Исследование операций и теория систем

Определение стационарной точки. Проверка стационарной точки на относительный максимум или минимум. Составление функции Лагранжа. Применение к функции Лагранжа теорему Куна-Таккера. Метод потенциалов, северо-западного угла. Свободные переменные.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 29.09.2008
Размер файла 466,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

17

содержание

  • Задача 1 4
  • Задача 2 6
  • Задача 3 8
  • Задача 4 11
  • Список используемой литературы 15

Задача 1

x - количество тысяч деталей, выпускаемых цехами a, b, c i-го склада, где i - номер склада.

xa1 - количество тысяч деталей, выпускаемых цехом a c 1-го склада

xa2 - количество тысяч деталей, выпускаемых цехом a c 2-го склада

xa3 - количество тысяч деталей, выпускаемых цехом a c 3-го склада

xa4 - количество тысяч деталей, выпускаемых цехом a c 4-го склада

xb1 - количество тысяч деталей, выпускаемых цехом b c 1-го склада

xb2 - количество тысяч деталей, выпускаемых цехом b c 2-го склада

xb3 - количество тысяч деталей, выпускаемых цехом b c 3-го склада

xb4 - количество тысяч деталей, выпускаемых цехом b c 4-го склада

xc1 - количество тысяч деталей, выпускаемых цехом c c 1-го склада

xc2 - количество тысяч деталей, выпускаемых цехом c c 2-го склада

xc3 - количество тысяч деталей, выпускаемых цехом c c 3-го склада

xc4 - количество тысяч деталей, выпускаемых цехом c c 4-го склада

Так как производительность цехов в день известна, то можно записать следующее:

Зная пропускную способность складов за день, запишем:

Запишем целевую функцию, при которой стоимость перевозок будет минимальна:

Имеем классическую транспортную задачу с числом базисных переменных, равным n+m-1 , где m-число пунктов отправления, а n - пунктов назначения. В решаемой задаче число базисных переменных равно 4+3-1=6

Число свободных переменных соответственно 12-6=6

Примем переменные x1a, x1b, x2a, x1с, x4с, x3b в качестве базисных, а переменные x2c, x3c, x2b, x3а, x4а, x4b в качестве свободных.

Далее в соответствии с алгоритмом Симплекс метода необходимо выразить базисные переменные через свободные:

В задании требуется найти минимум функции L. Так как коэффициент при переменной x3a меньше нуля, значит найденное решение не является оптимальным.

Составим Симплекс таблицу:

Ответ: при перевозке x3a=4, х1b=4, х1с=16, х2а=35, х3b=26, х4с=8, х1а=х4а=x2b=x4b=x2c=x3c=0 тыс/изд стоимость будет минимальна и составлять 86 тыс/руб.

Задача 2

7

9

-9

3

5

-3

2

1

-1

2

-

3

1

3

-1

-

6

-3

3

-1

2

1

Так как все , то это опорное решение.

Найдем оптимальное решение.

16

3

2

3

1

-

3

-1

3

Данное решение является оптимальным, так как все коэффициенты при переменных в целевой функции положительные.

Ответ: , ,

Задача 3

Заданная задача - транспортная задача с неправильным балансом (избыток заявок).

Необходимо ввести фиктивный пункт отправления Аф с запасом :

Для нахождения опорного плана используем метод «Северо-западного угла».

В1

В2

В3

А1

12

600

42

25

600

А2

21

100

18

100

35

200

А3

25

15

200

23

200

А4

21

30

100

40

100

А5

20

32

400

50

400

АФ

0

0 200

0

300

500

700

1000

300

2000

Решение является опорным.

В1

В2

В3

А1

12

600

42

25

600

А2

21

18

200

35

200

А3

25

15

200

23

200

А4

21

100

30

40

100+

А5

20

32

400-

50

400-

АФ

0

0 200

0

300

500

700

1000

300

2000

Решение является опорным, но вырожденным. Для того чтобы свести вырожденный случай к обычному решению, изменим запасы на малую положительную величину так, чтобы общий баланс не нарушился.

В1

В2

В3

А1

12

600

42

25

600

А2

21

18

200

35

200

А3

25

15

200

23

200

А4

21

30

100+

40

100+

А5

20

100

32

300-

50

400-

АФ

0

0 200

0

300

500

700

1000

300

2000

Получили оптимальное решение.

Проверим правильность решения задачи методом потенциалов.

Пусть , тогда

Так как среди найденных чисел нет положительных, то найденный план является оптимальным.

Ответ: 28400

Задача 4

Найти

При ограничениях

1) Определение стационарной точки

2) Проверка стационарной точки на относительный максимум или минимум

, , следовательно, стационарная точка является точкой относительного максимума.

3) Составление функции Лагранжа

Применяем к функции Лагранжа теорему Куна-Таккера.

I

II

4) Нахождение решение системы I. Оставим все свободные переменные в правой части.

(1)

(из II)

Система уравнений II определяется условиями дополняющей нежесткости:

5) Введем искусственные переменные , в первые два уравнения системы (1) со знаками, совпадающими со знаками соответствующих свободных членов:

Проверяем условие выполнения дополняющей не жесткости:

Все четыре условия выполняются

Ответ: Решения и являются оптимальным решением квадратичного программирования.

Тогда

Список используемой литературы

1. Волков И. К., Загоруйко Е. А. Исследование операций. - Москва: Издательство МГТУ имени Баумана Н. Э., 2000г. - 436с.

2. Кремер Н. Ш. Исследование операций в экономике. - Москва: Издательское объединение «ЮНИТИ», 1997г. - 407с.

3. Курс лекций Плотникова Н.В.


Подобные документы

  • Математическая модель задачи. Целевая функция. Симплекс метод, таблица. Оптимальное решение симплекс-метода. Метод северо-западного угла, потенциалов. Определение стационарной точки. Проверка стационарной точки на относительный минимум и максимум.

    контрольная работа [1000,1 K], добавлен 29.09.2008

  • Математическая модель задачи. Симплекс-таблица. Решение задачи линейного программирования. коэффициенты при переменных в целевой функции. Метод северо-западного угла. Система неравенств в соответствии с теоремой Куна-Таккера. Функция Лагранжа.

    контрольная работа [59,5 K], добавлен 29.09.2008

  • Целевая функция. Базисная переменная. Симплекс метод, таблица. Коэффициенты при свободных переменных в целевой функции. Задача квадратичного программирования, максимизации функции. Функция Лагранжа. Координаты стационарной точки. Система ограничений.

    контрольная работа [48,4 K], добавлен 29.09.2008

  • Формулировка общей задачи математического программирования. Классификация задач нелинейного программирования. Понятие о функции Лагранжа. Задача теоремы Куна-Таккера. Экономическая интерпретация множителей Лагранжа, формулирование условий оптимальности.

    презентация [669,1 K], добавлен 25.07.2014

  • Число линейно независимых уравнений. Отрицательная базисная переменная. Симплекс-метод решения задач линейного программирования. Экстремальное значение целевой функции. Метод северо-западного угла. Задачи нелинейного программирования. Функция Лагранжа.

    контрольная работа [257,5 K], добавлен 29.09.2008

  • Математическая модель задачи. Целевая функция, ее экстремальное значение и экстремум. Cвободные переменные. Метод симплекс-таблиц. Коэффициенты при переменных в целевой функции. Линейное программирование. Матричная форма. Метод северо-западного угла.

    контрольная работа [72,0 K], добавлен 29.09.2008

  • Построение пространства допустимых решений. Нахождение оптимального решения с помощью определения направления убывания целевой функции. Нахождение оптимальной точки. Поиск экстремумов методом множителей Лагранжа. Условия экстремума Куна-Таккера.

    контрольная работа [396,2 K], добавлен 13.09.2010

  • Математическая модель задачи. Система ограничений. Составление симплекс-таблиц. Разрешающий элемент. Линейное программирование. Коэффициенты при свободных членах. Целевая функция. Метод потенциалов, северо-западного угла. Выпуклость, вогнутость функции.

    контрольная работа [47,2 K], добавлен 29.09.2008

  • Графоаналитический метод решения задач. Получение задачи линейного программирования в основном виде. Вычисление градиента и поиск экстремумов методом множителей Лагранжа. Параболоид вращения функции. Поиск решения на основе условий Куна-Таккера.

    контрольная работа [139,3 K], добавлен 13.09.2010

  • Одномерная оптимизация, метод "золотого сечения". Условная нелинейная оптимизация, применение теоремы Джона-Куна-Таккера. Исследование функции на выпуклость и овражность. Безусловная оптимизация неквадратичной функции, метод Дэвидона-Флетчера-Пауэлла.

    курсовая работа [2,1 M], добавлен 12.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.