Исследование операций и теория систем
Определение стационарной точки. Проверка стационарной точки на относительный максимум или минимум. Составление функции Лагранжа. Применение к функции Лагранжа теорему Куна-Таккера. Метод потенциалов, северо-западного угла. Свободные переменные.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 29.09.2008 |
Размер файла | 466,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
17
содержание
- Задача 1 4
- Задача 2 6
- Задача 3 8
- Задача 4 11
- Список используемой литературы 15
Задача 1
x - количество тысяч деталей, выпускаемых цехами a, b, c i-го склада, где i - номер склада.
xa1 - количество тысяч деталей, выпускаемых цехом a c 1-го склада
xa2 - количество тысяч деталей, выпускаемых цехом a c 2-го склада
xa3 - количество тысяч деталей, выпускаемых цехом a c 3-го склада
xa4 - количество тысяч деталей, выпускаемых цехом a c 4-го склада
xb1 - количество тысяч деталей, выпускаемых цехом b c 1-го склада
xb2 - количество тысяч деталей, выпускаемых цехом b c 2-го склада
xb3 - количество тысяч деталей, выпускаемых цехом b c 3-го склада
xb4 - количество тысяч деталей, выпускаемых цехом b c 4-го склада
xc1 - количество тысяч деталей, выпускаемых цехом c c 1-го склада
xc2 - количество тысяч деталей, выпускаемых цехом c c 2-го склада
xc3 - количество тысяч деталей, выпускаемых цехом c c 3-го склада
xc4 - количество тысяч деталей, выпускаемых цехом c c 4-го склада
Так как производительность цехов в день известна, то можно записать следующее:
Зная пропускную способность складов за день, запишем:
Запишем целевую функцию, при которой стоимость перевозок будет минимальна:
Имеем классическую транспортную задачу с числом базисных переменных, равным n+m-1 , где m-число пунктов отправления, а n - пунктов назначения. В решаемой задаче число базисных переменных равно 4+3-1=6
Число свободных переменных соответственно 12-6=6
Примем переменные x1a, x1b, x2a, x1с, x4с, x3b в качестве базисных, а переменные x2c, x3c, x2b, x3а, x4а, x4b в качестве свободных.
Далее в соответствии с алгоритмом Симплекс метода необходимо выразить базисные переменные через свободные:
В задании требуется найти минимум функции L. Так как коэффициент при переменной x3a меньше нуля, значит найденное решение не является оптимальным.
Составим Симплекс таблицу:
Ответ: при перевозке x3a=4, х1b=4, х1с=16, х2а=35, х3b=26, х4с=8, х1а=х4а=x2b=x4b=x2c=x3c=0 тыс/изд стоимость будет минимальна и составлять 86 тыс/руб.
Задача 2
79 |
-93 |
5-3 |
||
21 |
-1 |
2- |
||
31 |
3 |
-1- |
||
6-3 |
3-1 |
21 |
Так как все , то это опорное решение.
Найдем оптимальное решение.
16 |
3 |
2 |
||
3 |
||||
1 |
- |
|||
3 |
-1 |
3 |
Данное решение является оптимальным, так как все коэффициенты при переменных в целевой функции положительные.
Ответ: , ,
Задача 3
Заданная задача - транспортная задача с неправильным балансом (избыток заявок).
Необходимо ввести фиктивный пункт отправления Аф с запасом :
Для нахождения опорного плана используем метод «Северо-западного угла».
В1 |
В2 |
В3 |
|||
А1 |
12600 |
42 |
25 |
600 |
|
А2 |
21100 |
18100 |
35 |
200 |
|
А3 |
25 |
15200 |
23 |
200 |
|
А4 |
21 |
30100 |
40 |
100 |
|
А5 |
20 |
32400 |
50 |
400 |
|
АФ |
0 |
0 200 |
0300 |
500 |
|
700 |
1000 |
300 |
2000 |
Решение является опорным.
В1 |
В2 |
В3 |
|||
А1 |
12600 |
42 |
25 |
600 |
|
А2 |
21 |
18200 |
35 |
200 |
|
А3 |
25 |
15200 |
23 |
200 |
|
А4 |
21100 |
30 |
40 |
100+ |
|
А5 |
20 |
32400- |
50 |
400- |
|
АФ |
0 |
0 200 |
0300 |
500 |
|
700 |
1000 |
300 |
2000 |
Решение является опорным, но вырожденным. Для того чтобы свести вырожденный случай к обычному решению, изменим запасы на малую положительную величину так, чтобы общий баланс не нарушился.
В1 |
В2 |
В3 |
|||
А1 |
12600 |
42 |
25 |
600 |
|
А2 |
21 |
18200 |
35 |
200 |
|
А3 |
25 |
15200 |
23 |
200 |
|
А4 |
21 |
30100+ |
40 |
100+ |
|
А5 |
20100 |
32300- |
50 |
400- |
|
АФ |
0 |
0 200 |
0300 |
500 |
|
700 |
1000 |
300 |
2000 |
Получили оптимальное решение.
Проверим правильность решения задачи методом потенциалов.
Пусть , тогда
Так как среди найденных чисел нет положительных, то найденный план является оптимальным.
Ответ: 28400
Задача 4
Найти
При ограничениях
1) Определение стационарной точки
2) Проверка стационарной точки на относительный максимум или минимум
, , следовательно, стационарная точка является точкой относительного максимума.
3) Составление функции Лагранжа
Применяем к функции Лагранжа теорему Куна-Таккера.
I
II
4) Нахождение решение системы I. Оставим все свободные переменные в правой части.
(1)
(из II)
Система уравнений II определяется условиями дополняющей нежесткости:
5) Введем искусственные переменные , в первые два уравнения системы (1) со знаками, совпадающими со знаками соответствующих свободных членов:
Проверяем условие выполнения дополняющей не жесткости:
Все четыре условия выполняются
Ответ: Решения и являются оптимальным решением квадратичного программирования.
Тогда
Список используемой литературы
1. Волков И. К., Загоруйко Е. А. Исследование операций. - Москва: Издательство МГТУ имени Баумана Н. Э., 2000г. - 436с.
2. Кремер Н. Ш. Исследование операций в экономике. - Москва: Издательское объединение «ЮНИТИ», 1997г. - 407с.
3. Курс лекций Плотникова Н.В.
Подобные документы
Математическая модель задачи. Целевая функция. Симплекс метод, таблица. Оптимальное решение симплекс-метода. Метод северо-западного угла, потенциалов. Определение стационарной точки. Проверка стационарной точки на относительный минимум и максимум.
контрольная работа [1000,1 K], добавлен 29.09.2008Математическая модель задачи. Симплекс-таблица. Решение задачи линейного программирования. коэффициенты при переменных в целевой функции. Метод северо-западного угла. Система неравенств в соответствии с теоремой Куна-Таккера. Функция Лагранжа.
контрольная работа [59,5 K], добавлен 29.09.2008Целевая функция. Базисная переменная. Симплекс метод, таблица. Коэффициенты при свободных переменных в целевой функции. Задача квадратичного программирования, максимизации функции. Функция Лагранжа. Координаты стационарной точки. Система ограничений.
контрольная работа [48,4 K], добавлен 29.09.2008Формулировка общей задачи математического программирования. Классификация задач нелинейного программирования. Понятие о функции Лагранжа. Задача теоремы Куна-Таккера. Экономическая интерпретация множителей Лагранжа, формулирование условий оптимальности.
презентация [669,1 K], добавлен 25.07.2014Число линейно независимых уравнений. Отрицательная базисная переменная. Симплекс-метод решения задач линейного программирования. Экстремальное значение целевой функции. Метод северо-западного угла. Задачи нелинейного программирования. Функция Лагранжа.
контрольная работа [257,5 K], добавлен 29.09.2008Математическая модель задачи. Целевая функция, ее экстремальное значение и экстремум. Cвободные переменные. Метод симплекс-таблиц. Коэффициенты при переменных в целевой функции. Линейное программирование. Матричная форма. Метод северо-западного угла.
контрольная работа [72,0 K], добавлен 29.09.2008Построение пространства допустимых решений. Нахождение оптимального решения с помощью определения направления убывания целевой функции. Нахождение оптимальной точки. Поиск экстремумов методом множителей Лагранжа. Условия экстремума Куна-Таккера.
контрольная работа [396,2 K], добавлен 13.09.2010Математическая модель задачи. Система ограничений. Составление симплекс-таблиц. Разрешающий элемент. Линейное программирование. Коэффициенты при свободных членах. Целевая функция. Метод потенциалов, северо-западного угла. Выпуклость, вогнутость функции.
контрольная работа [47,2 K], добавлен 29.09.2008Графоаналитический метод решения задач. Получение задачи линейного программирования в основном виде. Вычисление градиента и поиск экстремумов методом множителей Лагранжа. Параболоид вращения функции. Поиск решения на основе условий Куна-Таккера.
контрольная работа [139,3 K], добавлен 13.09.2010Одномерная оптимизация, метод "золотого сечения". Условная нелинейная оптимизация, применение теоремы Джона-Куна-Таккера. Исследование функции на выпуклость и овражность. Безусловная оптимизация неквадратичной функции, метод Дэвидона-Флетчера-Пауэлла.
курсовая работа [2,1 M], добавлен 12.01.2013