Написание программы для рисования фигуры и для вычисления функции f(x)

Написание программы для вычисления функции f(x), изображенной на графике, используя оператор if. Построение графика функции. Составление программы, вычисляющей сумму 101 из последовательно расположенных нечетных чисел. Нахождение корней системы уравнений.

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 07.08.2013
Размер файла 694,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное бюджетное образовательное учреждение высшего профессионального образования

«Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)»

Кафедра ЭУТ

Контрольная работа

по курсу «Информатика»

Студент: Селин Н.Н.

Преподаватель: Коновалов.Р.С

Санкт-Петербург 2012

Содержание

1. Задание

2. Решение

Вывод

Список использованной литературы

1. Задание

1. Используя оператор if, написать программу для вычисления функции f(x), изображенной на графике. Функция состоит из дуги окружности и отрезков прямых

2. Составить программу для рисования фигуры, показанной на рисунке, описав ее совокупностью функций. Фигура состоит из дуг окружностей

3. Используя оператор if, написать программу, которая по заданной ранее функции f(x) строит график функции g(x)

4. Написать программу для нахождения параметров a, b, c функции f(x) вида проходящей через точки (1;7.3065), (2; 3.8149), (4; 9.1541)

5. Написать программу, вычисляющую сумму 101 последовательно расположенных нечетных числа, начиная с числа 3

6. Написать программу для построения в интервале [1; 1.5] графика функции f(x) вида если известна следующая таблица значений функции f(x)

х

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

f(x)

4.3921

3.8274

3.3485

3.9339

4.0842

3.6925

4.3358

3.6196

2. Решение

1. Используя оператор if, написать программу для вычисления функции f(x), изображенной на графике. Функция состоит из дуги окружности и отрезков прямых

Для решения этой задачи необходимо разбить данную кривую f(x) на отрезки, являющиеся частями некоторых функций, установить аналитические зависимости, описывающие эти функции и, используя оператор if, построить f(x).

Разобьем f(x) на отрезки:

1. На отрезке [-2;-1] графиком является часть прямой. Для определения уравнения этой прямой возьмем две точки (-2;-3) и (-1;2) и воспользуемся уравнением прямой с угловым коэффициентом

y = kx + b,

где k - угловой коэффициент, b - сдвиг по оси ординат.

Получим систему уравнений и используем вычислительный блок Given/Find, позволяющий находить корни системы уравнений:

[Given/Find (Дано/найти), вычислительный блок, состоящий из трех частей, идущих последовательно друг за другом: Given -- ключевое слово; система, записанная логическими операторами в виде равенств и, возможно, неравенств; Find(x1, . .. ,хм) -- встроенная функция для решения системы уравнений относительно переменных x1, ..., хM.]

Следовательно:

k=5

b=7

f(x)=5x+7

2. На отрезке [-1;0] графиком является часть прямой. Для определения уравнения этой прямой возьмем две точки (-1;2) и (0;-3) и воспользуемся уравнением прямой с угловым коэффициентом y = kx + b, где k - угловой коэффициент, b - сдвиг по оси ординат.

Получим систему уравнений и используем вычислительный блок Given/Find, позволяющий находить корни системы уравнений:

Следовательно:

k=-5

b=-3

f(x)=-5x-3

3. На отрезке [0;3] графиком является часть окружности радиусом r = 3 и, как видно, с центром в точке (0;0).

Общее уравнение окружности: (x - x0)2 + (y - y0)2 = r2

Выражаем «y» и получается:

Подставляя в это уравнение данные значения, получается такое выражение: y=

Это уравнение задает нам всю окружность, то есть и верхнюю и нижнюю ее полуокружности. Согласно графику, нам нужно лишь уравнение нижней полуокружности, следовательно, на данном промежутке f(x) =

4. На отрезке [3;5] графиком является часть окружности радиусом r = 2 и, как видно, с центром в точке (5;0).

Общее уравнение окружности: (x - x0)2 + (y - y0)2 = r2

Выражаем «y» и получается:

Подставляя в это уравнение данные значения, получается такое выражение:

Это уравнение задает нам всю окружность, то есть и верхнюю и нижнюю ее полуокружности. Согласно графику, нам нужно лишь уравнение нижней полуокружности, следовательно, на данном промежутке

5. На отрезке [5;6] графиком является часть прямой. Для определения уравнения этой прямой возьмем две точки (5;-2) и (6;0) и воспользуемся уравнением прямой с угловым коэффициентом

y = kx + b,

где k - угловой коэффициент, b - сдвиг по оси ординат.

Получим систему уравнений и используем вычислительный блок Given/Find, позволяющий находить корни системы уравнений:

Следовательно:

k=2

b=-12

f(x)=2x-12

Таким образом, мы получили систему из пяти уравнений, которая будет описывать нашу функцию. Воспользуемся операторами Add line и if для задания уравнения и построим график функции f(x):

(Оператор добавления линии Add Line выполняет функции расширения программного блока. Расширение фиксируется удлинением вертикальной черты программных блоков или их древовидным расширением. Условный оператор if является оператором для создания условных выражений, задающийся в виде выражение if условие. Если условие выполняется, то возвращается значение выражения)

Получившийся график совпадает с исходным, следовательно, он является искомым.

2. Составить программу для рисования фигуры, показанной на рисунке, описав ее совокупностью функций. Фигура состоит из дуг окружностей

Разобьем имеющийся график на 2 составляющие и обозначим их за f(x), g(x) Пусть f(x) - это часть функции, лежащая снизу, а g(x) - сверху.

1. На отрезке [-2;2] графиком является часть окружности радиусом r = 2.5, как видно, с центром в точке (0;-1.5)

Общее уравнение окружности: (x - x0)2 + (y - y0)2 = r2

Выражаем «y» и получается:

Подставляя в это уравнение данные значения, получается такое выражение:

2. На второй половине графика (g(x)) расположено три отрезка, которые можно выразить так же, как и мы выражали в 1 пункте первого задания и запишем все это через Add line:

Тем самым, если все объединить, то получается:

Этот график совпадает с исходным, следовательно, является искомым.

3. Используя оператор if, написать программу, которая по заданной ранее функции f(x) строит график функции g(x)

а) Данный график f(x) представляет собой синусоиду f(x) = sinвx. Определим аргумент этой функции. Возьмем точку (0.5;1).

sin (в*0.5) = 1 в = р.

Следовательно, f(x) имеет вид: f(x) = sin(рx). Построим график этой функции и убедимся, что он идентичен исходному

б) 1. На отрезках [-5;-3] и [3;5], очевидно, g(x) = 0. Можно проверить это, взяв любые очевидные точки из промежутков и воспользовавшись Given/Find для определения k и b.

2. На отрезке [-3;-1] и [1;3] функцию g(x) можно представить в виде g(x) = a*f(x), где а - коэффициент, определяющий изменение вида кривой f(x).

Возьмем точку (-2.5;2), входящую в исследуемый промежуток и воспользуемся

Given/Find для нахождения коэффициента a:

Следовательно, на данном промежутке g(x) = -2f(x) = -2sin (рx).

3. На отрезке [-1;1] аналогично с пунктом 2 функцию g(x) можно представить в виде

g(x) = a*f(x).

Возьмём точку (-0.5;1) , входящую в исследуемый промежуток и воспользуемся

Given/Find для нахождения коэффициента a:

Следовательно, на данном промежутке g(x) = f(x) = sin (рx).

Таким образом, мы имеем систему из пяти уравнений описывающих график функции g(x). Построим этот график с помощью оператора if:

График совпадает с данным графиком g(x), и, следовательно, является искомым.

4. Написать программу для нахождения параметров a, b, c функции f(x) вида проходящей через точки (1;7.3065), (2; 3.8149), (4; 9.1541)

Для решения данной задачи воспользуемся вычислительным блоком Given/Find, позволяющим решать заданную систему уравнений. Given/Find (Дано/найти), вычислительный блок, состоящий из трех частей, идущих последовательно друг за другом: Given -- ключевое слово ;система, записанная логическими операторами в виде равенств и, возможно, неравенств; Find(x1, . .. ,хм) -- встроенная функция для решения системы уравнений относительно переменных x1, ..., хM.

Т.к. функция проходит через данные точки (1;7.3065), (2; 3.8149), (4; 9.1541), то мы можем составить систему из трех уравнений, содержащих три переменные a, b и с и решить ее с помощью вычислительного блока Given/Find:

Таким образом, мы получили матрицу, элементы которой являются числа a, b и с соответственно. Если записывать ответ в целых числах, то он будет следующий:

a = 1; b = 3; с = 7.

5. Написать программу, вычисляющую сумму 101 последовательно расположенных нечетных числа, начиная с числа 3

1. Зададим переменную i, отвечающую за количество чисел в нашей последовательности. Т.к. чисел 101, следовательно i=[0;100]

Размещено на http://www.allbest.ru/

2. Укажем последовательность чисел. Последовательность будет выглядеть так, потому что она начинается с 3, и числа в ней отличаются на 2, так как они последовательные нечётные числа:

Размещено на http://www.allbest.ru/

3. Вычислим сумму наших последовательно расположенных чисел:

Размещено на http://www.allbest.ru/

Таким образом, ответ в данной задаче: 10400

6. Написать программу для построения в интервале [1; 1.5] графика функции f(x) вида если известна следующая таблица значений функции f(x)

х

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

f(x)

4.3921

3.8274

3.3485

3.9339

4.0842

3.6925

4.3358

3.6196

1. Зададим количество строк и столбцов в матрице. Оно начинается с 1 и заканчивается 8, т.е. равно 8.

2. Зададим матрицы известных значений функции и аргумента:

3. Матрица А выражает последовательность косинусов

4. Матрица С определяет остальную часть выражения, не считая коэффициентов a1, a2 ... a8

5. Матрица B определяет коэффициенты, стоящие перед косинусом a1,a2…a8

6. Зададим функцию независимой переменной x1.

Cтроим график. Так как точки, являющиеся значениями исходной функции, ложатся на график независимой переменной, следовательно, задание выполнено верно и построен искомый график.

Также приравниваем знаменатель нашей функции к нулю и строим еще один график g(x1), сравнивая его с получившимся.

Графики не пересекают друг друга, следовательно, при знаменателе равным нулю, функция не будет существовать, значит задание решено верно.

Вывод

вычисление функция оператор нечетный

При выполнении работы студент группы 2583 Селин Никита научился применять персональный компьютер и математические пакеты прикладных программ в инженерной деятельности на примере вышеизложенных задач, а также сделал следующий вывод: «MathCAD» - универсальный математический пакет, предназначенный для выполнения инженерных и научных расчетов. Mathcad имеет простой для использования интерфейс пользователя. Для ввода формул и данных можно использовать как клавиатуру, так и специальные панели инструментов. Работа осуществляется в пределах рабочего листа, на котором уравнения и выражения отображаются графически. Mathcad содержит сотни операторов и встроенных функций для решения различных технических задач. Программа позволяет выполнять численные и символьные вычисления, производить операции со скалярными величинами, векторами и матрицами, автоматически переводить одни единицы измерения в другие. Данный набор функций позволяет решать задачи практически из любой области. Пакет обладает широкими графическими возможностями. Программа проста и удобна в использовании, поэтому можно довольно легко ее освоить.

Список использованной литературы

Самоучитель Mathcad. Макаров Е.Г.

MathCAD 14 для студентов, инженеров и конструкторов. Очков В.

Размещено на Allbest.ru


Подобные документы

  • Принципы разработки математических моделей, алгоритмов и программ. Составление программы вычисления функции с использованием нестандартных функций. Нахождение значения корней нелинейного уравнения по методу касательных. Программа для вычисления интеграла.

    курсовая работа [568,3 K], добавлен 07.03.2015

  • Математический алгоритм вычисления корней нелинейного уравнения и его решение методом касательных. Особенности программной реализации решения таких уравнений. Процедура подготовки и решения задачи на ЭВМ, характеристика алгоритма и структуры программы.

    курсовая работа [96,6 K], добавлен 02.06.2012

  • Составление программы разветвляющейся структуры для вычисления заданной функции. Нахождение произведения чётных и нечётных первых чисел натурального ряда. Приёмы программирования обработки одномерных массивов. Расчет суммы положительных элементов массива.

    контрольная работа [1,3 M], добавлен 20.12.2012

  • Составление программы для нахождения минимального и максимального элементов массива. Программа вычисления корней квадратных алгебраических уравнений. Ранжирование одномерного массива по заданному признаку. Формирование массивов с помощью функции random.

    контрольная работа [1,0 M], добавлен 30.04.2013

  • Составление программы для вычисления по двум формулам одной и той же переменной "X". Создание программы, которая по введенному значению аргумента вычислят значение функции, заданной в виде графика. Вывод на экран значения функции, заданной графически.

    курсовая работа [4,9 M], добавлен 14.03.2014

  • Составление схемы алгоритма и программы для построения графика временной функции, работающей как в машинном, так и в реальном времени. Пример вычисления степенного ряда с помощью схемы Горнера. Описание переменных программы, листинг, процедуры и функции.

    курсовая работа [67,6 K], добавлен 20.11.2012

  • Разработка различных программ для вычисления X и Y по формуле, для вычисления интеграла, для вычисления таблицы значений функции и для вычисления элементов вектора. Составление блок-схемы программы. Ввод значений, описание переменных и условия расчета.

    контрольная работа [148,1 K], добавлен 08.11.2013

  • Понятие защиты информации, классификация угроз информационной безопасности. Разработка программы для построения графика заданной функции. Написание макросов для создания проекта распоряжения, вычисления радиуса, выдачи информации о свободной памяти.

    контрольная работа [266,2 K], добавлен 07.07.2012

  • Метод последовательных приближений. Требования к аппаратным ресурсам и программным средствам разработки. Руководство пользователя, тестовые примеры. Тестирование приложения: ввод вычислений, рисование графика функции. Особенности применения программы.

    курсовая работа [773,7 K], добавлен 27.08.2012

  • Составление программы вычисления матрицы и программы вычисления интеграла с погрешностью, не превышающей заданную величину. Схема алгоритма и её описание. Инструкция по использованию разработанной программы и проверка правильности е функционирования.

    курсовая работа [54,8 K], добавлен 27.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.