Алгоритм редукции графов для расчета динамики генных сетей в рамках синхронной булевой модели
Проведения анализа существующих генных сетей. Три типа вершин актуальных объектов для поточечной редукции: источники, стоки и проводящие вершины. Существующие методы декомпозиции. Алгоритм "walktrap" на основе случайных блужданий и определения смежности.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 28.02.2012 |
Размер файла | 2,6 M |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
- Численные расчёты динамики генных сетей на основе редукции графов в рамках синхронной булевой модели
Теория функционирования генных сетей. Разработка алгоритма анализа динамики генной сети с целью выявления всех её стационарных и циклических устойчивых состояний в рамках булевой модели генной сети. Создание программного средства, его реализующего.
курсовая работа [1,4 M], добавлен 28.02.2012 Алгоритм декомпозиции графов и расчеты динамики логических сетей. Преобразование пространства булевых векторов. Описание блоков программной реализации и их взаимодействие. Разработка программы "слияния" статистик на основе алгоритма объединения.
дипломная работа [111,8 K], добавлен 07.03.2012Пример матрицы смежности для соответствующей сети. Функция распределения степеней узлов. Вариант матрицы смежности для взвешенной сети. Распределение степеней для случайных графов. Требования к интерфейсу. Алгоритм модели Баррат-Бартелэмью-Веспиньяни.
контрольная работа [1,4 M], добавлен 13.06.2012Математические графы, области их применения. Способы раскраски вершин и ребер графов, задачи на их применение. Разработка алгоритма, работающего на основе операций с матрицей смежности. Описание логической структуры программы. Пример зарисовки графа.
курсовая работа [145,5 K], добавлен 27.01.2013Графы: определения, примеры, способы изображения. Смежные вершины и рёбра. Путь в ориентированном и взвешенном графе. Матрица смежности и иерархический список. Алгоритм Дейкстры - алгоритм поиска кратчайших путей в графе. Работа в программе "ProGraph".
презентация [383,8 K], добавлен 27.03.2011Создание сайта-каталога программного обеспечения с поиском на основе булевой модели. Достоинства и недостатки булевой модели. Алгоритм поиска по слову в базе данных системы. Разработка руководства пользователя и администратора по работе с системой.
курсовая работа [1,0 M], добавлен 28.04.2014Использование компьютерных сетей для передачи данных. Основные преимущества использования корпоративных сетей, защищенных от доступа извне физически или при помощи аппаратно программных средств сетевой защиты. Сетевой экран и алгоритмы шифрования.
дипломная работа [573,3 K], добавлен 25.09.2014Использование понятий из теории графов при разработке сетей и алгоритмов маршрутизации. Построение матрицы смежности и взвешенного ориентировочного графа. Результаты работы алгоритмов Дейкстры и Беллмана-Форда. Протоколы обмена маршрутной информацией.
курсовая работа [334,1 K], добавлен 20.01.2013Алгоритмы нахождения кратчайшего пути: анализ при помощи математических объектов - графов. Оптимальный маршрут между двумя вершинами (алгоритм Декстры), всеми парами вершин (алгоритм Флойда), k-оптимальных маршрутов между двумя вершинами (алгоритм Йена).
курсовая работа [569,6 K], добавлен 16.01.2012Этапы нахождения хроматического числа произвольного графа. Анализ примеров раскраски графа. Характеристика трудоемкости алгоритма раскраски вершин графа Мейниеля. Особенности графов, удовлетворяющих структуру графов Мейниеля, основные классы графов.
курсовая работа [1,1 M], добавлен 26.06.2012