Исследование устойчивости, решение задач линейного программирования графическим способом
Строение системы уравнений-ограничений и ее переменных, графический способ решения задач линейного программирования на плоскости. Выражение неизвестных через две независимые переменные, являющиеся координатными осями графика. Значение целевой функции.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 07.01.2011 |
Размер файла | 61,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Московский Авиационный Институт
(МАИ)
Отчет
По лабораторной работе №1
Тема:
"Исследование устойчивости, решение задач линейного программирования графическим способом"
Отчет выполнила:
Студентка М-22 группы
Косьяненко А.Е.
Серпухов, 2010г.
Цель работы
Применить теоретические сведения на практике, исследовать устойчивость, а также научиться решать задачи линейного программирования графическим способом.
Задание:
Решение
Заданная система уравнений-ограничений состоит из четырех уравнений-ограничений и имеет шесть переменных , поэтому данную задачу можно решить графическим способом на плоскости. Для этого необходимо выразить все неизвестные через две независимые переменные, в качестве которых, например, можно принять и , являющиеся в таком случае координатными осями графика.
Из системы уравнений-ограничений следует:
Подставляя полученные значения получим уравнение целевой функции:
W=0.7х1+0.75х2+60.8+-1.6(16-2х1)-4.8(10-2х2)+14.4-3.6х1+8.5-1.7х2+15.6-2.6х1-1.95х2=0.9х1+6.7х2+25.7
Каждому из этих неравенств соответствует полуплоскость на графике, образующих ОДР, выделенную точками .
Точки(х2=0, х1=2; х2=1, х1=0.5; х1=4; х2=5; х2=0, х1=12; х2=4, х1=6)
Опираясь на уравнение ЦФ необходимо определить точку в ОДР, а значит и значение и , максимизирующую ЦФ.
Можно по существующей зависимости между и (при ) построить основную линию (проходящую из начала координат), используя следующее уравнение:
.(1.12)
Далее можно построить вектор-градиент , который будет исходить из начала координат в точку , т.к. вектор-градиент можно найти следующим образом:
Найдем максимальные и минимальные значения функции: Max(5;2); min(0;2).
Подставим значения в целевую функцию:
W=1.4+3.45+48+7.2+0.65=61
Ответ:61.
Если изменить значение в заданной линейной задаче, то можно высчитать результат:
W=0.7х1+0.85х2+0.8х3+0.9х4+0.85х5+0.65х6
Упростим до целевой функции:
W=0.9х1+6.8х2+25.7
Х1=2
Х2=5
Х4=8
Х5=0
Х6=1
х3=60
Рассчитываем значение целевой функции:
W=0.7*2+0.85*5+0.8*60+0.9*8+0.65=61,5
Вывод
В ходе лабораторного занятия, я освоила теоретические знания на практике, познакомилась с графическим способом решения задач линейного программирования.
Подобные документы
Постановка задачи линейного программирования и формы ее записи. Понятие и методика нахождения оптимального решения. Порядок приведения задач к каноническому виду. Механизмы решения задач линейного программирования аналитическим и графическим способами.
методичка [366,8 K], добавлен 16.01.2010Расчет производства необходимого количества продукции для получения максимальной прибыли предприятия. Математическая модель для решения задач линейного программирования. Построение ограничений и целевых функций. Исследование чувствительности модели.
задача [74,7 K], добавлен 21.08.2010Число линейно независимых уравнений. Отрицательная базисная переменная. Симплекс-метод решения задач линейного программирования. Экстремальное значение целевой функции. Метод северо-западного угла. Задачи нелинейного программирования. Функция Лагранжа.
контрольная работа [257,5 K], добавлен 29.09.2008Анализ метода линейного программирования для решения оптимизационных управленческих задач. Графический метод решения задачи линейного программирования. Проверка оптимального решения в среде MS Excel с использованием программной надстройки "Поиск решения".
курсовая работа [2,2 M], добавлен 29.05.2015Математическое программирование. Линейное программирование. Задачи линейного программирования. Графический метод решения задачи линейного программирования. Экономическая постановка задачи линейного программирования. Построение математической модели.
курсовая работа [581,5 K], добавлен 13.10.2008Теоретическая основа линейного программирования. Задачи линейного программирования, методы решения. Анализ оптимального решения. Решение одноиндексной задачи линейного программирования. Постановка задачи и ввод данных. Построение модели и этапы решения.
курсовая работа [132,0 K], добавлен 09.12.2008Изучение и укрепление на практике всех моментов графического метода решения задач линейного программирования о производстве журналов "Автомеханик" и "Инструмент". Построение математической модели. Решение задачи с помощью электронной таблицы Excel.
курсовая работа [663,9 K], добавлен 10.06.2014Практические навыки моделирования задач линейного программирования и их решения графическим и симплекс-методом с использованием прикладной программы SIMC. Моделирование транспортных задач и их решение методом потенциалов с помощью программы TRAN2.
контрольная работа [199,8 K], добавлен 15.06.2009Нахождение минимума целевой функции для системы ограничений, заданной многоугольником. Графическое решение задачи линейного программирования. Решение задачи линейного программирования с использованием таблицы и методом отыскания допустимого решения.
курсовая работа [511,9 K], добавлен 20.07.2012Постановка задачи нелинейного программирования. Определение стационарных точек и их типа. Построение линий уровней, трехмерного графика целевой функции и ограничения. Графическое и аналитическое решение задачи. Руководство пользователя и схема алгоритма.
курсовая работа [2,5 M], добавлен 17.12.2012