Исследование устойчивости, решение задач линейного программирования графическим способом

Строение системы уравнений-ограничений и ее переменных, графический способ решения задач линейного программирования на плоскости. Выражение неизвестных через две независимые переменные, являющиеся координатными осями графика. Значение целевой функции.

Рубрика Программирование, компьютеры и кибернетика
Вид лабораторная работа
Язык русский
Дата добавления 07.01.2011
Размер файла 61,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Московский Авиационный Институт

(МАИ)

Отчет

По лабораторной работе №1

Тема:

"Исследование устойчивости, решение задач линейного программирования графическим способом"

Отчет выполнила:

Студентка М-22 группы

Косьяненко А.Е.

Серпухов, 2010г.

Цель работы

Применить теоретические сведения на практике, исследовать устойчивость, а также научиться решать задачи линейного программирования графическим способом.

Задание:

Решение

Заданная система уравнений-ограничений состоит из четырех уравнений-ограничений и имеет шесть переменных , поэтому данную задачу можно решить графическим способом на плоскости. Для этого необходимо выразить все неизвестные через две независимые переменные, в качестве которых, например, можно принять и , являющиеся в таком случае координатными осями графика.

Из системы уравнений-ограничений следует:

Подставляя полученные значения получим уравнение целевой функции:

W=0.7х1+0.75х2+60.8+-1.6(16-2х1)-4.8(10-2х2)+14.4-3.6х1+8.5-1.7х2+15.6-2.6х1-1.95х2=0.9х1+6.7х2+25.7

Каждому из этих неравенств соответствует полуплоскость на графике, образующих ОДР, выделенную точками .

Точки(х2=0, х1=2; х2=1, х1=0.5; х1=4; х2=5; х2=0, х1=12; х2=4, х1=6)

Опираясь на уравнение ЦФ необходимо определить точку в ОДР, а значит и значение и , максимизирующую ЦФ.

Можно по существующей зависимости между и (при ) построить основную линию (проходящую из начала координат), используя следующее уравнение:

.(1.12)

Далее можно построить вектор-градиент , который будет исходить из начала координат в точку , т.к. вектор-градиент можно найти следующим образом:

Найдем максимальные и минимальные значения функции: Max(5;2); min(0;2).

Подставим значения в целевую функцию:

W=1.4+3.45+48+7.2+0.65=61

Ответ:61.

Если изменить значение в заданной линейной задаче, то можно высчитать результат:

W=0.7х1+0.85х2+0.8х3+0.9х4+0.85х5+0.65х6

Упростим до целевой функции:

W=0.9х1+6.8х2+25.7

Х1=2

Х2=5

Х4=8

Х5=0

Х6=1

х3=60

Рассчитываем значение целевой функции:

W=0.7*2+0.85*5+0.8*60+0.9*8+0.65=61,5

Вывод

В ходе лабораторного занятия, я освоила теоретические знания на практике, познакомилась с графическим способом решения задач линейного программирования.


Подобные документы

  • Постановка задачи линейного программирования и формы ее записи. Понятие и методика нахождения оптимального решения. Порядок приведения задач к каноническому виду. Механизмы решения задач линейного программирования аналитическим и графическим способами.

    методичка [366,8 K], добавлен 16.01.2010

  • Расчет производства необходимого количества продукции для получения максимальной прибыли предприятия. Математическая модель для решения задач линейного программирования. Построение ограничений и целевых функций. Исследование чувствительности модели.

    задача [74,7 K], добавлен 21.08.2010

  • Число линейно независимых уравнений. Отрицательная базисная переменная. Симплекс-метод решения задач линейного программирования. Экстремальное значение целевой функции. Метод северо-западного угла. Задачи нелинейного программирования. Функция Лагранжа.

    контрольная работа [257,5 K], добавлен 29.09.2008

  • Анализ метода линейного программирования для решения оптимизационных управленческих задач. Графический метод решения задачи линейного программирования. Проверка оптимального решения в среде MS Excel с использованием программной надстройки "Поиск решения".

    курсовая работа [2,2 M], добавлен 29.05.2015

  • Математическое программирование. Линейное программирование. Задачи линейного программирования. Графический метод решения задачи линейного программирования. Экономическая постановка задачи линейного программирования. Построение математической модели.

    курсовая работа [581,5 K], добавлен 13.10.2008

  • Теоретическая основа линейного программирования. Задачи линейного программирования, методы решения. Анализ оптимального решения. Решение одноиндексной задачи линейного программирования. Постановка задачи и ввод данных. Построение модели и этапы решения.

    курсовая работа [132,0 K], добавлен 09.12.2008

  • Изучение и укрепление на практике всех моментов графического метода решения задач линейного программирования о производстве журналов "Автомеханик" и "Инструмент". Построение математической модели. Решение задачи с помощью электронной таблицы Excel.

    курсовая работа [663,9 K], добавлен 10.06.2014

  • Практические навыки моделирования задач линейного программирования и их решения графическим и симплекс-методом с использованием прикладной программы SIMC. Моделирование транспортных задач и их решение методом потенциалов с помощью программы TRAN2.

    контрольная работа [199,8 K], добавлен 15.06.2009

  • Нахождение минимума целевой функции для системы ограничений, заданной многоугольником. Графическое решение задачи линейного программирования. Решение задачи линейного программирования с использованием таблицы и методом отыскания допустимого решения.

    курсовая работа [511,9 K], добавлен 20.07.2012

  • Постановка задачи нелинейного программирования. Определение стационарных точек и их типа. Построение линий уровней, трехмерного графика целевой функции и ограничения. Графическое и аналитическое решение задачи. Руководство пользователя и схема алгоритма.

    курсовая работа [2,5 M], добавлен 17.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.