнению практических и лабораторных занятий. - Иваново, 2007.

3. Краснощеков Е.А., Сукомел А.С. Задачник по теплопередаче. - М.: Энергия, 1980.

Размещено на Allbest.ru


Подобные документы

  • Определение характера течения горячего и холодного теплоносителей в каналах теплообменника. Выбор вида критериального уравнения для потоков. Составление уравнения теплового баланса. Нахождение поверхности нагрева рекуперативного теплообменного аппарата.

    практическая работа [514,4 K], добавлен 15.03.2013

  • Теплофизические свойства теплоносителей. Предварительное определение водного эквивалента поверхности нагрева и размеров аппарата. Конструктивные характеристики теплообменного аппарата. Определение средней разности температур и коэффициента теплопередачи.

    курсовая работа [413,5 K], добавлен 19.10.2015

  • Определение мощности теплового потока при конвективной теплопередаче через трубу заданного диаметра. Расход пара на обогрев воды в пароводяном теплообменнике, превращение пара в конденсат. Изменение температуры теплоносителей вдоль поверхности нагрева.

    контрольная работа [308,7 K], добавлен 13.05.2015

  • Физические свойства теплоносителей. Расчет числа Нуссельта. Определение количества тепла, получаемого нагреваемой водой. Средний температурный напор. Графики изменения температур теплоносителей вдоль поверхности нагрева для прямотока и противотока.

    контрольная работа [199,6 K], добавлен 03.12.2012

  • Расчет средней температуры воды, среднелогарифмического температурного напора из уравнения теплового баланса. Определение площади проходного и внутреннего сечения трубок для воды. Расчет коэффициента теплопередачи кожухотрубного теплообменного аппарата.

    курсовая работа [123,7 K], добавлен 21.12.2011

  • Технологическая схема теплообменника "труба в трубе". Температурный режим аппарата и средняя разность температур. Расчёт коэффициента теплопередачи. Обоснование выбора материала и конструктивных размеров, гидравлический и конструктивный расчеты аппарата.

    курсовая работа [151,3 K], добавлен 04.11.2015

  • Тепловой расчёт подогревателя, описание его работы. Прочностной расчёт деталей. На основе представленных расчётов определение влияния изменений величины давления пара на температуру насыщения пара, средний коэффициент теплоотдачи, поверхность теплообмена.

    курсовая работа [62,2 K], добавлен 15.12.2009

  • Определение поверхности теплопередачи выпарных аппаратов. Расчёт полезной разности температур по корпусам. Определение толщины тепловой изоляции и расхода охлаждающей воды. Выбор конструкционного материала. Расчёт диаметра барометрического конденсатора.

    курсовая работа [545,5 K], добавлен 18.03.2013

  • Расчет изменения внутренней энергии, работы расширения и тепла для адиабатного и политропного процессов. Расчет влагосодержания и энтальпию воздуха, поступающего в калорифер. Определение поверхности нагрева рекуперативного газо-воздушного теплообменника.

    контрольная работа [4,8 M], добавлен 14.04.2013

  • Расчет тепловой нагрузки и теплового баланса аппарата. Определение температурного напора. Приближенная оценка коэффициентов теплоотдачи, теплопередачи и поверхности нагрева. Выбор кожухотрубчатого и пластинчатого теплообменника из стандартного ряда.

    курсовая работа [668,6 K], добавлен 28.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.