Інтеграл між двома кривими в Delphi
Алгоритм, програма на мові Pascal, розрахунок за методом трапецій площі між графіками функцій. Значення відрізку інтегрування. Цикл із заздалегідь визначеним числом повторень. Розрахована площа фігури між лініями графіків. Вирішення визначеного інтегралу.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | контрольная работа |
Язык | украинский |
Дата добавления | 18.02.2010 |
Размер файла | 1,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Зміст
1. Постановка задачі
2. Математичний опис рішення задачі
3. Алгоритм програми
4. Лістинг програми
5. Контрольний приклад
Висновки
Список використаної літератури
1. Постановка задачі
Скласти програму на мові Pascal розрахунку за методом трапецій площі між графіками функцій F1(x) = cos x2 + 1 i F2(x) = 2x^2 з точністю е = 0,0001.
2. Математичний опис рішення задачі
Розрахунок за методом трапецій площі між графіками функцій F1(x) = cos x2 + 1 i F2(x) = 2x^2 (рис.1) здійснюється вирішенням визначеного інтегралу , який саме і визначає площі під графіками. За властивістю інтегралів , тому в якості підінтегральної функції ми беремо функцію F(x) = cos x2 + 1 - 2x^2
Рис.1.
Саме метод трапеції реалізований на мові Pascal у наступному фрагменту програми, у якому для розрахунків використано цикл із заздалегідь визначеним числом повторень:
h:=(b-a)/n;
yp:=0;
x:=a;
for i:=1 to n-1 do
begin
x:=x+h;
yp:=yp+(cos(sqr(x))+1-exp(sqr(x)*ln(2)));
end;
yn:=cos(sqr(a))+1-exp(sqr(a)*ln(2));
yk:=cos(sqr(b))+1-exp(sqr(b)*ln(2));
s:=((yk+yn)/2+yp)*h;
де,
n - кількість відрізків, на які розбивається дільниця інтегрування;
i - допоміжна змінна циклу;
a - початкова межа інтегрування;
b - кінцева межа інтегрування;
h - довжина відрізку інтегрування;
yn - значення підінтегральної функції в початкової точці (точка а);
yk - значення підінтегральної функції в кінцевої точці (точка а);
yp - одне з проміжних значень підінтегральної функції;
s - потрібне значення визначеного інтегралу (площа) за методом трапецій.
3. Алгоритм програми
Алгоритм програми наведено на рис.2.
Рис.2. Алгоритм програми
4. Лістинг програми
Лістинг програми наведений нижче:
unit Unit1;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, ExtCtrls, StdCtrls;
type
TForm1 = class(TForm)
StaticText1: TStaticText;
StaticText2: TStaticText;
StaticText3: TStaticText;
StaticText4: TStaticText;
Edit1: TEdit;
Edit2: TEdit;
Edit3: TEdit;
Edit4: TEdit;
Button1: TButton;
Button2: TButton;
Image1: TImage;
Button3: TButton;
procedure Button1Click(Sender: TObject);
procedure Button2Click(Sender: TObject);
procedure Button3Click(Sender: TObject);
private
{ Private declarations }
public
{ Public declarations }
end;
var
Form1: TForm1;
implementation
{$R *.dfm}
procedure TForm1.Button1Click(Sender: TObject);
var a,b,s,h,x,yp,yn,yk:real; i,n:integer;
begin
a:=StrtoFloat(Edit1.Text);
b:=StrtoFloat(Edit2.Text);
n:=StrtoInt(Edit3.Text);
h:=(b-a)/n;
yp:=0;
x:=a;
for i:=1 to n-1 do
begin
x:=x+h;
yp:=yp+(cos(sqr(x))+1-exp(sqr(x)*ln(2)));
end;
yn:=cos(sqr(a))+1-exp(sqr(a)*ln(2));
yk:=cos(sqr(b))+1-exp(sqr(b)*ln(2));
s:=((yk+yn)/2+yp)*h;
Edit4.Text:=copy(FloattoStr(s),1,6)
end;
procedure TForm1.Button2Click(Sender: TObject);
begin
Edit1.Text:='';
Edit2.Text:='';
Edit3.Text:='';
Edit4.Text:='';
end;
procedure TForm1.Button3Click(Sender: TObject);
begin
close
end;
end.
5. Контрольний приклад
У перше поле вводимо початкове значення відрізку інтегрування, наприклад, 0;
у друге поле вводимо кінцеве значення відрізку інтегрування, наприклад, 0,5 (причому десяткову частину дробу відділяємо комою); кількість меж, на які буде розбито відрізок інтегрування вводимо у трете поле, наприклад, 10000 (чім більше, тім точніше результат); натискаємо кнопку Розрахувати. Розрахована площа фігури між лініями графіків, та межами 0 і 0,5 з'являється у четвертому останньому полі і дорівнюватиме 0,4664 (рис.3).
Рис.3.
Висновки
В даній роботі розроблено алгоритм і програму на мові Pascal розрахунку за методом трапецій площі між графіками функцій F1(x) = cos x2 + 1 i F2(x) = 2x^2 з точністю е = 0,0001.
Розрахунок за методом трапецій площі між графіками функцій F1(x) = cos x2 + 1 i F2(x) = 2x^2 здійснювався вирішенням визначеного інтегралу , який саме і визначив площі під графіками. За властивістю інтегралів , тому в якості підінтегральної функції було обрано функцію F(x) = cos x2 + 1 - 2x^2.
Список використаної літератури
1. Фаронов В.В. Pascal. Начальный курс. Учебное пособие, - М.: Номидж, 1997, - 616 с.
2. Руденко В.Д., Макарчук О.М., Патланжоглу М.О. Практичний курс інформатики /За ред. В.М.Мадзігона. - К: Фенікс, 1997.
3. Інформатика та комп'ютерна техніка: Навч.-метод. посібник / За заг. ред. О.Д.Шарапова. - К.: КНЕУ, 2002. - 534 с.
4. Я.М. Глинський. Інформатика: Навч. посібник для загальноосвітніх навчальних закладів. - Львів: «Деол», 2002. - 256 с.
Подобные документы
Складання програми на мові Pascal розрахунку за методом трапецій площі між графіками функцій. Розрахунок за методом трапецій площі між графіками функцій. Алгоритм програми. Кількість відрізків, на які розбивається дільниця інтегрування. Межа інтегрування.
контрольная работа [1,2 M], добавлен 22.04.2009Знаходження площі фігури методом трапеції. Обчислення площ криволінійних трапецій. Геометричний сенс чисельника. Розробка програми для демонстрації нижчезазначеної математичної функції. Використання базових бібліотек класів, написаних на мові С++.
курсовая работа [1,0 M], добавлен 24.12.2013Чисельне інтегрування, формула Сімпсона, значення інтегралу від функцій та формули трапецій. Знаходження коренів рівняння методом Ньютона. Наближення функцій поліномами вищого порядку. Метод Ейлера та його модифікації. Визначення похибок розрахунків.
контрольная работа [6,1 M], добавлен 04.07.2010Аналіз методу чисельного інтегрування, з використанням методу Гауса при обчисленні інтегралу третього, четвертого та п’ятого порядків. Алгоритм та лістинг програми, що розв’язує інтеграл методом Гауса, знаходить похибку, виводить і порівнює результати.
курсовая работа [140,4 K], добавлен 09.02.2010Розробка програми для спрощення та автоматизації обчислення інтегралів методом трапецій у визначених межах інтегрування із заданою точністю. Елементи програми "Інтеграл", алгоритм, способи логічної структуризації, засоби обміну даними, мова програмування.
курсовая работа [234,5 K], добавлен 12.12.2013Дослідження методів чисельного інтегрування Чебишева та Трапеції, порівняння їх точності. Способи розробки програми на компіляторі Turbo C++, яка знаходить чисельне значення вказаного інтегралу. Обґрунтування вибору інструментальних засобів програми.
курсовая работа [262,4 K], добавлен 18.09.2010Характеристика основних методів чисельного інтегрування та розв’язання інтегралу методом Чебишева третього, четвертого та п’ятого порядків. Оцінка похибок та порівняння їх з точним обчисленнями отриманими в математичному пакеті Mathcad 2001 Professional.
курсовая работа [127,7 K], добавлен 03.12.2009Огляд та варіантний аналіз чисельних методів дослідження еліптичного інтегралу першого порядку. Опис методів дослідження еліптичного інтегралу першого порядку на ЕОМ. Планування вхідних та вихідних даних, описовий алгоритм головної програми, його схема.
курсовая работа [148,0 K], добавлен 30.11.2009Опис методів обчислення формули Ньютона-Котеса та поліномів Лежандра. Розгляд програмування процедур вводу меж інтегрування, ініціації елементів квадратурних формул Гауса та Чебишева. обчислення визначеного інтеграла і виводу результатів на екран.
курсовая работа [82,1 K], добавлен 23.04.2010Принципи технології створення програмних продуктів. Набір файлів, необхідних для створення програми в Delphi, варіанти роботи з ними. Програмування графічного інтерфейсу користувача. Зовнішній вигляд і лістинг програми, використані команди і компоненти.
курсовая работа [550,5 K], добавлен 03.01.2014