Наблюдение за передачей данных в сети организации с помощью средств оценки безошибочности передачи данных

Беспроводные и проводные системы передачи данных. Методы обеспечения безошибочности передачи данных в сетях. Оценка зависимости показателей эффективности. Снижение вероятности появления ошибки сбора данных в соответствии с предъявленными требованиями.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 14.10.2014
Размер файла 309,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • Введение
  • I. Теоретические основы передачи данных
  • 1.1 Понятие передачи данных
  • 1.1.1 Беспроводные системы передачи данных
  • 1.1.2 Проводные системы передачи данных
  • Выводы к I главе
  • 2. Анализ методов обеспечения безошибочности передачи данных в сетях
  • 2.1 Методы обеспечения безошибочности передачи данных
  • 2.1.1 Метод Вердана
  • 2.1.2 Метод передачи информации блоками
  • 2.1.3 Помехоустойчивое кодирование
  • 2.1.4 Эхоплекс
  • 2.1.5 Контроль на четность
  • 2.1.6 Двойная проверка на четность
  • 2.1.7 Код Хэмминга
  • 2.1.8 Код с постоянным числом нулей или единиц
  • 2.1.9 Подсчет контрольных сумм
  • 2.1.10 Метод CRC
  • 2.2 Анализ средств обеспечения безошибочности передачи данных в сетях
  • 2.3 Оценка зависимости показателей эффективности
  • Выводы к главе II
  • Заключение
  • Список использованной литературы

Введение

Самой распространенной сетевой технологией на данный момент является Ethernet. Используемый в ней стек протоколов TCP/IP уже подразумевает гарантированную доставку пакетов, в случае потери или повреждения пакет передается заново. В новых высокоскоростных полнодуплексных стандартах понятие "домена коллизий" уже не актуально. Однако на производстве использовать полный дуплекс бессмысленно, главная задача датчиков и остальных источников информации - надежная доставка сведений о состоянии оборудования, линий, процессов в целом. Здесь по-прежнему возможны коллизии, в разы снижающие работоспособность сети.

Поэтому целью выпускной квалификационной работы ставится поиск решения, которое позволит снизить вероятность появления ошибки сбора данных в соответствии с предъявленными требованиями. Метод должен учитывать все существенные помехи, возникающие на производстве, должен быть сравнительно легко реализуемым, и в итоге должен быть выгоднее по стоимости, чем вариант установки оборудования новейших стандартов.

Для выполнения цели работы можно выделить следующие задачи:

1. дать характеристику информационного пространства предприятия;

2. проанализировать существующие в корпоративной сети помехи;

3. разработать модель ошибок корпоративной сети;

4. выбрать и обосновать средства и метод обеспечения верности передачи информации;

5. разработка и исследование метода обеспечения верности информации;

6. дать рекомендации для реализации разработанных методов обеспечения верности информации в корпоративной сети.

беспроводная сеть передача безошибочность

Гипотезой исследования послужило предположение что, используя предложенный метод, можно повысить качество передачи данных.

Объектом исследования является корпоративная сеть "Предприятия", а методом исследования - наблюдение за передачей данных в сети организации, используя средства оценки безошибочности передачи данных.

Теоретическая значимость работы заключается в систематизации возникающих помех, которая может являться основой для будущих изысканий. Практическая ценность - уменьшение количества ошибок, следовательно, увеличение пропускной способности канала организации.

Практическая значимость: на основе анализа и оценки различных портов ЭВМ разработаны рекомендации для техников по обслуживанию ЭВМ.

Методологической основой явились труды: Гук Михаил Юрьевич, Руссинович Марк, Раскин Джефф, Супрунов Сергей.

Методы исследования: анализ, оценка, сравнение, наблюдение.

Этапы исследования:

· Анализ и подбор литературы и изучение материалов по данной тематике;

· изучение теоретической и практической части;

· разработка практической части выпускной квалификационной работы;

· опытно-экспериментальная работа;

· работа по оформлению выпускной квалификационной работы.

Выпускная квалификационная работа состоит из введения, двух глав, заключения и списка литературы.

I. Теоретические основы передачи данных

1.1 Понятие передачи данных

Система передачи данных - система, предназначенная для передачи информации как внутри различных систем инфраструктуры организации, так и между ними, а также с внешними системами. Определение систем передачи данных, на первый взгляд, очень просто и коротко. Но за этими словами скрывается огромное значение данной системы не просто для других технических систем, а для бизнес-процессов современной организации в целом. Система передачи данных является, прямо или косвенно, основной технической составляющей работоспособности практически любых средних и крупных организаций, а также многих малых компаний, использующих современные средства управления своим бизнесом.

Так сложилось исторически, что система передачи данных с каждым годом становится все более универсальной средой для передачи самой различной информации, как между конечными пользователями, так и между системными (служебными) устройствами. Чем больше универсальность, тем больше требований к этой системе.

Система передачи данных состоит из нескольких компонентов, определяемых в зависимости от решаемых задач. Их далеко не полный перечень:

коммутаторы,

маршрутизаторы,

межсетевые экраны и мосты,

мультиплексоры,

различные конвертеры физической среды и интерфейсов передачи данных,

точки беспроводного доступа,

клиентское оборудование,

программное обеспечение управления оборудованием.

Также практически все современные инженерные системы имеют в своем составе встроенные компоненты для организации передачи разнородных данных (служебный "горизонтальный" трафик между устройствами, данные управления между центром управления и устройствами, мультимедийный трафик), имеющих непосредственное отношение к системам передачи данных.

Крупнейшей сетью передачи данных является сеть Интернет. В настоящее время Интернет представляет собой всемирную сеть, состоящую из соединенных между собой компьютеров. Интернет позволяет любому пользователю, имеющему выход в сеть, получить доступ ко всем информационным ресурсам, хранящимся на сайтах (компьютерах-серверах) по всему миру. Сеть Интернет обеспечивает работу электронной почты, позволяющей передавать сообщения другим пользователям сети и принимать сообщения от них. Также Интернет дает возможность передавать файлы между компьютерами, а с помощью специальных программ (браузеров) искать и выводить на свой дисплей любую информацию, имеющуюся в сети Интернет. И это еще не полный список.

По мере увеличения разнообразия имеющейся в сети Интернет информации (совершен поразительный качественный скачок от простых текстовых файлов к сложной графике, анимации, передаче аудио и видеосигналов) растет потребность в организации именно высокоскоростного доступа, позволяющего получать все многообразие имеющейся в сети Интернет информации.

Сети передачи данных могут быть проводными, что означает соединение компьютеров с помощью кабелей, или беспроводными, в которых подключения выполняются посредством радиоволн, по воздуху.

Беспроводное соединение позволяет работать на компьютерах в любом месте дома без использования кабелей. Прокладка кабелей - затратный процесс, при этом они выглядят не эстетично и могут быть опасны, если свободно лежат на полу.

Проводные системы передачи данных можно разделить на системы, использующие витую пару телефонных проводов, и системы, использующие оптико-волоконные кабели, - к этой категории также следует отнести системы, в которых вместе с оптико-волоконными кабелями используются также и коаксиальные кабели.

Классификация систем передачи данных изображена на рисунке 1.

Размещено на http://www.allbest.ru/

Рисунок 1 - Классификация систем передачи данных

1.1.1 Беспроводные системы передачи данных

В настоящее время бурное развитие технологий беспроводных сетей открывает для бизнеса новые возможности по эффективной организации корпоративной сети предприятия. Преимущества беспроводных решений:

· низкая стоимость развертывания;

· мобильность, возможность демонтировать оборудование при переезде;

· безопасность, возможность шифрования трафика;

· надежная и качественная телефонная связь;

· высокоскоростной доступ к сети Интернет;

· независимость от кабельной инфраструктуры;

· простота подключения и использования.

Отсутствие проводов и, как следствие, привязки к какому-то конкретному месту всегда было значимо для мобильных пользователей, которым оперативный доступ к информации нужен постоянно, независимо от места их нахождения. Беспроводные сети эффективны, прежде всего, при передаче данных на расстояния до нескольких сот метров, и отличаются низкой стоимостью реализации. Ассортимент беспроводного сетевого оборудования может включать в себя беспроводные видеокамеры и прочие устройства. Развитие беспроводных систем доступа идет в трех основных направлениях. Это спутниковые системы, наземные СВЧ-системы и системы персональной сотовой связи, которые позволяют обеспечить доступ мобильных пользователей. Разумеется, каждое из этих средств имеет свои достоинства и недостатки [5, с.56].

Системы персональной сотовой связи

Доступ в сеть Интернет может быть организован посредством существующей системы сотовой связи с использованием аналоговых модемов (модемов для передачи по телефонным каналам) (рисунок 2). Так как каналы сотовой связи имеют достаточно узкую полосу частот, скорость передачи данных будет невелика (в процессе постепенного развития систем сотовой связи и усовершенствования технологий скорость передачи данных также постепенно росла от 9,6 Кбит/с до 19,2 Кбит/с). Определенного увеличения скорости передачи данных можно достичь за счет использования временно свободных каналов (по которым не ведутся телефонные разговоры).

Рисунок 2. Система передачи данных по каналам сотовой связи

Плюсы и минусы использования сотовой связи для доступа в сеть Интернет очевидны. Главное достоинство заключается в мобильности и возможности выхода в сеть Интернет из любого места, а не только из квартиры или офиса, которые с помощью кабеля привязаны к провайдеру. К недостаткам можно отнести достаточно высокую стоимость услуг сотовой связи, а также не стопроцентный охват территории компаниями сотовой связи и наличие зон неуверенной связи.

СВЧ-системы

По мере того, как увеличивалась потребность в расширении количества линий междугородней связи, разрабатывались системы, способные удовлетворить такие потребности. Одной из таких систем были радиорелейные линии, в которых в качестве носителя сигнала использовался не кабель, а радиоканал. Работая на сверхвысоких частотах (диапазон СВЧ) одна радиорелейная линия способна поддерживать работу тысяч телефонных каналов и нескольких телевизионных каналов одновременно. Использование данного диапазона частот приводит к необходимости размещать ретрансляторы на небольшом расстоянии друг от друга (до 30 километров) в пределах прямой видимости (сверхвысокочастотный сигнал не может завернуть за угол или перепрыгнуть даже через небольшую горку). Необходимость строить через определенное расстояние ретрансляционные вышки с антеннами делает данную технологию достаточно дорогой при организации связи на большое расстояние, но данная технология может найти свое применение, например, для организации фиксированного радиодоступа - высокоскоростной передачи данных между двумя зданиями (со скоростью от 2 Мбит/с и выше). Во многих случаях такое решение будет иметь меньшую стоимость по сравнению с прокладыванием между зданиями оптико-волоконного кабеля (например, в городах, где проложить кабель не всегда просто, или в том случае, когда эти здания разделяет река) [4, с.12].

В условиях недостатка частотного ресурса были созданы, успешно применяются и развиваются беспроводные системы фиксированного доступа, работающие в инфракрасной области (на основе ИК светодиодов и полупроводниковых лазеров). Они обеспечивают рабочую дальность от 300 м до 1-3 км при скорости передачи до 155 Мбит/с. Все основные недостатки этих систем (сравнительно высокая стоимость и некоторая зависимость от погодных условий и загрязнения оптики) с лихвой окупаются отсутствием необходимости получения разрешения на использование радиочастоты, а также быстротой и простотой монтажа. На следующим этапом развития систем фиксированного радиодоступа явилось создание таких протоколов обмена информацией между приемо-передатчиками, которые позволили организовать подключение многих объектов к одному (соединение "точка-многоточка"), что наиболее соответствует задачам организации доступа в Интернет (рисунок 3). Кроме того, были созданы различные механизмы (например, пакетная передача, работа на изменяющейся частоте), которые позволили увеличить пропускную способность, скорость передачи и эффективность использования частотного ресурса.

Рисунок 3 - Системы фиксированного радиодоступа

Обеспечивая среднюю скорость передачи данных, системы данного типа позволяют организовать канал передачи на достаточно большое расстояние. В то же время подверженность внешним помехам и зависимость от географических условий (обязательная необходимость прямой видимости) делают применение таких систем не всегда целесообразным.

Спутниковые системы

Для организации передачи данных используются и спутниковые системы. Причем варианты могут быть различными - от низкоскоростных индивидуальных каналов для отдельных пользователей до высокоскоростных каналов, одновременный доступ к которым может иметь большое количество пользователей (коллективный доступ). В первом случае может применяться двунаправленный канал (но это по карману только очень богатым организациям). Во втором случае спутник служит только для передачи нисходящего потока данных, поступающих из сети Интернет к пользователю (рисунок 4). Пользователю необходимо обязательно установить спутниковую антенну, СВЧ-ресивер и карту декодера прямо в персональный компьютер. Для организации восходящего потока данных (от пользователя в сеть Интернет) используется линия телефонной связи и модем.

Рисунок 4 - Спутниковая система

Спутник охватывает большую зону на поверхности Земли и является наиболее "широко охватывающей" технологией доступа в Интернет с географической точки зрения. Спутниковые системы доступа имеют не очень высокую скорость передачи данных (порядка 400 Кбит/с по направлению к пользователю) и работают не очень быстро. Представьте себе, что вы хотите загрузить какой-либо материал на экран вашего компьютера. Щелкнув на него мышью своего компьютера, вы подали сигнал запроса, который должен пройти по вашей телефонной линии, через провайдера и по обычному тракту в сети Интернет, а после ответа сигнал передается на спутник вверх и вниз, что в общей сложности составляет около 70 тысяч километров. Даже обладая скоростью света, данное средство доступа в Интернет остается достаточно медленным. Это особенно заметно при осуществлении двусторонней связи в режиме реального времени. Несмотря на широкую зону охвата, спутниковые системы имеют ряд недостатков, связанных, в частности, с необходимостью приобретения и настройки достаточно дорогостоящего оборудования. Впрочем, существует целый ряд экстремальных ситуаций, когда невозможно организовать доступ в сеть Интернет никаким другим образом, кроме как через спутник (простой пример - корабль, находящийся посреди океана).

Wi-Fi

Технология Wi-Fi - беспроводной аналог стандарта Ethernet, на основе которого сегодня построена большая часть офисных компьютерных сетей. Он был зарегистрирован в 1999 году и стал настоящим открытием для менеджеров, торговых агентов, сотрудников складов, основным рабочим инструментом которых является ноутбук или иной мобильный компьютер.

Wi-Fi - сокращение от английского Wireless Fidelity, обозначающее стандарт беспроводной (радио) связи, который объединяет несколько протоколов и имеет официальное наименование IEEE 802.11 (от Institute of Electrical and Electronic Engineers - международной организации, занимающейся разработкой стандартов в области электронных технологий). Самым известным и распространенным на сегодняшний день является протокол IEEE 802.11b (обычно под сокращением Wi-Fi подразумевают именно его), определяющий функционирование беспроводных сетей, в которых для передачи данных используется диапазон частот от 2,4 до 2.4835 Гигагерца и обеспечивается максимальная скорость 11 Мбит/сек. Максимальная дальность передачи сигнала в такой сети составляет 100 метров, однако на открытой местности она может достигать и больших значений (до 300-400 м).

Помимо 802.11b существуют еще беспроводной стандарт 802.11a, использующий частоту 5 ГГц и обеспечивающий максимальную скорость 54 Мбит/с, а также 802.11g, работающий на частоте 2,4 ГГц и тоже обеспечивающий 54 Мбит/с. Однако, из-за меньшей дальности, значительно большей вычислительной сложности алгоритмов и высокого энергопотребления эти технологии пока не получили большого распространения. Кроме того, в данное время ведется разработка стандарта 802.11n, который в обозримом будущем сможет обеспечить скорости до 320 Мбит/c.

Подобно традиционным проводным технологиям, Wi-Fi обеспечивает доступ к серверам, хранящим базы данных или программные приложения, позволяет выйти в Интернет, распечатывать файлы и т.д. Но при этом компьютер, с которого считывается информация, не нужно подключать к компьютерной розетке. Достаточно разместить его в радиусе 300 м от так называемой точки доступа (access point) - Wi-Fi-устройства, выполняющего примерно те же функции, что обычная офисная АТС. В этом случае информация будет передаваться посредством радиоволн в частотном диапазоне 2,4-2,483 ГГц.

Таким образом, Wi-Fi-технология позволяет решить три важных задачи:

· упростить общение с мобильным компьютером;

· обеспечить комфортные условия для работы деловым партнерам, пришедшим в офис со своим ноутбуком,

· создать локальную сеть в помещениях, где прокладка кабеля невозможна или чрезмерно дорога.

Кроме этого, само существование сети Wi-Fi - важный штрих к портрету фирмы. Он так же работает на ее корпоративный имидж, как кожаные кресла в переговорной и красиво изданные информационные буклеты.

Беспроводная технология может стать как основой IT-системы компании, так и дополнением к уже существующей кабельной сети.

Ядром беспроводной сети Wi-Fi является так называемая точка доступа (Access Point), которая подключается к какой-либо наземной сетевой инфраструктуре (например, офисной Ethernet-сети) и обеспечивает передачу радиосигнала. Обычно точка доступа состоит из приёмника, передатчика, интерфейса для подключения к проводной сети и программного обеспечения для обработки данных. После подключения вокруг точки доступа образуется территория радиусом 50-100 метров (её называют хот-спотом или зоной Wi-Fi), на которой можно пользоваться беспроводной сетью.

Для того чтобы подключиться к точке доступа и ощутить все достоинства беспроводной сети, обладателю ноутбука или другого мобильного устройства, оснащенного Wi-Fi адаптером, необходимо просто попасть в радиус её действия. Все действия по определению устройств и настройке сети большинством ОС производятся автоматически. Если пользователь попадает одновременно в несколько Wi-Fi зон, то происходит подключение к точке доступа, обеспечивающей самый мощный сигнал. Время от времени производится проверка наличия других точек доступа, и в случае, если сигнал от новой точки сильнее, устройство переподключается к ней, настраиваясь абсолютно прозрачно и незаметно для владельца

Одним из главных достоинств любой Wi-Fi сети является возможность доступа в Интернет для всех её пользователей, которая обеспечивается либо прямым подключением точки доступа к интернет-каналу, либо подключением к ней любого сервера, соединенного с Интернет В обоих случаях мобильному пользователю не нужно ничего самостоятельно настраивать - достаточно запустить браузер и набрать адрес какого-либо интернет-сайта.

Также несколько устройств с поддержкой Wi-Fi могут соединяться друг с другом напрямую (связь устройство - устройство), то есть без использования специальной точки доступа, образуя некое подобие локальной сети, в которой можно обмениваться файлами, но в этом случае ограничивается число видимых станций.

В случае с устройствами без встроенной поддержки Wi-Fi (например, с обычными домашними или офисными компьютерами) нужно будет приобрести специальную карту, поддерживающую этот стандарт. Сейчас ее средняя стоимость составляет около 30-50 долларов, а подключаться к компьютеру она может через стандартные интерфейсы (PCI, USB, PCMCIA и т.п.).

1.1.2 Проводные системы передачи данных

Оптико-волоконные и волоконно-коаксиальные системы изначально создавались для кабельного телевидения и передачи видеосигнала. Благодаря тому, что эти системы по определению являются широкополосными, разрабатывалась именно такая технология, которая позволила бы использовать данное преимущество для высокоскоростной передачи данных, в основном для организации доступа в Интернет частных пользователей.

На рисунке 5 показана система, позволяющая организовать высокоскоростную передачу данных в обоих направлениях. Такая двунаправленная система кабельного телевидения позволяет передавать нисходящий поток передачи данных в полосе частот от 50 МГц до 750 МГц, которая поделена на каналы 6 МГц. Полоса частот, выделенная для восходящего потока данных, делится между всеми пользователями, к которым проложен коаксиальный кабель. Обычно это частотный диапазон от 5 МГц до 40 МГц.

Рисунок 5 - Оптико-волоконная система передачи данных

Один видеоканал, имеющий номинальную полосу частот 6 МГц, может использоваться для передачи данных из сети Интернет со скоростью до 30 Мбит/с. Общая скорость восходящего потока данных до 10 Мбит/с, но практикуемый метод коллективного использования в реальности для каждого отдельного пользователя дает гораздо меньшее значение.

Использование витой пары и абонентских телефонных проводов для передачи данных

Витая пара (англ. twisted pair) - вид кабеля связи, представляет собой одну или несколько пар изолированных проводников, скрученных между собой (с небольшим числом витков на единицу длины), покрытых пластиковой оболочкой. Свивание проводников производится с целью повышения связи проводников одной пары (электромагнитная помеха одинаково влияет на оба провода пары) и последующего уменьшения электромагнитных помех от внешних источников, а также взаимных наводок при передаче дифференциальных сигналов. Для снижения связи отдельных пар кабеля (периодического сближения проводников различных пар) в кабелях UTP категории 5 и выше провода пары свиваются с различным шагом. Витая пара - один из компонентов современных структурированных кабельных систем. Используется в телекоммуникациях и в компьютерных сетях в качестве сетевого носителя во многих технологиях, таких как Ethernet, Arcnet и Token ring. В настоящее время, благодаря своей дешевизне и легкости в монтаже, является самым распространенным решением для построения локальных сетей. Телефонные провода является главным носителем, который в настоящее время используется для подключения всех абонентов (независимо от их юридического статуса) к оборудованию телефонной сети. Одно только это должно вызывать здоровый энтузиазм у разработчиков систем высокоскоростной передачи данных по данному носителю. Каждый абонент телефонной сети имеет отдельную физическую пару проводов в кабеле, идущем от телефонной станции, которая соединяет его телефонный аппарат с коммутационным оборудованием, установленным на телефонной станции. Каждая пара в кабеле является витой (т.е. провода пары свиты друг с другом), что позволяет снизить нежелательные помехи. При осуществлении обычной телефонной связи каждая пара кабеля на абонентском участке кабельной сети поддерживает один голосовой канал. Также витые пары проводов используются для соединения персональных компьютеров в ЛВС (локальных сетях). Существует три основных решения при организации доступа в сеть Интернет по витой паре. Речь идет об аналоговых модемах, предназначенном специально для передачи по телефонным каналам, о ISDN и о технологиях, объединенных под общим названием xDSL. Аналоговые модемы хорошо известны и понятны большинству пользователей современных домашних компьютеров (рисунок 6). Принцип их работы основан на использовании диапазона голосовых частот витой пары для передачи данных. Для этого используются технологии передачи, известные как "частотная манипуляция" и "квадратурная амплитудная модуляция". Аналоговый модем позволяет достигать скорости передачи данных до 56 Кбит/с.

Рисунок 6 - Использование витой пары для доступа в сеть Интернет

Невысокая цена и совместимость практически с любой телефонной линией сделали аналоговые модемы основным выбором индивидуальных пользователей. К сожалению, скорость передачи аналогового модема в значительной мере зависит от качества телефонной линии и установленного соединения. Именно поэтому получить максимальную скорость передачи данных практически невозможно (обычно модем с заявленной скоростью в 33,6 Кбит/с позволяет работать со скоростью 28,8 Кбит/с, в лучшем случае 31,2 Кбит/с). Непрофессиональные пользователи сети Интернет могут использовать и аналоговые модемы, но рано или поздно любой из них сталкивается с проблемами, связанными с низким качеством соединения и перегрузками телефонной сети общего пользования. Эта сеть, в своем существующем на данный момент виде, совершенно не предназначена для того, чтобы передавать трафик сети Интернет. Более высокоскоростной альтернативой аналоговым модемам служит ISDN (рисунок 7). ISDN (не совсем по-русски называемая цифровой сетью связи с интеграцией служб) представляет собой цифровую технологию, позволяющую передавать данные со скоростью 144 Кбит/с. Для этого используется схема кодирования 2В1Q. Скорость передачи данных 144 Кбит/с складывается из двух каналов В по 64 Кбит/с каждый, используемых для передачи голоса и данных, и одного служебного канала D 16 Кбит/с для передачи управляющих сигналов. Каналы В могут использоваться как два отдельных голосовых канала, два канала передачи данных со скоростью 64 Кбит/с, как два отдельных канала передачи голоса и данных, а также совместно для передачи данных со скоростью 128 Кбит/с.

Рисунок 7 - Использование технологии ISDN

Технологии xDSL позволяют значительно увеличить скорость передачи данных по медным парам телефонных проводов, при этом не требуя глобальной модернизации абонентской кабельной сети. Именно возможность преобразования существующих телефонных линий, при условии проведения определенного объема подготовительных технических мероприятий, в высокоскоростные каналы передачи данных и является основным преимуществом технологий xDSL. Данные технологии позволяют значительно расширить полосу пропускания медных абонентских телефонных линий. Любой абонент, пользующийся обычной телефонной связью, является потенциальным кандидатом на то, чтобы с помощью одной из технологий xDSL значительно увеличить скорость своего соединения с сетью Интернет. При этом предусмотрено и сохранение нормальной работы обычной телефонной связи, вне зависимости от "общения" пользователей с сетью Интернет (рисунок 8).

Рисунок 8 - Использование технологии xDSL

Многообразие технологий xDSL позволяет пользователю (с учетом определенных ограничений, связанных с длиной и качеством абонентской линии) выбрать подходящую именно ему скорость передачи данных - от 32 Кбит/с до более чем 50 Мбит/с.

Современные технологии xDSL дают возможность организовать высокоскоростной доступ в сеть Интернет для каждого индивидуального пользователя или каждого небольшого предприятия, превращая обычные телефонные кабели в высокоскоростные цифровые каналы. xDSL включает в себя целый набор различных технологий, позволяющих организовать цифровую абонентскую линию, которые различаются по расстоянию, на которое передается сигнал, скорости передачи данных, а также по разнице в скоростях передачи "нисходящего" (от сети к пользователю) и "восходящего" (от пользователя в сеть) потока данных.

Выводы к I главе

В первой главе рассматриваются теоретические аспекты передачи данных в сети.

Система передачи данных состоит из нескольких компонентов, определяемых в зависимости от решаемых задач:

коммутаторы,

маршрутизаторы,

межсетевые экраны и мосты,

мультиплексоры,

различные конвертеры физической среды и интерфейсов передачи данных,

точки беспроводного доступа,

клиентское оборудование,

программное обеспечение управления оборудованием.

Крупнейшей сетью передачи данных является сеть Интернет. Сети передачи данных могут быть проводными, что означает соединение компьютеров с помощью кабелей, или беспроводными, в которых подключения выполняются посредством радиоволн, по воздуху.

В настоящее время бурное развитие технологий беспроводных сетей открывает новые возможности. Преимущества беспроводных решений:

· низкая стоимость развертывания;

· мобильность, возможность демонтировать оборудование при переезде;

· безопасность, возможность шифрования трафика;

· надежная и качественная телефонная связь;

· высокоскоростной доступ к сети Интернет;

· независимость от кабельной инфраструктуры;

· простота подключения и использования.

2. Анализ методов обеспечения безошибочности передачи данных в сетях

2.1 Методы обеспечения безошибочности передачи данных

Для повышения достоверности и качества работы систем связи применяются групповые методы защиты от ошибок, избыточное кодирование и системы с обратной связью. На практике часто используют комбинированное сочетание этих способов.

2.1.1 Метод Вердана

К групповым методам защиты от ошибок можно отнести давно уже используемый в телеграфии способ, известный как принцип Вердана: вся информация (или отдельные кодовые комбинации) передается несколько раз, обычно не четное число раз (минимум три раза). Принимаемая информация запоминается специальным устройством и сравнивается. Суждение о правильности передачи выносится по совпадению большинства из принятой информации методами "два из трех", "три из пяти" и так далее. Например, кодовая комбинация 01101 при трехразовой передаче была частично искажена помехами, поэтому приемник принял следующие комбинации: 10101, 01110, 01001. В результате проверки каждой позиции отдельно правильной считается комбинация 01101.

2.1.2 Метод передачи информации блоками

Другой метод, также не требующий перекодирования информации, предполагает передачу информации блоками, состоящими из нескольких кодовых комбинаций. В конце каждого блока посылается информация, содержащая количественные характеристики переданного блока, например число единиц или нулей в блоке. На приемном конце эти характеристики вновь подсчитываются, сравниваются с переданными по каналу связи, и если они совпадают, то блок считается принятым правильно. При несовпадении количественных характеристик на передающую сторону посылается сигнал ошибки.

2.1.3 Помехоустойчивое кодирование

Среди методов защиты от ошибок наибольшее распространение получило помехоустойчивое кодирование, позволяющее получить более высокие качественные показатели работы систем связи. Его основное назначение - принятие всех возможных мер для того, чтобы вероятность искажений информации была достаточно малой, несмотря на присутствие помех или сбоев в работе сети.

Помехоустойчивое кодирование предполагает разработку корректирующих (помехоустойчивых) кодов, обнаруживающих и исправляющих определенного рода ошибки, а также построение и реализацию кодирующих и декодирующих устройств.

Специалистами доказано, что при использовании помехоустойчивого кодирования вероятность неверной передачи во много раз снижается. Так, например, с помощью кода M из N, используемого фирмой IBM в вычислительных сетях, можно обнаружить в блоке, насчитывающем около тридцати двух тысяч символов, все ошибки, кратные трем или меньше, или пачки ошибок длиной до шестнадцати символов.

При передаче информации в зависимости от системы счисления коды могут быть двухпозиционными и многопозиционными. По степени помехозащищенности двухпозиционные коды делятся на обыкновенные и помехоустойчивые.

Двухпозиционные обыкновенные коды используют для передачи данных все возможные элементы кодовых комбинаций и бывают равномерными, когда длина всех кодовых комбинаций одинакова, например пятиэлементный телеграфный код, и неравномерными, когда кодовые комбинации состоят из разного числа элементов, например, код Морзе. В этом коде точке соответствует одна единица, тире - три единицы. Для отделения точек и тире друг от друга записывается ноль, а для завершения комбинации - три нуля. Так, буква А, состоящая из точки и тире, представляется как 10111000, а буква Б (тире и три точки) - как 111010101000.

В помехоустойчивых кодах, кроме информационных элементов, всегда содержится один или несколько дополнительных элементов, являющихся проверочными и служащих для достижения более высокого качества передачи данных. Наличие в кодах избыточной информации позволяет обнаруживать и исправлять (или только обнаруживать) ошибки.

Основными среди многочисленных характеристик корректирующих кодов являются значность, корректирующая способность, избыточность и оптимальность кода, коэффициент обнаружения и исправления ошибки, простота технической реализации метода и другие. Так, значность кода, или длина кодовой комбинации, включает как информационные элементы m, так и проверочные (контрольные) k. Как правило, значность кода n равна m+k.

Оптимальность кода указывает на полноту использования его корректирующих возможностей.

Выбор корректирующих кодов в определенной степени зависит от требований, предъявляемых к достоверности передачи. Для правильного его выбора необходимо иметь статистические данные о закономерностях возникновения ошибок, их характере, численности и распределении во времени. Так, например, корректирующий код, исправляющий одиночные ошибки, может быть эффективен лишь при условии, что ошибки статистически независимы, а вероятность их появления не превышает некоторой величины. Этот код оказывается совершенно не пригодным, если ошибки появляются группами (пачками). Рекуррентные коды, исправляющие групповые ошибки, также могут оказаться неэффективными, если количество ошибок при передаче будет больше допустимой нормы.

Разработанные различные корректирующие коды подразделяются на непрерывные и блочные. В непрерывных, или рекуррентных, кодах контрольные элементы располагаются между информационными. В блочных кодах информация кодируется, передается и декодируется отдельными группами (блоками) равной длины.

Блочные коды бывают разделимые (все информационные и контрольные элементы размещаются на строго определенных позициях) и неразделимые (элементы кодовой комбинации не имеют четкого деления на избыточные и информационные). К неразделимым относится код с постоянным числом нулей и единиц.

Разделимые коды состоят из систематических и несистематических. В систематических кодах проверочные символы образуются с помощью различных линейных комбинаций. Систематические коды - самая обширная и наиболее применяемая группа корректирующих кодов. Они включают такие коды, как код Хэмминга, циклические коды, коды Боуза-Чоудхури и другие.

Большие вычислительные системы (Amdal, IBM, Burroughs, ICL) используют очень сложную методику проверки ошибок при передаче по линиям связи между машинами. В ПЭВМ обычно применяется более простая техника проверки ошибок.

2.1.4 Эхоплекс

Одной из простейших форм проверки ошибок является так называемый эхоплекс. В соответствии с этой методикой каждый символ, посылаемый ПЭВМ по дуплексной линии связи удаленному абоненту, возвращается обратно к ПЭВМ в виде эха. Если ПЭВМ принимает тот же символ, что и был послан, подразумевается, что передача символа прошла правильно. Если нет, значит, при передаче произошла ошибка и необходима повторная передача этого же символа. Эхоплекс применяется в двунаправленных дуплексных каналах связи.

Некоторые пользователи ПЭВМ путают эхоплекс с местным эхо. Местное эхо часто используется при подключении полудуплексного модема к телефонному каналу. В этом случае данные возвращаются к ПЭВМ не от удаленного окончания, а от местного (ближнего) модема.

Если устройство не было настроено соответствующим образом, ПЭВМ может выдать на экран двойные символы. Это случается, если от модема возвращается местное эхо, а от удаленного окончания - удаленное эхо (эхоплекс). Проблема дублирования символов решается путем подавления местного эха.

2.1.5 Контроль на четность

Другим часто используемым на практике (и сравнительно простым) методом является контроль на четность. Его суть заключается в том, что каждой кодовой комбинации добавляется один разряд, в который записывается единица, если число единиц в кодовой комбинации нечетное, или ноль, если четное. При декодировании подсчитывается количество единиц в кодовой комбинации. Если оно оказывается четным, то поступившая информация считается правильной, если нет, то ошибочной.

Кроме проверки по горизонтали контроль на четность и нечетность может проводиться и по вертикали.

Преимущества контроля на четность заключается в минимальном значении коэффициента избыточности (для пятиэлементного кода К =0,17) и в простоте его технической реализации, а недостаток - в том, что обнаруживаются ошибки, имеющие только нечетную кратность.

Однако такая методика проверки не может обнаружить ошибки в случае двойного переброса (например, две единицы перебросились в ноль), что может привести к высокому уровню ошибок в некоторых передачах. Многоуровневая модуляция (когда проверка сигнала осуществляется по двум или трем битам) требует более сложной техники.

Проверка на четность/нечетность по одному биту также является неприемлемой и для многих аналоговых линий речевого диапазона из-за группирования ошибок, которое обычно происходит в линиях связи такого типа.

2.1.6 Двойная проверка на четность

Двойная проверка на четность/нечетность является усовершенствованием одинарной проверки. В этой методике вместо бита четности в каждом символе определяется четность или нечетность целого блока символов. Проверка блока позволяет обнаруживать ошибки как внутри символа, так и между символами. Эта проверка называется также двумерным кодом проверки на четность. Она имеет значительное преимущество по сравнению с одинарной. С помощью такой перекрестной проверки может быть существенно улучшена надежность работы обычной телефонной лини, вероятность появления ошибки в которой составляет 10. Однако как ординарная, так и двойная проверка на четность означают увеличение накладных расходов и относительное уменьшение выхода информации для пользователя.

2.1.7 Код Хэмминга

К систематическим кодам также относится и код Хэмминга, который позволяет не только обнаруживать, но и исправлять ошибки. В этом коде каждая кодовая комбинация состоит из m информационных а k контрольных элементов. Так, например, в семиэлементном коде Хэмминга n=7, m=4, k=3 (для всех остальных элементов существует специальная таблица). Контрольные символы 0 или 1 записываются в первый, второй и четвертый элементы кодовой комбинации, причем в первый элемент - в соответствии с контролем на четность для третьего, пятого и седьмого элементов, во второй - для третьего, шестого и седьмого элементов, и в четвертый - для пятого - седьмого элементов. В соответствии с этим правилом комбинация 1001 будет представляться в коде Хэмминга как 0011001, и в этом виде она будет представляться в канал связи.

При декодировании в начале проверяются на четность первый, третий, пятый и седьмой элементы, результат проверки записывается в первый элемент контрольного числа. Далее контролируется четвертый - седьмой элементы - результат проставляется в младшем элементе контрольного числа. При правильно выполненной передаче контрольное число состоит из одних нулей, а при неправильной - из комбинаций нулей и единиц, соответствующей при чтении ее справа налево номеру элемента, содержащего ошибку.

Для устранения этой ошибки необходимо изменить находящийся в этом элементе символ на обратный.

Код Хэмминга имеет существенный недостаток: при обнаружении любого числа ошибок он исправляет лишь одиночные ошибки. Избыточность семиэлементного кода Хэмминга равна 0,43. При увеличении значности кодовых комбинаций увеличивается число проверок, но уменьшается избыточность кода. К тому же код Хэмминга не позволяет обнаружить групповые ошибки, сконцентрированные в пакетах. Длина пакета ошибок представляет собой увеличенную на единицу разность между именами старшего и младшего ошибочных элементов.

2.1.8 Код с постоянным числом нулей или единиц

Распространенным кодом, но не относящимся к группе неразделенных, является код с постоянным числом нулей или единиц или код M из N. Так, семиэлементный код имеет соотношение единиц и нулей, равное 3: 4. Кодирование и декодирование выполняются заменой одной кодовой группой другой. Например, комбинация 01110 посылается в канал связи в виде 0101010. На приемном конце она вновь декодируется в 01110. Фирма IMB использует восьмиэлементный код, содержащий четыре единицы и четыре нуля.

2.1.9 Подсчет контрольных сумм

Еще одной формой проверки ошибок служит подсчет контрольных сумм. Это несложный способ, который обычно применяется вместе с контролем ошибок с помощью эхоплекса или проверки на четность/нечетность. Сущность его состоит в том, что передающая ПЭВМ суммирует численные значения всех передаваемых символов.

Шестнадцать младших разрядов суммы помещаются в шестнадцатиразрядный счетчик контрольной суммы, который вместе с информацией пользователей передается принимающей ПЭВМ. Принимающая ПЭВМ выполняет такие же вычисления и сравнивает полученную контрольную сумму с переданной. Если эти суммы совпадают, подразумевается, что блок передан без ошибок. При этом имеется незначительная вероятность того, что в результате такой проверки ошибочный блок может быть не обнаружен, но опыт показывает, что это случается не чаще одного раза но тысячу сеансов передач. Сколько же при этом может быть передано безошибочных блоков, прежде чем встретится один ошибочный? Если передача производится по высококачественной линии, то - несколько тысяч. В обычной конфигурации необнаруженный ошибочный блок может возникнуть не более одного раза в течение нескольких месяцев работы.

2.1.10 Метод CRC

Последним словом в области контроля ошибок в сфере ПЭВМ является циклическая проверка с избыточным кодом (CRC - cyclic redunduncy check). Она широко используется в протоколах HDLC, SDLC, но в индустрии ПЭВМ появилась сравнительно недавно.

Поле контроля ошибок включается в кадр передающим узлом. Его значение получается как некоторая функция от содержимого всех других полей. В принимающем узле производятся идентичные вычисления еще одного поля контроля ошибок. Эти поля затем сравниваются; если они совпадают, велика вероятность того, что пакет был передан без ошибок. Этот процесс, как уже было упомянуто, называется циклическим контролем по избыточности (CRC), а поле называется контрольной последовательностью кадра (КПК). В случае несовпадения, возможно, имела место ошибка передачи, и принимающая станция посылает сигнал, означающий, что необходимо повторить передачу кадра.

При вычислении КПК используется производящий полином 16+12+5+1.

Вычисление и использование кода CRC производится в соответствии со следующими правилами:

· К содержимому кадра добавляется набор нулей, количество которых равно длине поля КПК.

· Образованное таким образом число делится на производящий полином, который содержит на один разряд больше, чем КПК, и который в качестве старшего и младшего разрядов имеет единицы.

· Остаток от деления помещается в поле КПК и передается в приемник.

· Приемник выполняет деление содержимого кадра и поля КПК на полином.

· Если результат равен некоторому определенному числу, считается, что передача выполнена без ошибок.

Метод CRC позволяет обнаруживать всевозможные кортежи ошибок длиной не более шестнадцати разрядов, вызываемых одиночной ошибкой, а также 99,9984% всевозможных более длинных кортежей ошибок.

2.2 Анализ средств обеспечения безошибочности передачи данных в сетях

В соответствие с особенностями корректирующих кодов выбираются кодирующие и декодирующие устройства. Один из методов построения кодирующих устройств предполагает применение логических схем, на выходах которых при каждом такте кодирования образуются контрольные элементы. Такие устройства более целесообразны при малых значениях информационных и контрольных символов. Другой способ требует наличия запоминающего устройства в котором контрольные символы хранятся и извлекаются лишь при появлении на входном регистре информационных символов.

Наиболее сложным построением декодирующих устройств является метод сравнения, который требует запоминающих устройств большой емкости. При пользовании более простым методом контрольных чисел декодирующее устройство по принятым информационным символам вновь образует контрольные символы, которые и сравнивает с полученными по каналу связи. Метод коррекции предполагает корректировку информационных символов в зависимости от проверок, осуществляемых по элементам, отстающим друг от друга на какой-то определенный шаг. Информационные элементы из информационного регистра поступают в сумматоры, число которых равняется количеству контрольных символов. Образовавшиеся на выходах сумматоров контрольные символы записываются в ячейки проверочного регистра.

Формирование элементов кодовой комбинации и ее выдача в канал связи выполняются под воздействием управляющих импульсов через переключатель.

При декодировании каждая кодовая комбинация фиксируется в приемном регистре и проверяется на четность в сумматорах. При правильной передаче на выходах сумматоров отмечаются только нули, и информационные элементы через переключатель выдаются получателю. Если же передача произошла неверно составляется ненулевое контрольное число, в зависимости от которого дешифратор формирует семиэлементную комбинацию, состоящую из семи нулей и одной единицы в том элементе, где произошла ошибка. При сложении этой комбинации с принятой кодовой комбинацией образуется правильное число, информационные элементы которого через переключатель будут отправлены получателю.

Кодирующие и особенно декодирующие устройства, применяемые для кодов с исправлением ошибок, являются более сложными, поскольку схемы их построения содержат целый ряд дополнительных устройств.

Разработаны два варианта упрощенной технической реализации таких декодирующих устройств:

· Вероятностный, при котором высоковероятные малоискаженные кодовые комбинации декодируются без проверки, а маловероятные, сильноискаженные - с проверкой и исправлениями.

· Алгебраический, при котором используется неоптимальный алгоритм декодирования, имеющий более простую схему построения.

В вычислительных системах корректирующие коды в основном используются для обнаружения ошибок, исправление которых осуществляется путем повторной передачи искаженной информации. С этой целью почти все сети используют системы передачи с обратной связью. Кроме того, наличие между абонентами двусторонней связи облегчает применение таких систем.

Системы передачи с обратной связью подразделяются на:

· системы с решающей обратной связью;

· системы с информационной обратной связью.

В первом случае решение о повторной передаче информации выносит приемник, а во втором случае аналогичное решение принимает передатчик.

Особенностью системы с решающей связью (или, как их иначе называют, систем с автоматическим запросом ошибок, или систем с перезапросом) является обязательное применение помехоустойчивого кодирования, с помощью которого на приемной станции осуществляется проверка принимаемой информации. Канал обратной связи используется для посылки на передающую сторону или сигнала переспроса, который свидетельствует о наличии ошибки и необходимости повторной передачи, или сигнала подтверждении правильности приема, автоматически определяющего начало следующей передачи.

В целях повышения скорости передачи передающая аппаратура обычно не ожидает сигнала с приемной стороны, а работает непрерывно. При появлении ошибки и приеме сигнала переспроса она повторяет всю информацию, начиная с неверно принятой. Это несколько усложняет всю систему в целом, так как требуется дополнительное ЗУ.

В системах с решающей обратной связью ошибки могут возникнуть и при передаче сигналов по обратному каналу. Так, если сигнал переспроса не достигнет передатчика, то передатчик не осуществит повторной посылки сообщения, которое было принято неверно. В результате сообщение к абоненту не поступит. Такое явление называется аннигиляцией сообщения. Если же вместо сигнала подтверждения по каналу обратной связи будет принят сигнал переспроса, то у абонента появится лишняя информация (ложные повторы). В практической работе для уменьшения вероятности ошибок подобного рода сигнал подтверждения кодируется нулями, а сигнал переспроса - единицами.

Различают системы с ограниченным и неограниченным числом повторений передач. В первом случае заранее устанавливается максимальное число повторений, при достижении которого передатчик прекращает отвечать на переспросы, а приемник решает, какое из нескольких полученных сообщений считать правильными. Во втором случае посылка нового сообщения начинается лишь после прекращения всех переспросов.

В системах с информационной обратной связью передача информации осуществляется без помехоустойчивого кодирования. По каналу обратной связи приемник передает всю ту информацию, которая была им принята по прямому каналу и записана в его ЗУ. Передатчик сравнивает хранящуюся у него информацию с принятой по каналу обратной связи и при правильной передаче посылает сигнал подтверждения. В противном случая происходит повторная передача всей информации.

Системы с информационной и решающей обратной связью могут иметь адресное и безадресное повторение. Преимущество систем с адресным повторением заключается в том, что при обнаружении ошибок повторно передается не вся информация, как в системах с безадресным повторением, а только ошибочная информация. Однако использование системы с адресным повторением связано со значительным усложнением схем построения приемопередающей аппаратуры.


Подобные документы

  • Понятие и классификация систем передачи данных. Характеристика беспроводных систем передачи данных. Особенности проводных систем передачи данных: оптико-волоконных и волоконно-коаксиальных систем, витой пары, проводов. Оценка производителей аппаратуры.

    курсовая работа [993,0 K], добавлен 04.03.2010

  • Особенности организации передачи данных в компьютерной сети. Эталонная модель взаимодействия открытых систем. Методы передачи данных на нижнем уровне, доступа к передающей среде. Анализ протоколов передачи данных нижнего уровня на примере стека TCP/IP.

    курсовая работа [1,0 M], добавлен 07.08.2011

  • Анализ применяемых технологий в мультисервисных сетях. Сосуществование сетей АТМ с традиционными технологиями локальных сетей. Характеристика сети передачи данных РФ "Электросвязь" Кемеровской области. Схема организации сети передачи данных, каналы связи.

    дипломная работа [642,3 K], добавлен 02.11.2010

  • Изучение понятия локальной вычислительной сети, назначения и классификации компьютерных сетей. Исследование процесса передачи данных, способов передачи цифровой информации. Анализ основных форм взаимодействия абонентских ЭВМ, управления звеньями данных.

    контрольная работа [37,0 K], добавлен 23.09.2011

  • Система сбора данных. Скорость передачи данных. Ячеистая структура сети ZigBee. Основные технические характеристики для ZigBee-модемов компании Telegesis. Изменение состояния цифровых выводов модема. Удаленные маршрутизаторы и конечные устройства.

    дипломная работа [1,4 M], добавлен 05.06.2011

  • Технология построения сетей передачи данных. Правила алгоритма CSMA/CD для передающей станции. Анализ существующей сети передачи данных предприятия "Минские тепловые сети". Построение сети на основе технологии Fast Ethernet для административного здания.

    дипломная работа [2,5 M], добавлен 15.02.2013

  • Выбор беспроводной технологии передачи данных. Механизмы управления качеством передачи потоков. Программное обеспечение приемной и передающей станции. Эксперименты, направленные на изучение неравномерности передаваемого потока данных при доступе к среде.

    дипломная работа [1,1 M], добавлен 18.05.2012

  • Виды компьютерных сетей. Методы доступа к несущей в компьютерных сетях. Среды передачи данных и их характеристики. Протокол IP, принципы маршрутизации пакетов, DHCP. Обоснование используемых сред передачи данных. Маршрутизация и расчет подсетей.

    курсовая работа [779,8 K], добавлен 15.04.2012

  • Назначение системы управления базой данных. Передача данных в сетях ЭВМ: схема передачи информации, характеристика каналов передачи информации. Информационные ресурсы, которые содержит Интернет. Электронная почта - информационная услуга компьютерной сети.

    контрольная работа [43,4 K], добавлен 26.04.2009

  • Создание цифровой сети интегрированных услуг. Организация электронной передачи данных между предприятиями. Сущность технологии открытых систем. Основные виды модуляции модемов. Цифровые технологии передачи данных. Основные характеристики сетевых карт.

    реферат [35,7 K], добавлен 26.03.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.