Планирование машинного эксперимента с имитационной моделью системы массового обслуживания

Моделирование системы массового обслуживания. Анализ зависимости влияния экзогенных переменных модели однофазной одноканальной СМО на эндогенные переменные. План машинного эксперимента множественного регрессионного анализа и метода наименьших квадратов.

Рубрика Программирование, компьютеры и кибернетика
Вид лабораторная работа
Язык русский
Дата добавления 15.06.2010
Размер файла 107,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Лабораторная работа №4

Планирование машинного эксперимента с имитационной моделью системы массового обслуживания

1. Цель работы

Целью работы является:

1. Изучение методов планирования машинного эксперимента с моделью системы.

2. Приобретение практических навыков по оценке коэффициентов модели заданной функциональной зависимости

3. Проведение имитационного эксперимента в соответствии с построенным планом

2.Теоретические сведения

2.1 Планирование эксперимента

Эффективность машинных экспериментов с имитационными моделями систем массового обслуживания существенно зависят от выбора плана эксперимента, так как план определяет объем и порядок проведения вычислений на ЭВМ, приемы накопления и статистической обработки результатов моделирования системы и в целом влияет на эффективность использования ЭВМ при моделировании.

Планирование эксперимента - это средство построения математических моделей различных процессов, способ сокращения времени и средств, повышение производительности труда исследователя.

Под планированием эксперимента понимается процедура выбора числа опытов и условий их проведения, необходимых для решения поставленной задачи с требуемой точностью. Результаты эксперимента представляются в виде математической модели, обладающей хорошими статистическими свойствами.

Такой моделью является абстрактная схема типа «черного ящика» вида:

Y=F(x), (1)

Где Y={y1,y2…ym} - множество выходных переменных, называемых реакциями или откликами ( эндогенные переменные)

X={x1,x2,…xn}- множество переменных называемых факторами(экзогенные переменные)

F- функция, связывающая реакцию с факторами, называемая функцией реакции или отклика.

При проведении машинного эксперимента с моделью для оценки характеристик процесса функционирования исследуемой системы необходимо создать также условия, которые способствовали бы выявлению факторов, влияющих на реакцию системы. Для этого необходимо, в первую очередь, установить область экспериментирования.

Локальная область эксперимента задается выбором комбинации основных уровней факторов xi( i= 1,n), их интервалами варьирования xi( i= 1,n) и центром эксперимента хi0( i= 1,n). Затем следует описать функциональную зависимость, оценить необходимое число реализаций и их порядок в эксперименте.

При классическом методе планирования опыта варьируется один фактор, а при математическом планировании эксперимента одновременно изменяются все факторы.

Одной из задач математического планирования эксперимента является получение модели описывающей реакции получаемой системы на много факторные экзогенные переменные. Наиболее распространенными и полно отвечающими задачам статистического моделирования являются полиномиальные модели вида:

y= a0+aixi+aijxixj +aijkxixjxk+…… ( 2)

Для оценки коэффициентов данного уравнения используется метод множественной регрессии, оснований на методе наименьших квадратов.

После выбора модели планирования следующей задачей является планирование и проведение эксперимента.

Для планирования эксперимента составляется матрица планирования, в которой отражаются условия изменения уровней факторов xi( i= 1,n).

Эксперимент, в котором реализуются все возможные сочетания уровней называется полным факторным экспериментом (ПФЭ). Количество всех возможных испытаний определяется по формуле:

N=qn (3 )

где q - число уровней изменения факторов.

n - число факторов

При q = 2 получается двухуровневый план эксперимента. Такой план называется планом N=2n. . Для получения данного плана необходимо все факторы варьировать на двух уровнях: нижнем xi0-?xi и верхнем xi0+? xi, расположенных симметрично, относительно центра эксперимента. Для упрощения и унификации записи условий опытов и облегчения обработки данных используются кодированные значения: на нижнем уровне -1 и на верхнем уровне +1. Тогда условия эксперимента удобно представить в виде таблицы- матрицы планирования, в которой строки соответствуют различным опытам, а столбцы значениям факторов. Так, для трех факторов (n=3 ) матрица планирования примет вид (Таблица 1). При этом в таблице добавлены “фиктивные переменные” единичного столбца х0 и столбцов произведений х12, х13, х23 и х123, которые используются для оценки свободного члена а0 и эффектов взаимодействия а121323, а123.

Таблица 1

Матрица планирования

Номер опыта

Факторы

х0

х1

х2

х3

х12

х13

х23

х123

1

2

3

4

5

6

7

8

+1

+1

+1

+1

+1

+1

+1

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

-1

+1

+1

-1

-1

+1

+1

-1

-1

-1

-1

+1

+1

+1

+1

+1

-1

-1

+1

-1

-1

-1

+1

+1

-1

+1

-1

-1

+1

-1

+1

+1

+1

-1

-1

-1

-1

+1

+1

-1

+1

+1

-1

+1

-1

-1

+1

Как видно из таблицы, количество опытов равно N=23=8.

Рассматриваемый полный факторный эксперимент 2n обладает тремя основными свойствами:

1. Симметричность относительно центра эксперимента. Это значит, что алгебраическая сумма элементов вектор - столбца для каждого фактора равна 0, т.е.

ij=0 (4 )

где i - номер фактора (i=1,n);

j - номер опыта (j=1,N ).

2. Условием нормировки, т.е. сумма квадратов элементов каждого столбца равна числу опытов:

ij 2= N (i=1,n) (5 )

3.Ортогональностью, это означает, что сумма почленных произведений любых двух вектор- столбцов матрицы равна 0, т.е.

ij *хkj=0 (ik; i, k=1,n) (6 )

Данные свойства, особенно условие ортогональности, позволяют значительно упростить определение коэффициентов уравнения множественной регрессии. В этом случае оценки коэффициентов регрессионной модели можно вычислить по формуле:

ai=ij*yj /N (i=0,n) (7 )

А коэффициенты парных взаимодействий соответственно по формуле:

aik=ij*xkj*yj /N (ik; i, k=1,n) (8)

Количество испытаний в ПФЭ значительно превосходит число определяемых коэффициентов линейной модели плана эксперимента, т.е. ПФЭ обладает большой избыточностью и поэтому возникает проблема сокращения числа опытов. В связи с этим используется дробный факторный эксперимент (ДФЭ), который представляет часть полного факторного эксперимента. Матрица планирования для дробного факторного эксперимента называется дробной репликой. Различают регулярные и нерегулярные дробные реплики.

Регулярные реплики образуются из ПФЭ 2n делением пополам, на четыре части, восемь частей ит.д., т.е. на число кратное 2. Они называются соответственно: полурепликой, четверть- репликой, - реплики и т.д.. ДФЭ обозначается как 2n-k, где

k - кратность деления ПФЭ 2n на части 2k. Например, ДФЭ типа 4-2 означает, что ПФЭ из N=24=16 делится на 22=4 и получается план эксперимента, состоящий из N=24-2=4 опытов.

Если регулярные реплики умножить на нечетные числа, больше единицы, то получаются нерегулярные реплики. Как например, реплики, реплики, реплики и т.д. являются нерегулярными.

Использование ДФЭ позволяет значительно сократить количество экспериментов и тем самым сэкономить ресурсы ЭВМ.

2.2 Пример планирования машинного эксперимента для модели СМО

Пусть необходимо провести машинный эксперимент по определению функциональной зависимости среднего времени ожидания заявки в очереди (ож) от факторов: интенсивность поступления заявок л, интенсивности обслуживания м и емкости буфера L для однофазной одноканальной системы массового обслуживания со следующими параметрами: интенсивность поступления заявок л=155; интенсивность обслуживания м=105; количество мест в очереди L=102.

Для определения заданной зависимости представим математическую модель системы в виде:

y= a0+a1x1+a2x2+a3x3, (9)

x1= л ; x2= м ; x3= L ; y=ож

Так как порядок модели n=3, то матрица планирования для полного факторного эксперимента примет вид (Таблица 2).

Таблица 2. Матрица планирования для модели СМО

Номер опыта

х0

х1

х2

х3

y

1

+1

-1

-1

-1

2

+1

+1

-1

-1

3

+1

-1

+1

-1

4

+1

+1

+1

-1

5

+1

-1

-1

+1

6

+1

+1

-1

+1

7

+1

-1

+1

+1

8

+1

+1

+1

+1

При этом следует помнить, что кодированные значения факторов соответствуют -1 нижнему уровню фактора, а +1 верхнему уровню фактора:

· для интенсивности поступления заявок л нижний уровень равен лk=10 , а верхний лb=20;

· для интенсивности обслуживания м нижний уровень равен мk=5, а верхний 15 мb;

· для количества мест в очереди L нижний уровень Lk =8и верхний Lb=12

Поэтому при моделировании этих уровней факторов в блоке управления необходимо организовать их изменения. Это можно сделать путем введения нуля циклов. Тогда блок- схема управления вариантами моделирования примет вид (Рис1)

Рис1. Блок- схема управления вариантами моделирования

Для определения среднего времени ожидания ож можно воспользоваться блок- схемой Рис лабораторной работы 3. Результаты моделирования заносятся в Таблицу 2 в колонку для y.

По Таблице 2 и формуле 7 определяются коэффициенты выбранной модели планирования эксперимента аi (i=0.3). Таким образом, зависимость среднего времени ожидания от интенсивности поступления заявок, интенсивности обслуживания и количества мест в очереди примет вид:

ож =…..л+….м+…L (10)

2. Содержание исследования

В состав исследования, проводимого в данной лабораторной работе, входит:

1. Анализ зависимости влияния экзогенных переменных модели однофазной одноканальной СМО на эндогенные переменные.

2. Построение плана машинного эксперимента на основе множественного регрессионного анализа и метода наименьших квадратов.

3.Моделирование системы массового обслуживания

В качестве объекта моделирования рассматривается однофазная одноканальная система, структура, которой показана на Рис 2:

м

очередь

л

L

Рис2Структура исследуемой системы

Параметры системы:

· интенсивность поступления заявок л=155;

· интенсивность обслуживания м=105;

· длина очереди L=102;

Варианты лабораторной работы приведены в таблице 3, в которой ПФЭ полный факторный эксперимент; ДФЭ - дробный факторный эксперимент; ож - среднее время ожидания заявок в очереди; сист- среднее время пребывания заявок в системе; - средняя длина очереди; Ротк - вероятность отказа; А - абсолютная пропускная способность системы; q- относительная пропускная способность системы; Кпр - коэффициент простоя системы.

4. Порядок выполнения работы

1. Ознакомится с методическими указаниями по выполнению данной лабораторной работы.

2. Получить у преподавателя вариант задания на составление плана машинного эксперимента для СМО

3. Составить матрицу планирования для проведения машинного эксперимента

4. Разработать блок- схему моделирующего алгоритма в соответствии с содержанием проводимого исследования

5. Составить программу на одном из языков программирования

6. Произвести отладку программы и решение поставленной задачи на ПЭВМ

7. Оформить отчет

Интерфейс программы

Листинг программы

Private Sub Command1_Click()

Dim L As Integer

Dim Tobs As Currency

Dim Tosv As Currency

Dim Toch() As Currency

Dim Potk As Currency

Dim q As Currency

Dim a(8) As Currency

Dim Kpr As Currency

List1.Clear

List2.Clear

List2.AddItem ("Коэффициенты:")

For lyamda = 10 To 20 Step 10

For nyu = 5 To 15 Step 10

For L = 8 To 12 Step 4

ReDim Toch(L) As Currency

x = 0.5

k = 0

Kotk = 0

Noch = 0

Toj = 0

Tsis = 0

Kobs = 0

Tnezan = 0

Tpost = 0

Tosv = 0

10: x = Rnd(x)

T = -1 / lyamda * Log(x)

Tpost = Tpost + T

k = k + 1

If k > 50 Then

GoTo 100

End If

30: If Tpost < Tosv Then

GoTo 20

Else

GoTo 40

End If

20: If Noch = L Then

Kotk = Kotk + 1

GoTo 10

Else

Noch = Noch + 1

Toch(Noch) = Tpost

GoTo 10

End If

40: If Noch = 0 Then

Kobs = Kobs + 1

Tnezan = Tpost - Tosv

x = Rnd(x)

Tobs = -1 / nyu * Log(x)

Tosv = Tpost + Tobs

Tsis = Tsis + Tobs

GoTo 10

Else

Voj = Tosv - Toch(1)

For i = 1 To Noch - 1

Toch(i) = Toch(i + 1)

Next i

Noch = Noch - 1

Toj = Toj + Voj

x = Rnd(x)

Tobs = -1 / nyu * Log(x)

Tsis = Tsis + Tobs + Voj

Tosv = Tosv + Tobs

Kobs = Kobs + 1

GoTo 30

End If

100: Kpr = Tnezan / Tsis

Potk = Kotk / k

q = 1 - Potk

Ab = q * L

j = j + 1

List1.AddItem (Str(j) + "-е испытание при:")

List1.AddItem ("Лямбда=" + Str(lyamda) + " Нью=" + Str(nyu) + " L=" + Str(L))

List1.AddItem ("Количество заявок в" + Str(j) + " испытании = " + Str(k) + " и потраченное время =" + Str(Tsis))

List1.AddItem ("Вероятность отказа=" + Str(Potk))

List1.AddItem ("Коэффициент простоя=" + Str(Kpr))

List1.AddItem ("Относительная пропускная способность" + Str(q))

List1.AddItem ("Обсолютная пропускная способность" + Str(Ab))

List1.AddItem ("")

List1.AddItem ("")

a(j) = (lyamda + nyu + L) * Toj

List2.AddItem ("a(" + Str(j - 1) + ")=" + Str(a(j)))

Next L

Next nyu

Next lyamda

Label1.Caption = "Tож = " + Str(a(1)) + " + " + Str(a(2)) + "lymda" + " + " + Str(a(3)) + "nyu" + " + " + Str(a(4)) + "L"

End Sub


Подобные документы

  • Общая характеристика системы массового обслуживания, исходные данные для ее создания. Особенности построения алгоритма имитационной модели задачи о поступлении заявок (клиентов) в канал (парикмахерскую). Описание функционирования математической модели.

    курсовая работа [154,1 K], добавлен 19.05.2011

  • Построение имитационной модели системы массового обслуживания, список и содержание ее активностей. Блок-схема алгоритма моделирования и текст процедуры. Моделирование случайных независимых величин и процессов. Оптимизация системы массового обслуживания.

    курсовая работа [4,0 M], добавлен 28.05.2013

  • Методика и особенности составления имитационной модели системы массового обслуживания (СМО). Анализ и статистическая обработка показателей эффективности СМО путем решения уравнения Колмогорова, их сравнение с результатами аналитического моделирования.

    курсовая работа [609,2 K], добавлен 31.01.2010

  • Определение назначения и описание функций имитационных моделей стохастических процессов систем массового обслуживания. Разработка модели описанной системы в виде Q-схемы и программы на языке GPSS и C#. Основные показатели работы имитационной модели.

    курсовая работа [487,4 K], добавлен 18.12.2014

  • Методика системного исследования реальной динамической сложной системы посредством разработки ее имитационной модели. Разработка программы реализации алгоритма имитационного моделирования системы массового обслуживания "Интернет-провайдерская фирма".

    курсовая работа [2,0 M], добавлен 20.01.2010

  • Характеристика системы массового обслуживания, куда поступают заявки обслуживания. Особенности моделирования системы массового обслуживания. Имитация работы системы массового обслуживания с относительными приоритетами. Отчеты полного факторного плана.

    курсовая работа [1,1 M], добавлен 14.07.2012

  • Построение имитационной модели системы массового обслуживания в среде Borland Delphi 7.0 с учетом того, что параметры модели – детерминированные величины. Моделирование случайных независимых величин и процессов. Оптимизация системы массового обслуживания.

    курсовая работа [1,4 M], добавлен 28.05.2013

  • Практические навыки системного исследования реальной динамической сложной системы на основе построения ее имитационной модели. Автоматизация работы по расчету эффективности системы массового обслуживания с понятным интерфейсом. Выбор алгоритма решения.

    курсовая работа [1,0 M], добавлен 18.08.2009

  • Основные элементы системы массового обслуживания, ее модель, принципы и задачи работы. Выбор входных распределений. Построение генераторов случайных чисел. Логика работы программы, планирование эксперимента. Результаты моделирования и рекомендации.

    курсовая работа [2,5 M], добавлен 05.11.2009

  • Характеристика функций имитационного моделирования. Знакомство с особенностями имитационного моделирования агрегированной системы массового обслуживания. Анализ программы GPSSWorld: рассмотрение возможностей, способы составления имитационной модели.

    курсовая работа [1,6 M], добавлен 27.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.