Анализ и оценка протоколов передачи данных нижнего уровня на примере стека TCP/IP

Особенности организации передачи данных в компьютерной сети. Эталонная модель взаимодействия открытых систем. Методы передачи данных на нижнем уровне, доступа к передающей среде. Анализ протоколов передачи данных нижнего уровня на примере стека TCP/IP.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 07.08.2011
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • Введение
  • 1. Организация передачи данных в компьютерной сети
  • 1.1 Эталонная модель взаимодействия открытых систем
  • 1.2 Методы передачи данных на нижнем уровне
  • 1.3 Методы доступа к передающей среде
  • 1.4 ППД нижнего уровня типа первичный / вторичный
  • 1.5 Одноранговые ППД нижнего уровня
  • 2. Анализ и оценка протоколов передачи данных нижнего уровня на примере стека TCP/IP
  • 2.1 Структура стека TCP/IP
  • 2.2 Протоколы стека TCP/IP
  • 2.2.1 Протоколы EGP и BGP
  • 2.2.2 Протоколы SLIP и PPP
  • 2.2.3 Протокол RIP
  • 2.2.4 Протокол состояния связей OSPF
  • 2.2.5 Протокол Frame Relay
  • 2.3 Интерфейсы протоколов нижнего уровня
  • 2.4 Использование протоколов маршрутизации
  • Заключение
  • Список сокращений
  • Библиографический список литературы
  • Приложения

Введение

Информационное взаимодействие в компьютерной сети строится в соответствии с правилами и требованиями общего международного стандарта ISO 7498 (ISO - International Organization of Standartization).

Этот стандарт имеет тройной заголовок "Информационные вычислительные системы - Взаимодействие открытых систем - Эталонная модель". Обычно его называют короче - "Эталонная модель взаимодействия открытых систем". Публикация этого стандарта в 1983 году подвела итог многолетней работы многих известных телекоммуникационных компаний и стандартизирующих организаций.

Основной идеей, которая положена в основу этого документа, является разбиение процесса информационного взаимодействия между системами на уровни с четко разграниченными функциями.

Преимущества слоистой организации взаимодействия заключается в том, что она обеспечивает независимую разработку уровневых стандартов, модульность аппаратуры и программного обеспечения информационно-вычислительных систем и способствует тем самым техническому прогрессу в данной области.

При использовании многоуровневой модели проблема перемещения информации между узлами сети разбивается на более мелкие и, следовательно, более легко разрешимые проблемы.

Многоуровневая модель четко описывает, каким образом информация проделывает путь через среду сети от одной прикладной программы, к примеру, обработки таблиц, до иной прикладной программы обработки тех же таблиц, находящейся на другом компьютере сети.

Предположим, например, что система А, имеет информацию для отправки в систему В. Прикладная программа системы А начинает взаимодействовать с уровнем 4 системы А (верхний уровень), который, в свою очередь, начинает взаимодействовать с уровнем 3 системы А, и т.д. - до уровня 1 системы А. Задача уровня 1 отдавать, а потом забирать информацию из физической среды сети.

Поскольку информация, которая должна быть отослана, проходит вниз через уровни системы, по мере этого продвижения она становится все меньше похожей на человеческий язык и все больше похожей на ту информацию, которую понимают компьютеры, а именно "единицы" и "нули".

После того как информация проходит через физическую среду сети и поступает в систему В, она последовательно обрабатывается на каждом уровне системы В обратном порядке - сначала на уровне 1, затем на уровне 2 и т.д., пока, наконец, не достигнет прикладной программы системы В.

Многоуровневая модель не предполагает наличия непосредственной связи между одноименными уровнями взаимодействующих систем. Следовательно, каждый уровень А должен полагаться на услуги, предоставляемые ему смежными уровнями системы А, чтобы помочь осуществить связь с соответствующим уровнем системы В. Для того чтобы выполнить эту задачу, уровень 4 системы А должен воспользоваться услугами уровня 3 системы А, тогда уровень 4 будет называться "пользователем услуг", а уровень 3 - "источником услуг".

Информация по оказываемым услугам передается между уровнями в специальном информационном блоке, который называется заголовком. Заголовок обычно предшествует передаваемой информации. Предположим, что система А хочет отправить в систему В какой-либо текст, называемый "данные" или "информация". Этот текст передается из прикладной программы системы А в верхний уровень этой системы. Прикладной уровень системы А должен передать определенную информацию в прикладной уровень системы В, поэтому он помещается управляющую информацию своего уровня в виде заголовка перед фактическим текстом, который должен быть передан. Построенный таким образом информационный блок передается в уровень 3 системы А, который может предварить его своей собственной управляющей информацией, и т.д.

Размеры сообщения увеличиваются по мере того, как оно проходит вниз через уровни до тех пор, пока не достигнет сети, где оригинальный текст и вся связанная с ним управляющая информация перемещаются в систему В и поглощаются уровнем 1 системы В. Уровень 1 системы В отделяет от поступившей информации и обрабатывает заголовок 1 уровня, после чего он определяет, как обрабатывать поступивший информационный блок. Слегка уменьшенный в размерах информационный блок передается на уровень 2, который отделяет заголовок этого же уровня, анализирует его, чтобы узнать о действиях, которые он должен выполнить и т.д. Когда информационный блок наконец доходит до прикладной программы системы В, он должен содержать только оригинальный текст.

Структура заголовка и собственно данных относительна и зависит от уровня, который в данный момент анализирует информационный блок. Например, на уровне 2 информационный блок состоит из заголовка этого же уровня и следующих за ним данных. Однако данные уровня 2 могут содержать заголовки уровней 3 и 4. Кроме того, заголовок уровня 2 является просто данными для уровня 1. Помимо заголовка на каждом уровне системы информационный блок завершается соответствующей контрольной суммой КонтСум. Данная модель напоминает собой вложенные друг в друга матрешки. Самая маленькая из них - это и есть пользовательские данные, а все остальные служат для доставки данных в точку назначения.

Иными словами, в результате работы этого механизма каждый пакет более высокого уровня вкладывается в "конверт" протокола нижнего уровня. Здесь уместно провести аналогию с обычными постовыми отправлениями. Так, например, если пишется обычное письмо и вкладывается в конверт с адресом, то текст письма будет информационным сообщением, которое надо отправить, а конверт - заголовком "почтового" протокола. На почте письмо перекладывают в мешок (протокол низкого уровня) с письмами того же или близкого назначения и т.п. Электронные протоколы работают по той же схеме, только доставку и целостность обычных писем обеспечивают добросовестность служащих отделений связи, а электронным протоколам приходится следить за этим самостоятельно.

В соответствии с ISO 7498 выделяются семь уровней (слоев) информационного взаимодействия:

7. Уровень приложения (прикладной),

6. Уровень представления,

5. Уровень сессии,

4. Транспортный уровень,

3. Сетевой уровень,

2. Канальный уровень,

1. Физический уровень.

Информационное взаимодействие двух или более систем, таким образом, представляет собой совокупность информационных взаимодействий уровневых подсистем, причем каждый слой локальной информационной системы взаимодействует только с соответствующим слоем удаленной системы.

Протоколом называется набор алгоритмов (правил) взаимодействия объектов одноименных уровней.

Слои (уровни) одной информационной системы также взаимодействуют друг с другом, причем в непосредственном взаимодействии участвуют только соседние уровни. Как правило, средний уровень пользуется услугами, которые ему предоставляет нижний уровень, а сам, в свою очередь, предоставляет услуги для верхнего уровня.

Интерфейсом мы будем называть совокупность правил, в соответствии с которыми осуществляется взаимодействие с объектом данного уровня.

Иерархическая организация сетевого взаимодействия позволяет обеспечивать преемственность разработанных структур и их быструю адаптацию к изменениям, происходящим в технологиях передачи данных. Например, при переходе на новый способ передачи данных по физическому носителю, изменения коснуться только нижних уровней и совсем не затронут верхние в том случае, если система протоколов организована в соответствии с требованиями ISO 7498. На практике требования данного стандарта реализуются в виде стека протоколов.

Стеком называется иерархически организованная группа взаимодействующих протоколов.

Протоколы, которые входят в стек, имеют специализированный интерфейс и предназначены для взаимодействия только с протоколами соответствующих уровней данного стека. В качестве примеров таких стеков можно привести стек TCP/IP и протоколы X.25.

Уровни 7-5 считаются верхними и, как правило, не отражают специфики конкретной сети. Блок данных пользователя (сообщение) этими уровнями рассматривается как единое целое. Изменения могут испытывать только сами данные.

Уровни 1-3 и иногда 4 считаются нижними уровнями OSI. На каждом из этих уровней определяется свой формат представления данных. При прохождении по стеку с 4-го уровня до первого сообщение пользователя последовательно фрагментируется и преобразуется в последовательность блоков данных соответствующего уровня.

Целью данной дипломной работы является исследование протоколов передачи данных нижнего уровня.

Для достижения указанной цели были поставлены следующие задачи:

§ изучить организацию эталонной модели взаимодействия открытых систем;

§ кратко рассмотреть функции нижних уровней семиуровневой модели;

§ изучить методы доступа протоколов нижнего уровня к передающей среде;

передача протокол стек компьютерный

§ на примере стека протоколов TCP/IP провести сравнительный анализ протоколов нижнего уровня.

1. Организация передачи данных в компьютерной сети

1.1 Эталонная модель взаимодействия открытых систем

Многослойный (многоуровневый характер) сетевых процессов приводит к необходимости рассмотрения многоуровневых моделей телекоммуникационных сетей. В качестве эталонной утверждена семиуровневая модель - OSI Referens Model, в которой все процессы, реализуемые системой, разбиты на взаимоподчиненные уровни. Основная идея этой модели заключается в том, что каждому уровню отводится конкретная роль. Благодаря этому общая задача передачи данных расчленяется на отдельные, легко обозримые задачи.

В качестве прообраза модели взаимодействия OSI (Open System Interconnection) была использована структура, предложенная ANSI (American National Standarts Institute). Основные работы по созданию текста документа были выполнены CCITT (Consultative Committee for International Telegraphy), а итоговый документ появился в виде стандарта ISO. Статус стандарта ISO важен для данного документа, поскольку ISO 7498 является стандартом стандартов в области телекоммуникаций.

Соглашения, необходимые для связи одного уровня с выше - и нижерасположенными, называют протоколом. В семиуровневой модели сетевого обмена обмен информацией может быть представлен в виде стека протоколов межсетевого обмена OSI.

Рассмотрим кратко каждый из указанных уровней модели открытых систем.

1. Физический уровень модели определяет характеристики физической сети передачи данных, которая используется для межсетевого обмена. Это такие параметры, как напряжение в сети, сила тока, число контактов на разъемах, электрические, механические, функциональные и процедурные параметры для физической связи в системах. Протоколы физического уровня определяют вид и характеристики линий связи между компьютерами. В компьютерных сетяхt используются практически все известные в настоящее время способы связи от простого провода (витая пара) до волоконно-оптических линий связи (ВОЛС).

2. Канальный (или логический) уровень представляет собой комплекс процедур и методов управления каналом передачи данных, организованный на основе физического соединения. Канальный уровень формируется из данных, передаваемых первым уровнем. Для каждого типа линий связи разработан соответствующий протокол данного уровня, занимающийся управлением передачей информации по каналу. К протоколам логического уровня для телефонных линий относятся протоколы SLIP (Serial Line Interface Protocol) и PPP (Point to Point Protocol). Для связи по кабелю локальной сети - это пакетные драйверы плат ЛВС.

3. Сетевой уровень устанавливает связь между двумя абонентами. Его основная задача - маршрутизация данных. Специальные устройства - маршрутизаторы определяют для какой сети предназначено сообщений и направляют его по адресу. Протоколы сетевого уровня отвечают за передачу данных между устройствами в разных сетях, то есть занимаются маршрутизацией пакетов в сети. К протоколам сетевого уровня принадлежат IP (Internet Protocol) и ARP (Address Resolution Protocol).

4. Транспортный уровень поддерживает непрерывную передачу данных между двумя взаимодействующими удаленными пользовательскими процессами. Транспортный протокол связывает нижние уровни (физический, канальный и сетевой) с верхними уровнями, которые реализуются программными средствами. Протоколы транспортного уровня управляют передачей данных из одной программы в другую. К протоколам транспортного уровня принадлежат TCP (Transmission Control Protocol) и UDP (User Datagram Protocol).

5. Сеансовый уровень (уровень сессий) осуществляет управление сеансами связи между двумя взаимодействующими пользовательскими процессами. Кроме того, данный уровень содержит дополнительные функции управления паролями, подсчета платы за пользование ресурсами сети, управление диалогом, синхронизации и отмены связи в сеансе передачи после сбоя вследствие ошибок на нижерасположенных уровнях. Протоколы уровня сеансов связи отвечают за установку, поддержание и уничтожение соответствующих каналов. В Internet этим занимаются TCP и UDP протоколы, а также протокол UUCP (Unix to Unix Copy Protocol).

6. Уровень представления данных управляет представлением данных в необходимой для программы пользователя форме, осуществляет генерацию и интерпретацию взаимодействия процессов, кодирование и декодирование данных. Протоколы представительского уровня занимаются обслуживанием прикладных программ. К программам представительского уровня принадлежат программы, запускаемые, к примеру, на Unix-сервере, для предоставления различных услуг абонентам. К таким программам относятся: telnet-сервер, FTP-сервер, Gopher-сервер, NFS-сервер, NNTP (Net News Transfer Protocol), SMTP (Simple Mail Transfer Protocol), POP2 и POP3 (Post Office Protocol) и т.д.

7. Прикладной уровень определяет протоколы обмена данными прикладных программ. В его ведении находятся прикладные сетевые программы, обслуживающие файлы, а так же выполняются вычислительные, информационно-поисковые работы, логические преобразования информации и так далее.

Следует знать, что на разных уровнях обмен происходит в различных единицах информации: биты, кадры, фреймы, пакеты, сеансовые сообщения, пользовательские сообщения. Уровень может "ничего не знать" о содержании сообщения, но должен "знать", что дальше делать с этим сообщением. Для полной и безошибочной передачи данных необходимо придерживаться установленных в протоколе передачи данных правил.

1.2 Методы передачи данных на нижнем уровне

При передаче дискретных данных по каналам связи применяются два основных типа физического кодирования - на основе синусоидального несущего сигнала и на основе последовательности прямоугольных импульсов. Первый способ часто называется также модуляцией или аналоговой модуляцией, подчеркивая тот факт, что кодирование осуществляется за счет изменения параметров аналогового сигнала. Второй способ обычно называют цифровым кодированием. Эти способы отличаются шириной спектра результирующего сигнала и сложностью аппаратуры, необходимой для их реализации.

При использовании прямоугольных импульсов спектр результирующего сигнала получается весьма широким. Это не удивительно, если вспомнить, что спектр идеального импульса имеет бесконечную ширину. Применение синусоиды приводит к спектру гораздо меньшей ширины при той же скорости передачи информации. Однако для реализации синусоидальной модуляции требуется более сложная и дорогая аппаратура, чем для реализации прямоугольных импульсов.

В настоящее время все чаще данные, изначально имеющие аналоговую форму - речь, телевизионное изображение, - передаются по каналам связи в дискретном виде, то есть в виде последовательности единиц и нулей. Процесс представления аналоговой информации в дискретной форме называется дискретной модуляцией. Термины "модуляция" и "кодирование" часто используют как синонимы.

Аналоговая модуляция

Аналоговая модуляция применяется для передачи дискретных данных по каналам с узкой полосой частот, типичным представителем которых является канал тональной частоты, предоставляемый в распоряжение пользователям общественных телефонных сетей. Типичная амплитудно-частотная характеристика канала тональной частоты представлена на рис.1. Этот канал передает частоты в диапазоне от 300 до 3400 Гц, таким образом, его полоса пропускания равна 3100 Гц. Хотя человеческий голос имеет гораздо более широкий спектр - примерно от 100 Гц до 10 кГц, - для приемлемого качества передачи речи диапазон в 3100 Гц является хорошим решением. Строгое ограничение полосы пропускания тонального канала связано с использованием аппаратуры уплотнения и коммутации каналов в телефонных сетях.

Рисунок.1. Амплитудно-частотная характеристика канала тональной частоты.

Устройство, которое выполняет функции модуляции несущей синусоиды на передающей стороне и демодуляции на приемной стороне, носит название модем (модулятор - демодулятор). Методы аналоговой модуляции. Аналоговая модуляция является таким способом физического кодирования, при котором информация кодируется изменением амплитуды, частоты или фазы синусоидального сигнала несущей частоты. Основные способы аналоговой модуляции показаны на рис.2. На диаграмме (рис.2, а) показана последовательность бит исходной информации, представленная потенциалами высокого уровня для логической единицы и потенциалом нулевого уровня для логического нуля.

Такой способ кодирования называется потенциальным кодом, который часто используется при передаче данных между блоками компьютера.

Рисунок.2. Различные типы модуляции

При амплитудной модуляции (рис.2,13, б) для логической единицы выбирается один уровень амплитуды синусоиды несущей частоты, а для логического нуля - другой. Этот способ редко используется в чистом виде на практике из-за низкой помехоустойчивости, но часто применяется в сочетании с другим видом модуляции - фазовой модуляцией.

При частотной модуляции (рис.2, в) значения 0 и 1 исходных данных передаются синусоидами с различной частотой - f0 и f1. Этот способ модуляции не требует сложных схем в модемах и обычно применяется в низкоскоростных модемах, работающих на скоростях 300 или 1200 бит/с.

При фазовой модуляции (рис.2, г) значениям данных 0 и 1 соответствуют сигналы одинаковой частоты, нос различной фазой, например 0 и 180 градусов или 0,90,180 и 270 градусов.

В скоростных модемах часто используются комбинированные методы модуляции, как правило, амплитудная в сочетании с фазовой.

1.3 Методы доступа к передающей среде

Существуют различные процедуры обмена данными между рабочими станциями абонентских систем сети, реализующие при этом те или иные методы доступа к передающей среде. Эти процедуры называются протоколами передачи данных (ППД). Речь идет о ППД, которые относятся к категории линейных (канальных) протоколов, или протоколов управления каналом. Такое название они получили потому, что управляют потоками трафика (данных пользователя) между станциями на одном физическом канале связи. Это также протоколы нижнего уровня, так как их реализация осуществляется на нижних уровнях семиуровневой эталонной модели ВОС.

Между понятиями “протокол передачи данных нижнего уровня” и “метод доступа к передающей среде" существуют определенные различия и связь.

Метод доступа - это способ “захвата” передающей среды, способ определения того, какая из рабочих станций сети может следующей использовать ресурсы сети. Но, кроме того, так же называется набор правил (алгоритм), используемых сетевым оборудованием, чтобы направлять поток сообщений через сеть, а также один из основных признаков, по которым различают сетевое оборудование.

Протокол в общем виде - это набор правил для связи между рабочими станциями (компьютерами) сети, которые управляют форматом сообщений, временными интервалами, последовательностью работы и контролем ошибок. Протокол передачи данных нижнего уровня (протокол управления каналом) - это совокупность процедур, выполняемых на нижних уровнях семиуровневой эталонной модели ВОС по управлению потоками данных между рабочими станциями сети на одном физическом канале связи.

Методы доступа к передающей среде, определяющие правила ее “захвата”, могут быть разделены на следующие классы:

1. Селективные методы, при реализации которых с помощью соответствующего ППД рабочая станция осуществляет передачу только после получения разрешения, которое либо направляется каждой PC по очереди центральным управляющим органом сети (такой алгоритм называется циклическим опросом), либо передается от станции к станции (алгоритм передачи маркера).

2. Методы, основанные на соперничестве (методы случайного доступа, методы “состязаний" абонентов), когда каждая PC пытается “захватить” передающую среду. При этом может использоваться несколько способов передачи данных: базовый асинхронный, синхронизация режима работы канала путем тактирования моментов передачи кадров, прослушивание канала перед началом передачи данных по правилу “слушай, прежде чем говорить”, прослушивание канала во время передачи данных по правилу “слушай, пока говоришь”. Эти способы используются вместе или раздельно и обеспечивают различные варианты загруженности канала и стоимости сети.

3. Методы, основанные на резервировании времени, принадлежат к числу наиболее ранних и простых. Любая PC осуществляет передачу только в течение временных интервалов (слотов), заранее для нее зарезервированных. Все слоты распределяются между станциями либо поровну (в неприоритетных системах), либо с учетом приоритетов АС, когда некоторые PC за фиксированный интервал времени получают большее число слотов. Станция, владеющая слотом, получает канал в свое полное распоряжение. Такие методы целесообразно применять в сетях с малым числом АС, так как канал используется неэффективно.

4. Кольцевые методы предназначены специально для ЛВС с кольцевой топологией (хотя большинство указанных методов может использоваться в таких сетях). К ним относятся два метода - вставка регистров и сегментированная передача (метод временных сегментов).

При реализации метода вставки регистра рабочая станция содержит регистр (буфер), подключаемый параллельно к кольцу. В регистр записывается кадр для передачи, и станция ожидает межкадрового промежутка в моноканале. С его появлением регистр включается в кольцо (до этого он был отключен от кольца) и содержимое регистра передается в линию. Если во время передачи станция получает кадр, он записывается в буфер и передается вслед за кадром, передаваемым этой станцией. Этот метод допускает “подсадку" в кольцо нескольких кадров.

При использовании в ЛВС с кольцевой топологией сегментированной передачи временные сегменты формируются управляющей станцией сети. Они имеют одинаковую протяженность и циркулируют по кольцу. Каждая станция, периодически обращаясь в сеть, может дождаться временного сегмента, помеченного меткой “свободный”. В этот сегмент станция помещает свой кадр фиксированной длины, при этом в сегменте метка “свободный” заменяется меткой “занятый”. После доставки кадра адресату сегмент вновь освобождается. Важным преимуществом такого метода является возможность одновременной передачи кадров несколькими PC. Однако передача допускается только кадрами фиксированной длины.

Используется и другая классификационная структура. Все ППД делятся на два класса: ППД типа первичный /вторичный и равноранговые ППД. При реализации ППД первого класса в сети выделяется первичный (главный) узел, который управляет всеми остальными (вторичными) узлами, подключенными к каналу, и определяет, когда и какие узлы могут производить обмен данными. В сетях, где реализуются равноранговые (одноуровневые, одноранговые) протоколы, все узлы имеют одинаковый статус. Однако, если предварительно узлам присвоить разные приоритеты, то для них устанавливается неравноправный доступ в сеть.

Указанная классификационная структура ППД приведена на рис.3.

Рисунок.3. Классификация ППД нижнего уровня

1.4 ППД нижнего уровня типа первичный / вторичный

Один из широко распространенных подходов к управлению каналом связи основан на использовании протокола типа первичный / вторичный или главный/подчиненный, когда первичный (главный) узел системы определяет для всех других узлов (вторичных, подчиненных), подключенных к каналу, порядок (очередность) обмена данными.

ППД типа первичный/вторичный могут быть реализованы на основе нескольких технологий, образующих две группы: с опросом и без опроса.

В сетях с опросом широкое распространение получили протоколы, которые называются “опрос с остановкой и ожиданием" и “непрерывный автоматический запрос на повторение”. Оба протокола относятся к классу ППД, реализующих селективные методы доступа к передающей среде. Технология доступа к передающей среде хорошо известна по применению в многоточечных линиях глобальных сетей. Суть ее заключается в том, что первичный узел последовательно предлагает вторичным узлам подключиться к общему каналу передачи. В ответ на такой запрос вторичный узел, имея подготовленные данные, осуществляет передачу. Если подготовленных данных нет, выдается короткий пакет данных типа “данных нет”, хотя в современных системах, как правило, реакцией в таких случаях является “молчание”.

Наиболее распространенный способ организации запроса - циклический опрос, т.е. последовательное обращение к каждому вторичному узлу в порядке очередности, определяемой списком опроса. Цикл завершается после опроса всех вторичных узлов из списка. Для сокращения потерь времени, связанных с опросом неактивных вторичных узлов (т.е. узлов, по той или иной причине не готовых к передаче данных), применяются специальные варианты процедуры опроса: наиболее активные вторичные узлы опрашиваются несколько раз в течение цикла; наименее активные узлы опрашиваются один раз в течение нескольких циклов; частота, с которой опрашиваются отдельные узлы, меняется динамически в соответствии с изменением активности узлов.

В сетях с многоточечными линиями применяется также опрос по принципу “готов - вперед”. В каждой многоточечной линии опрос начинается с самого удаленного вторичного узла и затем сигнал опроса передается обратно от одного узла к другому, пока не достигнет узла, ближайшего к опрашивающему органу. Реализация такого принципа позволяет сократить время на распространение сигнала опроса от первичного узла к вторичным, однако это достигается за счет усложнения системы.

Основные преимущества систем с опросом - простота реализации ППД и невысокая стоимость используемого оборудования.

Недостатки таких систем:

простаивание вторичного узла, имеющего готовые для передачи данные, в ожидании поступления сигнала “опрос”;

неэффективное потребление дорогостоящих ресурсов канала, связанное с передачей служебной информации (сигналов опроса, сигналов ответной реакции);

наличие узкого места по надежности (отказ первичного узла приводит к отказу всей сети) и по пропускной способности, так как обмен данными между вторичными звеньями осуществляется только через первичный узел.

Одной из простейших модификаций ППД типа первичный/вторичный с опросом является протокол, называемый “опрос с остановкой и ожиданием”. В системах с таким протоколом узел после передачи кадра ожидает от адресата подтверждения в правильности его пересылки, что сопряжено с дополнительными затратами времени.

Рассмотрим пример по оценке времени на удовлетворение запроса абонента в сети с опросом.

Пример 1. Оценить ТP,MAX - максимальное время реакции на запрос абонента сети, в которой реализуется ППД (метод доступа в сеть) типа первичный/вторичный с циклическим опросом, если известно:

М=20 - количество активных абонентов в сети, т.е. абонентов, готовых немедленно передать запрос на предоставление услуги, но вынужденных ожидать своей очереди;

ТОПР = 2с - время опроса одного абонента, т.е. время на передачу сигнала опроса от центра управления сетью (ЦУС) к абоненту и получение от него ответа о готовности передачи запроса на обслуживание в центре обработки информации (ЦОИ);

VИМ= 9600 бит/с - пропускная способность информационной магистрали между ЦУС и ЦОИ;

ЕК1= 4096 бит - длина кадра-запроса на обслуживание (для всех абонентов принимается одинаковой);

Т03= 1 с - время обработки запроса в ЦОИ (принимается одинаковым для всех абонентов);

ЕК2= 8192 бита - длина кадра, передаваемого от ЦОИ к абоненту и содержащего результаты обработки запроса в ЦОИ (принимается одинаковой для всех абонентов).

Обработка запроса абонентов осуществляется последовательно: в каждом цикле сначала полностью обслуживается запрос первого абонента, затем второго и т.д. до 20-го; после этого начинается новый цикл. Время на передачу информации между узлами сети определяется емкостью передаваемой информации (временем на передачу сигнала от одного узла сети к другому пренебрегаем).

В соответствии с условиями этого примера максимальным время реакции на запрос в первом цикле будет для 20-го абонента (в последующих циклах это время для всех абонентов одинаково, поскольку они остаются активными). Его можно рассчитать по формулам:

ТP,MAX=M* (ТОПР+ЕК1/VИМ+ТОЗ+ЕК2/VИМ) =M*ТP,MIN;

ТP,MAX=20* (2+4096/9600+1+8192/9600) =20*4,28;

ТP,MAX=85,6;

Непрерывный автоматический запрос на повторение передачи данных в дуплексных системах (точнее, в системах передачи данных с решающей обратной связью), которые допускают передачу информации в обоих направлениях между узлами, поддерживающими связь. В системах с таким протоколом (он называется также протоколом ARQ) узел связи может автоматически запрашивать другой узел и повторно производить передачу данных.

В системах с протоколом ARQ на передающей и принимающей станциях устанавливаются так называемые передающие и принимающие окна. При установке окна выделяется время на непрерывную передачу (прием) фиксированного числа кадров и резервируются необходимые для такого протокола ресурсы. Кадры, принадлежащие данному окну, передаются без периодических подтверждений со стороны адресата о приеме очередного кадра. Подтверждение передается после получения всех кадров окна, что обеспечивает экономию времени на передачу фиксированного объема информации по сравнению с предыдущим протоколом. Однако приемник должен иметь достаточный объем зарезервированного буферного ЗУ для обработки непрерывно поступающего графика.

В системах ARQ важное значение имеет размер окна (количество кадров в окне). Чем больше окно, тем большее число кадров может быть передано без ответной реакции со стороны приемника и, следовательно, тем большая экономия времени достигается за счет сокращения передачи служебной информации. Но увеличение размера окна сопровождается выделением больших ресурсов и буферной памяти для обработки поступающих сообщений. Кроме того, это отражается на эффективности реализуемых способов защиты от ошибок (см. об этом в параграфе 12.4). В настоящее время в сетях, где используется протокол ARQ, предусматриваются семикадровые окна, то есть передатчик может посылать семь кадров без получения ответного подтверждения после каждого кадра.

Концепция скользящих окон, реализованная в протоколе ARQ, является достаточно простой. Сложность заключается лишь в том, что первичный узел, связанный с десятками и даже сотнями вторичных узлов, должен поддерживать окно с каждым из них, обеспечивая эффективность передачи данных, управление потоками данных.

К ППД типа первичный / вторичный без опроса, используемым в ТВС, относятся: запрос передачи/разрешение передачи; разрешить/запретить передачу; множественный доступ с временным разделением.

Первые два протокола реализуют селективные методы доступа к передающей среде, а третий - методы, основанные на резервировании времени. Общим для этих протоколов является то, что инициатива в подаче запроса на обслуживание принадлежит, как правило, вторичному органу, причем запрос подается первичному органу, если действительно имеется необходимость в передаче данных или в получении данных от другого органа. Эффективность этого протокола по сравнению с ППД с опросом будет тем выше, чем в большей степени вторичные органы отличаются друг от друга по своей активности, т.е. по частоте подачи запросов на обслуживание. В этом легко убедиться на конкретных примерах.

Пример 2. Оценить ТP,MAX при тех же исходных данных, что в примере 1, но для другого ППД, а именно: ППД типа первичный/вторичный без опроса.

В соответствии с принятым ППД из запросов абонентов в ЦУС формируется очередь, которая “рассасывается” по принципу “первый пришел - первый обслужен”. Для первого поступившего в ЦУС запроса время обслуживания будет минимальным:

ТP,MIN=ТОПР+ЕК1/VИМ+ТОЗ+ЕК2/VИМ;

ТP,MIN=2+4096/9600+1+8192/9600=4,28 с.

Максимальным время реакции на запрос будет для абонента, запрос которого оказался последним в очереди. Следовательно:

ТP,MAX=ТОПР+ТОR,MAXК1/VИМ+ТОЗ+ЕК2/VИМ=ТP,MIN+ТОR,MAX,

где ТОR,MAX - максимальное время пребывания запроса на обслуживание в очереди, причем

ТОR,MAX= (M-1) (ТP,MIN-ТОПР);

ТОR,MAX= (20-1) (4,28-2) =43,32.

Тогда

ТP,MAX=4,28+43,32=47,6 с;

Пример 3. По условиям примеров 1 и 2 найти максимально допустимое число активных абонентов в сети, если задано допустимое время реакции на запрос ТР, ДОП, равное 60 с.

По условиям примера 1:

MMAX<=ТР, ДОП/ТP,MIN;

MMAX<=60/4,28=14;

По условиям примера 11.2:

ТР, ДОП=ТP,MINОR,MAX=ТP,MIN+ (M-1) (ТP,MIN-ТОПР).

Отсюда

MMAX<= (ТР, ДОПP,MAX) / (ТP,MINОПР) +1;

MMAX<= (60-4,28) / (4,28-2) +1=25;

Как видно, при одних и тех же исходных данных и при условии, когда все абоненты сети являются активными, в сетях без опроса максимальное время реакции на запрос почти в два раза меньше, чем в сетях с опросом, а максимально допустимое число активных абонентов при ограничении времени реакции на запрос - почти в два раза больше.

Протокол типа запрос передачи/разрешение передачи применяется довольно широко в полудуплексных каналах связи ЛВС, так как взаимосвязан с распространенным короткодистанционным физическим интерфейсом RS-232-C. В соответствии с этим протоколом организация передачи данных между терминалом (вторичным органом) и ЭВМ (первичным органом) проводится в такой последовательности: выдача терминалом запроса на передачу - выдача ЭВМ сигнала разрешения на передачу терминалом - передача данных от терминала к ЭВМ - сброс сигнала машиной - прекращение передачи терминалом.

Протокол типа разрешить/запретить передачу часто используется периферийными устройствами (печатающими устройствами, графопостроителями) для управления входящим в них графиком. Главный орган (обычно ЭВМ) посылает данные в удаленный периферийный узел, скорость работы которого существенно меньше скорости работы ЭВМ и скорости передачи данных каналом. В связи с этим возможно переполнение буферного ЗУ периферийного узла. Для предотвращения переполнения периферийный узел посылает к ЭВМ сигнал “передача выключена”. Получив такой сигнал, ЭВМ прекращает передачу и сохраняет данные до тех пор, пока не получит сигнал “ разрешить передачу”, означающий, что периферийный узел готов принять новые данные, так как буферное ЗУ освободилось.

Множественный доступ с временным разделением широко используется в спутниковых сетях связи. Главная (эталонная) станция принимает запросы от вторичных (подчиненных) станций на предоставление канала связи и, реализуя ту или иную дисциплину обслуживания запросов, определяет, какие именно станции и когда могут использовать канал в течение заданного промежутка времени, т.е. предоставляет каждой станции слот. Получив слот, вторичная станция осуществляет временную подстройку, чтобы произвести передачу данных за заданный слот.

1.5 Одноранговые ППД нижнего уровня

Одноранговые ППД разделяются на две группы: без приоритетов (в неприоритетных системах) и с учетом приоритетов (в приоритетных системах).

Мультиплексная передача с временным разделением - наиболее простая равноранговая неприоритетная система, где реализуются методы доступа к передающей среде, основанные на резервировании времени. Здесь используется жесткое расписание работы абонентов: каждой станции выделяется интервал времени (слот) использования канала связи, и все интервалы распределяются поровну между станциями. Во время слота станция получает канал в свое полное распоряжение. Такой протокол отличается простотой в реализации и широко применяется в глобальных и локальных сетях.

Недостатки протокола:

возможность неполного использования канала, когда станция, получив слот, не может загрузить канал полностью из-за отсутствия необходимого объема данных для передачи;

нежелательные задержки в передаче данных, когда станция, имеющая важную и срочную информацию, вынуждена ждать своего слота или когда выделенного слота недостаточно для передачи подготовленных данных и необходимо ждать следующего слота.

Система с контролем несущей (с коллизиями) реализует метод случайного доступа к передающей среде (метод CSMA/CD) и применяется в основном в локальных сетях. Все станции сети, будучи равноправными, перед началом передачи работают в режиме прослушивания канала. Если канал свободен, станция начинает передачу; если занят, станция ожидает завершения передачи. Через некоторое случайное время она снова обращается к каналу.

Так как сеть CSMA/CD является равноранговой, в результате соперничества за канал могут возникнуть коллизии: станция B может передать свой кадр, не зная, что станция А уже захватила канал, поскольку от станции А к станции В сигнал распространяется за конечное время. В результате станция В, начав передачу, вошла в конфликт со станцией А (коллизия со станцией А).

Каждая станция способна одновременно и передавать данные, и “слушать” канал. При наложении двух сигналов в канале начинаются аномалии (в виде аномального изменения напряжения), которые обнаруживаются станциями, участвующими в коллизии.

Важным аспектом коллизии является окно коллизий, представляющее собой интервал времени, необходимый для распространения сигнала по каналу и обнаружения его любой станцией сети. В наихудших для одноканальной сети условиях время, необходимое для обнаружения столкновения сигналов (коллизии), в два раза больше задержки распространения, так как сигнал, образовавшийся в результате коллизии, должен распространяться обратно к передающим станциям. Чтобы окно коллизии было меньше, такой способ доступа целесообразно применять в сетях с небольшими расстояниями между станциями, т.е. в локальных сетях. Кроме того, вероятность появления коллизий возрастает с увеличением расстояния между станциями сети.

Коллизия является нежелательным явлением, так как приводит к ошибкам в работе сети и поглощает много канального времени для ее обнаружения и ликвидации последствий. Поэтому желательно реализовать некоторый алгоритм, позволяющий либо избежать коллизий, либо минимизировать их последствия.

В сети CSMA/CD эта проблема решается на уровне управления доступом к среде путем прекращения передачи кадра сразу же после обнаружения коллизии.

При обработке коллизии компонент управления доступом к среде передающей станции выполняет две функции:

усиливает эффект коллизии путем передачи специальной последовательности битов, называемой затором (пробкой). Цель затора - сделать коллизию настолько продолжительной, чтобы ее смогли заметить все другие передающие станции, которые вовлечены в коллизию. В ЛВС CSMA/CD затор состоит по меньшей мере из 32 бит, но не более 48 бит. Ограничение длины затора сверху необходимо для того, чтобы станции ошибочно не приняли его за действительный кадр. Любой кадр длиной менее 64 байт считается фрагментом испорченного сообщения и игнорируется принимающими станциями сети;

после посылки затора прекращает передачу и планирует ее на более позднее время, определяемое на основе случайного выбора интервала ожидания. Прерывание передачи кадра уменьшает отрицательный эффект коллизий при передаче длинных кадров.

Системы с доступом в режиме соперничества реализуются достаточно просто и при малой загрузке обеспечивают быстрый доступ к передающей среде, а также позволяют легко подключать и отключать станции. Они обладают высокой живучестью, поскольку большинство ошибочных и неблагоприятных условий приводит либо к молчанию, либо к конфликту (а обе эти ситуации поддаются обработке), и, кроме того, нет необходимости в центральном управляющем органе сети. Их основной недостаток: при больших нагрузках время ожидания доступа к передающей среде становится большим и меняется непредсказуемо, следовательно, не гарантируется обеспечение предельно допустимого времени доставки кадров. Такие системы применяются в незагруженных локальных сетях с ' небольшим числом абонентских станций (с увеличением числа станций увеличивается вероятность возникновения конфликтных ситуаций).

Метод передачи маркера широко используется в неприоритетных и приоритетных сетях с магистральной (шинной), звездообразной и кольцевой топологией. Он относится к классу селективных методов: право на передачу данных станции получают в определенном порядке, задаваемом с помощью маркера, который представляет собой уникальную последовательность битов информации (уникальный кадр.). Магистральные сети, использующие этот метод, называются сетями типа “маркерная шина”, а кольцевые сети - сетями типа “маркерное кольцо”.

В сетях типа “маркерная тина” рис.4 доступ к каналу обеспечивается таким образом, как если бы канал был физическим кольцом, причем допускается использование канала некольцевого типа (шинного, звездообразного).

Рисунок.4. Протокол типа “маркерная шина”

Право пользования каналом передается организованным путем. Маркер (управляющий кадр.) содержит адресное поле, где записывается адрес станции, которой предоставляется право доступа в канал. Станция, получив маркер со своим адресом, имеет исключительное право на передачу данных (кадра) по физическому каналу. После передачи кадра станция отправляет маркер другой станции, которая является очередной по установленному порядку владения правом на передачу. Каждой станции известен идентификатор следующей станции. Станции получают маркер в циклической последовательности, при этом в физической шине формируется так называемое логическое кольцо. Все станции “слушают” канал, но захватить канал для передачи данных может только та станция, которая указана в адресном поле маркера. Работая в режиме прослушивания канала, принять переданный кадр может только та станция, адрес которой указан в поле адреса получателя этого кадра.

В сетях типа “маркерная шина”, помимо передачи маркера, решается проблема потери маркера из-за повреждения одного из узлов сети и реконфигурации логического кольца, когда в кольцо добавляется или из него удаляется один из узлов.

Преимущества такого метода доступа очевидны:

не требуется физического упорядочения подключенных к шине станций, так как с помощью механизма логической конфигурации может быть обеспечен любой порядок передачи маркера станции, т.е. с помощью этого механизма осуществляется упорядочение использования канала станциями;

имеется возможность использования в загруженных сетях;

возможна передача кадров произвольной длины.

Протокол типа “маркерное кольцо” применяется в сетях с кольцевой топологией, которые относятся к типу сетей с последовательной конфигурацией, где широковещательный режим работы невозможен. В таких сетях сигналы распространяются через однонаправленные двухточечные пути между узлами. Узлы и однонаправленные звенья соединяются последовательно, образуя физическое кольцо (рис.3). В отличие от сетей с шинной структурой, где узлы действуют только как передатчики или приемники и отказ узла или удаление его из сети не влияет на передачу сигнала к другим узлам, здесь при распространении сигнала все узлы играют активную роль, участвуя в ретрансляции, усилении, анализе и модификации приходящих сигналов.

Как и в случае маркерной шины, в протоколе типа “маркерное кольцо” в качестве маркера используется уникальная последовательность битов. Однако маркер не имеет адреса. Он снабжается полем занятости, в котором записывается один из кодов, обозначающих состояние маркера - свободное или занятое. Если ни один из узлов сети не имеет данных для передачи, свободный маркер циркулирует по кольцу, совершая однонаправленное (обычно против часовой стрелки) перемещение (рис.5, а).

Рисунок.5. Протокол типа “маркерное кольцо”: а - маркер свободен; б - маркер занят.

В каждом узле маркер задерживается на время, необходимое для его приема, анализа (с целью установления занятости) и ретрансляции. В выполнении этих функций задействованы кольцевые интерфейсные устройства (КИУ).

Свободный маркер означает, что кольцевой канал свободен и любая станция, имеющая данные для передачи, может его использовать. Получив свободный маркер, станция, готовая к передаче кадра с данными, меняет состояние маркера на “занятый”, передает его дальше по кольцу и добавляет к нему кадр (рис.5, б). Занятый маркер вместе с кадром совершает полный оборот по кольцу и возвращается к станции-отправителю. По пути станция-получатель, удостоверившись по адресной части кадра, что именно ей он адресован, снимает копию с кадра. Изменить состояние маркера снова на свободное может только тот узел, который изменил его на занятое. По возвращении занятого маркера с кадром данных к станции-отправителю кадр удаляется из кольца, а состояние маркера меняется на свободное, после чего любой узел может захватить маркер и начать передачу данных. С целью предотвращения монополизации канала станция-отправитель не может повторно использовать возвращенный к ней маркер для передачи другого кадра данных. Если после передачи свободного маркера в кольцо он, совершив полный оборот, возвращается к станции-отправителю в таком же состоянии (это означает, что все другие станции сети не нуждаются в передаче данных), станция может совершить передачу другого кадра.

В кольцевой сети с передачей маркера также решается проблема потери маркера в результате ошибок при передаче или при сбоях в узле. Отсутствие передач в сети означает потерю маркера. Функции восстановления кольца в таких случаях выполняет сетевой мониторный узел.

Основные преимущества протокола типа “маркерное кольцо”:

имеется возможность проверки ошибок при передаче данных: станция-отправитель/получив свой кадр от станции-получателя, сверяет его с исходным вариантом кадра. В случае наличия ошибки кадр передается повторно;

канал используется полностью, его простои отсутствуют;

протокол может быть реализован в загруженных сетях;

имеется принципиальная возможность (ив некоторых сетях она

реализована) осуществлять одновременную передачу несколькими

станциями сети.

Недостатки такого протокола:

невозможность передачи кадров произвольной длины;

в простейшем (описанном выше) исполнении не предусматривается использование приоритетов, вследствие чего станция, имеющая для передачи важную информацию, вынуждена ждать освобождения маркера, что сопряжено с опасностью несвоевременной доставки данных адресату;


Подобные документы

  • Управление доступом к передающей среде. Процедуры обмена данными между рабочими станциями абонентских систем сети, реализация методов доступа к передающей среде. Оценка максимального времени реакции на запрос абонента сети при различных методах доступа.

    курсовая работа [87,2 K], добавлен 13.09.2010

  • Минимальные системные требования, предъявляемые к программе. Параметры и алгоритмы функционирования нижнего уровня сети передачи данных. Кратчайший путь между заданными ключевыми пунктами в имитационном режиме. Описание процесса отладки приложения.

    дипломная работа [802,6 K], добавлен 28.09.2015

  • Понятие и классификация систем передачи данных. Характеристика беспроводных систем передачи данных. Особенности проводных систем передачи данных: оптико-волоконных и волоконно-коаксиальных систем, витой пары, проводов. Оценка производителей аппаратуры.

    курсовая работа [993,0 K], добавлен 04.03.2010

  • Механизм создания и обмена пакетами в сети передачи информации на основе стека протоколов ZigBee. Принцип действия, особенности работы и коммутации с другими протоколами, определение основных методов и способов защиты информации, передаваемой в сети.

    курсовая работа [2,6 M], добавлен 12.09.2012

  • Разработка протоколов передачи данных электросвязи для систем сотовой и кабельной связи по аналого-цифровым телефонным линиям связи. Одновременная передача данных и голоса, коррекция ошибок и сжатия; их возможности. История и прогноз на будущее.

    реферат [72,9 K], добавлен 06.04.2010

  • Беспроводные и проводные системы передачи данных. Методы обеспечения безошибочности передачи данных в сетях. Оценка зависимости показателей эффективности. Снижение вероятности появления ошибки сбора данных в соответствии с предъявленными требованиями.

    дипломная работа [309,0 K], добавлен 14.10.2014

  • Модели и протоколы передачи данных. Эталонная модель OSI. Стандартизация в области телекоммуникаций. Стеки протоколов и стандартизация локальных сетей. Понятие открытой системы. Internet и стек протоколов TCP/IP. Взаимодействие открытых систем.

    дипломная работа [98,9 K], добавлен 23.06.2012

  • Активные и пассивные устройства физического уровня. Основные схемы взаимодействия устройств. Архитектура физического уровня. Базовая эталонная модель взаимодействия открытых систем. Параметры сред передачи данных. Характеристики сетевых концентраторов.

    курсовая работа [525,8 K], добавлен 02.02.2014

  • Технология построения сетей передачи данных. Правила алгоритма CSMA/CD для передающей станции. Анализ существующей сети передачи данных предприятия "Минские тепловые сети". Построение сети на основе технологии Fast Ethernet для административного здания.

    дипломная работа [2,5 M], добавлен 15.02.2013

  • Выбор беспроводной технологии передачи данных. Механизмы управления качеством передачи потоков. Программное обеспечение приемной и передающей станции. Эксперименты, направленные на изучение неравномерности передаваемого потока данных при доступе к среде.

    дипломная работа [1,1 M], добавлен 18.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.