Представление сигналов в базисе несинусоидальных ортогональных функций
Особенности кусочно-постоянных ортогональных функций Радемахера и Хаара, расчет спектров сложных сигналов. Представление сигналов в базисе несинусоидальных ортогональных функций, в базисе функций Хаара. Обобщенный ряд Фурье. Специфика функции Радемахера.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 29.06.2010 |
Размер файла | 783,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
НАЦИОНАЛЬНИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УКРАИНЫ
“КИЕВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ”
ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ
Кафедра физико-технических средств защиты информации
Лабораторная работа
по предмету Обработка широкополосных сигналов
Представление сигналов в базисе несинусоидальных ортогональных функций
Выполнил студент гр. ФЕ-21
Коваленко А.С.
Киев 2008
Введение
Представление сигналов в базисе несинусоидальных ортогональных функций. Обобщенный ряд Фурье. Функции Радемахера. Представление сигнала с конечной энергией в базисе функций Хаара.
Цель работы: Изучение особенностей кусочно-постоянных ортогональных функций Радемахера и Хаара. Получение практических навыков расчета спектров сложных сигналов, используя преобразование Хаара.
Теоретические сведения
Обобщенный ряд Фурье
Обобщенный ряд Фурье сигнала в выбранном базисе для сигнала с конечной энергией
может быть представлен в виде ряда
,
где - коэффициент разложения, определяющий спектр сигнала; - система ортонормированных вещественных функций (базис), причем для произвольных функций, ортонормированных на интервале , можно записать
Коэффициенты разложения определяются следующим образом
.
Для минимизации времени вычислений необходимо выбирать систему базисных функций по возможности более согласованную по форме с исследуемым сигналом. Причем необходимо также учитывать возможность более простой аппаратной или программной реализации базиса. Для импульсных сигналов представляет интерес разложение в базисах функций Хаара, Уолша и др.
Дискретное преобразование Фурье (ДПФ)
Спектральная плотность дискретного сигнала определяется выражением
, (1.1)
где n - номер дискретного отсчета непрерывной функции; - период дискретизации непрерывной функции x(t).
Согласно выражению (1.1) спектр дискретного сигнала сплошной. Но таковым он бывает только лишь при условии, что объем выборки дискретного сигнала бесконечен. В приложениях выборка отсчетов сигнала всегда конечномерна. Кроме того, по многим причинам желательно вычислять преобразование Фурье на ЭВМ. Это означает, что конечномерной является не только выборка дискретных отсчетов сигнала, но и соответствующее этой выборке число гармоник спектра дискретного сигнала.
Каждая спектральная линия состоит из амплитудной и фазовой составляющих. Следовательно, из N данных отсчетов можно получить амплитуды и фазы для N/2 дискретных частот, которые находятся в интервале от до , где - частота дискретизации равная .
Соответствующие спектральные линии повторяются в интервале от до . В области от до можно построить N линий для частот
,
где k = 0, 1, …, N -1. Если в уравнении (1.1) заменить на, то получим уравнение полностью дискретное как по времени, так и по частоте и поэтому удобное для вычислений на ЭВМ.
;
,
где k = 0, 1, …, N -1.
Выражение для обратного ДПФ следующее:
,
где n = 0, 1, …, N -1.
Быстрое преобразование Фурье (БПФ)
Классические формы прямого и обратного ДПФ просты и легко реализуемы на ЭВМ. Однако их практическое применение ограничивается большими объемами вычислений, которые растут в квадратичной зависимости от объема выборки . Так, если число отсчетов временной функции составляет N, то полный спектр-мерной последовательности дискретных сигналов определяется посредством приблизительно комплексных операций умножения и сложения. При достаточно больших может оказаться, что ресурса даже высокопроизводительных ЭВМ недостаточно для вычисления спектра в реальном времени (т.е. в темпе поступления входных данных). Существуют различные способы сокращения объема вычисления при определении дискретно спектра, которые приводят к алгоритмам быстрого преобразования Фурье. Алгоритмы БПФ основаны на устранении избыточности вычислений. Покажем на примере.
Допустим, что нужно рассчитать число А
А = ac + ad + bc + bd
В записанном виде расчет содержит четыре операции умножения и три сложения. Если число А нужно считать много раз для разных множеств данных, то его представляют в эквивалентной форме:
А = (a+b) (c+d)
которая требует выполнения лишь одной операции умножения и двух операций сложения.
Основная идея БПФ заключается в разделении исходной - точечной последовательности входных сигналов на две более короткие последовательности, ДПФ которых можно скомбинировать таким образом, чтобы получилось ДПФ исходной - точечной последовательности. Так, например, если - четное, а исходная - точечная последовательность разбита на две - точечные последовательности, то для вычисления искомого - точечного ДПФ потребуется комплексных операций умножения, т.е. вдвое меньше по сравнению с прямым вычислением ДПФ. Здесь множитель равен числу умножений, необходимых для определения - точечного ДПФ, а множитель 2 соответствует двум ДПФ, которые должны быть вычислены. Эту операцию можно повторить, вычисляя вместо - точечного ДПФ две точечные ДПФ (предполагая, что - четное) и сокращая тем самым объем вычислений еще в два раза. Выигрыш в два раза является приблизительным, поскольку не учитывается, каким образом из ДПФ меньшего размера образуется искомое - точечное ДПФ.
Функции Радемахера и их представление
Функции Радемахера составляют неполную систему ортонормированных функций, что ограничивает их применение. Но их широкое использование обусловлено тем, что на их основе можно получить полные функций, например, Хаара и Уолша. Непрерывная Функция Радемахера с индексом m, которая обозначается как rad(m,x), имеет вид последовательности прямоугольных импульсов, содержит периодов на полуоткрытом интервале [0;1) и принимает значения +1 или -1. Исключением является rad (0,x), которая имеет вид единичного импульса. Функции Радемахера периодические с периодом 1, т.е. rad(m,x) = rad(m,x+1). Кроме того, они периодические и на более коротких интервалах: , , Их можно получить с помощью рекуррентного соотношения: ,
Получить функции Радемахера можно также с помощью следующего соотношения:
Первые четыре функции Радемахера представлены на рис.1.1 а, б
а) б)
Рис. 1.1. Первые четыре непрерывные функции Радемахера:
a) на интервале [0; 1); б) на интервале [-0.5; 0.5);
Пример разложения функции f(x) в базисе функций Радемахера, используя общую формулу (1.2) представлен на рис 1.2.
, (1.2)
где
Рис.1.2. Пример разложения в базисе функций Радемахера.
Дискретные функции Радемахера
Дискретные функции Радемахера являются отсчетами непрерывных функций Радемахера. Каждый отсчет расположен в середине связанного с ним элемента непрерывной функции. Обозначаются дискретные функции Радемахера как Rad(m,x). Для дискретных функций Радемахера удобно использовать матрицу, каждая строка которой является дискретной функцией Радемахера. Например, для третьей диады (m=3) имеем: (для удобства обозначим “+1” как “+”, а “-1” как “-” )
Функции Хаара и их представление
Множество непрерывных функций Хаара составляет периодическую, ортонормированную и полную систему функций. Широкое распространение функции Хаара получили в вэйвлет-анализа и сжатии изображений. Рекуррентное соотношение, которое дает возможность сформировать непрерывную функцию , имеет вид:
где и , N - общее количество функций.
Первые восемь функций Хаара представлены на рис. 1.3.
Рис.1.3. Первые восемь непрерывных функции Хаара.
Дискретные функции Хаара
По аналогии с дискретными функциями Радемахера дискретные функции Хаара являются отсчетами непрерывных функций Хаара. Каждый отсчет расположен в середине связанного с ним элемента непрерывной функции. Обозначаются дискретные функции Хаара как .
Построим матрицу дискретных значений функций Хаара для , в которой каждая строка отвечает соответствующей функции.
При цифровой обработке сигналов, вэйвлет-анализе, сжатии изображений, анализе и синтезе логических функций, часто применяются ненормированные функции Хаара, которые на отдельных участках принимают одно из трех значений +1; 0; -1.
Преобразование Хаара
Любую интегрируемую на интервале функцию можно представить рядом Фурье по системе функций Хаара:
, где (1.3)
с коэффициентами
. (1.4)
Домашнее задание
1. Выражения для непрерывных функций Радемахера
2. Матрица для системы дискретных функций Радемахера при N = 5.
Rad(0,t) |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
|
Rad(1,t) |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
|
Rad(2,t) |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
-1 |
|
Rad(3,t) |
1 |
1 |
1 |
1 |
-1 |
-1 |
-1 |
-1 |
1 |
1 |
1 |
1 |
-1 |
-1 |
-1 |
-1 |
1 |
1 |
1 |
1 |
-1 |
-1 |
-1 |
-1 |
1 |
1 |
1 |
1 |
-1 |
-1 |
-1 |
-1 |
|
Rad(4,t) |
1 |
1 |
-1 |
-1 |
1 |
1 |
-1 |
-1 |
1 |
1 |
-1 |
-1 |
1 |
1 |
-1 |
-1 |
1 |
1 |
-1 |
-1 |
1 |
1 |
-1 |
-1 |
1 |
1 |
-1 |
-1 |
1 |
1 |
-1 |
-1 |
|
Rad(5,t) |
1 |
-1 |
1 |
-1 |
1 |
-1 |
1 |
-1 |
1 |
-1 |
1 |
-1 |
1 |
-1 |
1 |
-1 |
1 |
-1 |
1 |
-1 |
1 |
-1 |
1 |
-1 |
1 |
-1 |
1 |
-1 |
1 |
-1 |
1 |
-1 |
3. Графики функций от до .
4. Выражение для нормированных функций Хаара.
5. Графики нормированных функций от до .
6. Графики ненормированных функций от до .
Выполнение работы
1. Используя преобразование Хаара рассчитаем амплитудный и фазовый спектр заданного сигнала
А. Используем нормированные функции Хаара.
Б. Используем ненормированные функции Хаара
2. Синтезируем заданный сигнал и построим графики для обоих случаев
А. Используем нормированные функции Хаара
Б. Используем ненормированные функции Хаара
Выводы по работе
В данной лабораторной работе мы изучили особенности кусочно-линейных ортогональных функций Радемахера и Харра. Получили выражения для непрерывных функций Харра и Радемахера, построили графики этих функций. Построили матрицу для системы дискретных функций Радемахера при N = 5. Для функций Харра задали и построили графики нормированных и ненормированных функций. Получили практические навыки расчета спектров сложных сигналов, используя преобразование Хаара, найдя амплитудный и фазовый спектры заданного сигнала. После синтезирования сигналов, в случае нормированных функций Харра, получили исходный сигнал только после перехода на нормированное время. Это объясняется погрешностью программных расчетов. В случае же нормированных функций, заданный сигнал получить не удалось из-за, опять же, программных погрешностей вычисления.
Подобные документы
Характеристика сигнала и его представление в виде математического ряда. Условия ортогональности двух базисных функций. Ряд Фурье, его интегральное преобразование и практическое использование в цифровой технике для обработки дискретной информации.
реферат [69,9 K], добавлен 14.07.2009Дискретизация сигналов - преобразование функций непрерывных переменных в дискретные; возможность их восстановления с заданной точностью. Дискретно-квантованные способы представления процессов, отличие от аналоговых: полиномы Лежандра, функции Уолша.
реферат [805,6 K], добавлен 13.03.2011Вычисление значения входного и выходного сигналов в n-равноотстоящих точках, вывод на экран таблицы. Структура программы: модули, список идентификаторов функций, интерфейс. Исходный код программы. Проверка расчетов в Maxima и построение графиков.
курсовая работа [1,4 M], добавлен 14.07.2012Структура блока обработки данных, синтез операционного и управляющего автоматов с микропрограммируемой логикой в структурном базисе комплекта 1804. Разработка алгоритма регенерации динамического ЗУ, особенности интерфейса шины процессор – память ISA.
курсовая работа [3,3 M], добавлен 23.12.2014Изучение принципа работы цифрового автомата для сложения двоичных чисел, представленных в форме с фиксированной запятой, на базисе алгебры Буля. Правила построения операционных и функциональных схем отдельных устройств, логических систем и функций.
курсовая работа [1,2 M], добавлен 24.01.2014Определение функций выходных сигналов и сигналов возбуждения. Построение функциональной схемы управляющего автомата. Способы выполнения операции умножения с фиксированной и с плавающей запятой. Получение функциональной ГСА. Кодирование состояния автомата.
курсовая работа [60,9 K], добавлен 15.02.2011Использование цифровых сигналов для кодирования информации, регистрации и обработки; унификация операций преобразования на всех этапах ее обращения. Задачи и физическая трактовка процессов идеальной интерполяции сигналов алгебраическими полиномами.
реферат [1,3 M], добавлен 12.03.2011Разложение функций по переменным. Совершенная дизъюнктивная нормальная форма. Разрешимoсть задач в классической теории алгоритмов и их трудоемкость. Память и время как количественная характеристика алгоритма (применительно к машине Тьюринга и ЭВМ).
дипломная работа [59,9 K], добавлен 17.04.2009Проблема представления знаний. Представление декларативных знаний как данных, наделенных семантикой. Представление процедурных знаний как отношений между элементами модели, в том числе в виде процедур и функций. Представление правил обработки фактов.
курсовая работа [33,1 K], добавлен 21.07.2012Описание алгоритма работы устройства. Составление и минимизация комбинационных схем регистра. Представление основных элементов в требуемом базисе. Работа сумматора и компаратора, описание ее принципа и назначение. Составление временной диаграммы.
курсовая работа [717,0 K], добавлен 19.06.2014