Нахождение рациональных корней многочлена с рациональными коэффициентами
Многочлены или полиномы от одной переменной. Изучение полиномиальных уравнений и их решений. Введение в рассмотрение нуля, отрицательных и комплексных чисел. Развитие методов разложения в ряды и полиномиальной интерполяции в математическом анализе.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Программирование на языке высокого уровня |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | Ёжик |
Дата добавления | 20.02.2011 |
Размер файла | 176,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Нахождение собственных чисел и разработка фундаментальной системы решений. Построение фундаментальной матрицы методом Эйлера. Зависимость Жордановой формы матрицы А от ее собственных чисел. Решение задачи Коши. Построение фазового портрета в MATLAB.
курсовая работа [1,4 M], добавлен 20.12.2013Основная теорема существования корней в С+, ее доказательство с помощью нескольких лемм. Распределение корней на плоскости комплексной переменной. Распределение вещественных корней полинома с вещественными коэффициентами. Приближенное вычисление корней.
контрольная работа [469,4 K], добавлен 06.03.2013Нахождение с заданной погрешностью корней уравнения. Оценка скорости сходимости. Нахождение промежутка, в котором содержится какой-либо корень уравнения для методов итераций и Ньютона. Разработка текста компьютерных программ для решения данных уравнений.
лабораторная работа [253,9 K], добавлен 19.12.2012Программный продукт, способный решать уравнения с одной переменной методом Ньютона (касательных). Он прост в эксплуатации, имеет интуитивно понятный интерфейс, выстраивает график уравнения, что очень важно для пользователя. Реализация решений в программе.
курсовая работа [169,3 K], добавлен 29.01.2009Изучение численных методов решения нелинейных уравнений, используемых в прикладных задачах. Нахождение корня уравнения методом простой итерации и методом касательных (на примере уравнения). Отделение корней графически. Программная реализация, алгоритм.
курсовая работа [1,7 M], добавлен 15.06.2013Составление алгоритма и программного обеспечения для реализации конечноразностных интерполяционных формул Ньютона, Гаусса и Стирлинга. Описание метода полиномиальной интерполяции. Изучение метода оптимального исключения для решения линейных уравнений.
курсовая работа [19,8 K], добавлен 25.12.2013Выполнение отделения корней для заданной функции. Описание уточнения корней с использованием метода дихотомии, Ньютона, простой итерации. Выявление абсолютной погрешности методов. Создание листинга программ. Рассмотрение результатов работы программ.
лабораторная работа [16,1 K], добавлен 19.04.2015Сущность теории приближений и характеристика интерполяции как процесса получения последовательности интерполирующих функций. Полиномы Эрмита и интерполирование с кратными узлами. Программная разработка приложения по оценке погрешности интерполирования.
курсовая работа [1,1 M], добавлен 05.06.2014Написание программы для вычисления функции f(x), изображенной на графике, используя оператор if. Построение графика функции. Составление программы, вычисляющей сумму 101 из последовательно расположенных нечетных чисел. Нахождение корней системы уравнений.
контрольная работа [694,4 K], добавлен 07.08.2013Особенности решения уравнений с одной переменной методом половинного деления. Оценка погрешности метода простой итерации. Суть решения уравнений в пакете Mathcad. Векторная запись нелинейных систем. Метод Ньютона решения систем нелинейных уравнений.
курсовая работа [2,1 M], добавлен 12.12.2013