Синтезування логічної структури пристрою у базісі АБО–НІ
Використання електронно-обчислювальних машин на сучасному етапі, методика та призначення синтезу логічної структури пристрою у базісі АБО-НІ. Мінімізація логічної функції методом Квайна та карт Карно (Вейча). Порядок синтезу структури у заданому базисі.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | украинский |
Дата добавления | 13.07.2009 |
Размер файла | 144,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
КУРСОВА РОБОТА
з дисципліни «Арифметико-логічні основи ЕОМ»
«Синтезування логічної структури пристрою у базісі АБО-НІ»
Пояснювальна записка
Зміст
1. Вступ
2. Мінімізація логічної функції методом Квайна
3. Мінімізація логічної функції методом карт Карно (Вейча)
4. Синтез структури у заданому базисі
5. Висновок
6. Список літератури
Вступ
В сучасному світі такий пристрій як ЕОМ застосовується практично всюди, в науці, в навчанні, в економіці, у військовій галузі і т.д. Це зумовлено тим що ЕОМ може обробляти інформацію дуже і дуже швидко.
Цифрові ЕОМ працюють з інформацією, представленою в дискретній формі у вигляді загальноприйнятої для запису та читання символіки набором цифр, букв та знаків будь-якого установленого алфавіту, який має кінцеве число символів.
Основна мета курсового проекту - надбання практичних та закріплення теоретичних навичок в розробці апаратних засобів логічних пристроїв різноманітного призначення.
В завданні треба синтезувати логічну структуру пристрою у базісі АБО-НІ.
Для формального опису цифрового автомату (блоки ЕОМ представляють собою цифрові автомати) використовують апарат алгебри логіки). У загальному випадку логічні вирази є функціями логічних змінних A, B, C,… що, як i їх логічні змінні, можуть приймати тільки два значення 0 або 1. Структурна схема логічного пристрою може бути побудована безпосередньо за канонічною формою (ДКНФ) функції, що реалізується. Недоліком такого методу побудування структурних схем, що забезпечують правильне функціонування пристрою, є те, що отримані схеми, як правило, виходять невиправдано складними, потребують великої кількості логічних елементів i, відповідно, мають низьку економічність i надійність. У багатьох випадках вдається так спростити логічний вираз, не порушуючи функції, що відповідна структурна схема виходить істотно простішою. Методи такого спрощення функції називають методами мінімізації логічних функцій.
1. Перший етап
1.1 Мінімізація логічних функцій методом Квайна
Метод Квайна відноситься до числа таких методів мінімізації функцій алгебри логіки, які дозволяють зображати функції в КНФ з мінімальним числом членів i мінімальним числом літер у членах. Цей метод має два етапи перетворення функції: на першому етапі здійснюється перехід від канонічної форми (ДКНФ) до, так званої, СКОРОЧЕНОЇ ФОРМИ, а на другому етапі - перехід від скороченої форми логічного виразу до МIНIМАЛЬНОЇ ФОРМИ.
1.2 Нехай функція задана таблицею істинності (табл. 1)
Таблиця 1
A |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
|
B |
1 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
0 |
|
C |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
|
D |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
|
F (A, B, C, D) |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
ДКНФ даної функції:
(1)
Метод Квайна працює лише для ДДНФ. Щоб отримати її потрібно зробити інверсію даної функції:
(2)
Перехід до скороченої форми складається з послідовного використання двох операцій: операції склеювання та операції поглинання.
Вираз, який отримали, є скороченою формою логічного виразу заданої функції, а його члени - прості імпліканти функції.
(3)
2. Другий етап
Перехід від скороченої форми до мінімальної здійснюється за допомогою iмплiкантної матриці (табл. 2). У стовпчики iмплiкантної матриці записуються члени ДДНФ заданої функції, а в рядки - прості імпліканти функції, тобто члени скороченої форми логічного виразу функції. У матриці помічаються (наприклад, хрестиками) стовпчики членів ДДНФ, що поглинаються окремими простими iмплiкантами.
Таблиця 2
(4)
Мiнiмальна кон'юнктивна нормальна форма (МКНФ) заданої функції:
(5)
2.1 Мінімізація логічної функції методом карт Карно (Вейча)
Метод Квайна має чітко сформульовані правила проведення окремих операцій, завдяки чому він може бути використаний для мінімізації функцій з використанням ЕОМ в тих випадках, коли функція, мінімізується, достатньо складна (має велику кількість аргументів i канонічна форма має велике число членів). Однак для мінімізації функції ручним способом (без використання ЕОМ) цей метод є трудомістким. Це пов'язано з необхідністю попарного порівняння всіх членів виразу для виявлення членів, що склеюються. Метод мінімізації функцій за допомогою карт Карно (Вейча) забезпечує простоту отримання результату. Він використовується для мінімізації відносно нескладних функцій (з числом аргументів не більше 5) ручним способом. Карта Карно (Вейча) - це таблиця істинності визначеної форми i представляє собою прямокутник, поділений на 2n клітин, де n - число змінних. Кожна клітина відповідає визначеному набору значень аргументів. Значення аргументів складають координати відповідних їм рядків i стовпчиків.
2.2 Мінімізація логічних функцій методом карт Карно (Вейча)
Перший етап - заповнення карт Карно (Вейча). У відповідні клітини записують значення функції, що відповідає даному набору (табл3).
Таблиця 3
Другий етап - наведення контурів. На карті Карно (Вейча) наводять контури, що об'єднують «0».
Третій етап - запис мінімізованої логічної функції у вигляді МКНФ:
(6)
3. Третій етап
3.1 Синтез логічної структури у заданому базисі
За реалізації на елементах АБО-НI необхідно виконати подвійну інверсію над отриманою МКНФ функції i перетворити за теоремою де-МОРГАНА інверсію кон'юнкції в диз'юнкцію інверсій. Наприклад, МКНФ функції має вираз:
(7)
Структурна схема, що вiдповiдає цьому виразові, зображена на рисунку 1. 1
Рисунок 1.1
Для отримання інверсних значень змінних використані двовходовi елементи АБО-НI.
Структурна схема, що вiдповiдає даному завданню зображена на рисунку 1.2.
Рисунок 1.2
Висновок
На початку виконання роботи, була записана логічна функція, задана таблицею істинності.
Зробивши інверсію, за допомогою операції «склеювання» та таблиці імплікантів була мінімізована логічна функція (КНФ) методом Квайна. Для перевірки результатів мінімізації методом Квайна, був використаний метод карт Карно (Вейча), який виявився найбільш простим. Отриману функцію синтезували в базисі АБО-НI. У підсумку була отримана структурна схема.
Подобные документы
Вибір та обґрунтування компонентів мережі, клієнтської частини, комунікаційного обладнання та прикладного програмного забезпечення. Опис фізичної та логічної структури мережі. Принципова схема топології мережі та cхема логічної структури мережі.
курсовая работа [487,4 K], добавлен 16.02.2015Опис великої інтегральної схеми пристрою множення. Аналіз розв’язків поставленої задачі, розробка принципової електричної схеми, логічної моделі і тесту перевірки, розрахунок швидкодії. Тестування з використанням пакету прикладних програм OrCAD 9.1.
курсовая работа [5,0 M], добавлен 22.02.2010Дослідження основ двійкової арифметики. Порозрядні логічні операції, Бульові функції та комбінаційні схеми. Еквівалентні формули та закони. Мінімізація методом послідовного виключення логічних змінних та карт Карно. Зведення до базису та часові діаграми.
курсовая работа [481,0 K], добавлен 14.03.2013Позначення та назва програми, технічне забезпечення, необхідне для функціонування. Призначення програми, функціональні обмеження на застосування. Опис логічної структури, алгоритм. Типи комп'ютерів та пристроїв, що використовуються при роботі програми.
курсовая работа [284,0 K], добавлен 01.04.2016Теоретичні відомості про пакет ІЗВП Borland Delphi та СУБД MS Access, оцінка їх функціональних особливостей. Опис структури бази даних. Проектування інтерфейсу програми, опис її логічної структури та функцій. Контроль коректності вхідних, вихідних даних.
курсовая работа [4,5 M], добавлен 03.01.2014Загальна характеристика методів проектування та документації додатків. Розробка інтерфейсу програми для медичного діагностичного центру. Вибір архітектури. Описання логічної структури програми. Розробка структури бази даних проекту, полів таблиць.
курсовая работа [2,0 M], добавлен 21.08.2015Таблиця істинності логічних функцій пристрою, який необхідно синтезувати. Отримання логічних функцій пристрою та їх мінімізація за допомогою діаграм Вейча. Побудова та аналіз структурної схеми пристрою в програмі AFDK з логічними елементами до 3-х входів.
курсовая работа [320,4 K], добавлен 03.05.2015Використання мови програмуванння Java при виконанні "задачі лінійного програмування": її лексична структура і типи даних. Методи розв’язання задачі. Особливості логічної структури програми, побудова її зручного інтерфейсу за допомогою симплекс методу.
курсовая работа [437,9 K], добавлен 24.01.2011Програма, призначена для створення та оптимізації розкладу занять для факультетів вищих навчальних закладів, розроблена в середовищі Borland Delphi 7. Графічний вигляд екранних форм програмних модулів. Опис логічної структури, використані технічні засоби.
реферат [3,2 M], добавлен 12.04.2010Дослідження динамічних рядів методом найменших квадратів та ковзаючого середнього. Опис логічної структури програми. Стандартні методи та елементи середовища програмування Borland Delphi 2007. Опис функцій складових частин програми і зв'язків між ними.
курсовая работа [135,3 K], добавлен 01.04.2016