Дослідження методів чисельного інтегрування

Аналіз методу чисельного інтегрування, з використанням методу Гауса при обчисленні інтегралу третього, четвертого та п’ятого порядків. Алгоритм та лістинг програми, що розв’язує інтеграл методом Гауса, знаходить похибку, виводить і порівнює результати.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык украинский
Дата добавления 09.02.2010
Размер файла 140,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Характеристика основних методів чисельного інтегрування та розв’язання інтегралу методом Чебишева третього, четвертого та п’ятого порядків. Оцінка похибок та порівняння їх з точним обчисленнями отриманими в математичному пакеті Mathcad 2001 Professional.

    курсовая работа [127,7 K], добавлен 03.12.2009

  • Дослідження методів чисельного інтегрування Чебишева та Трапеції, порівняння їх точності. Способи розробки програми на компіляторі Turbo C++, яка знаходить чисельне значення вказаного інтегралу. Обґрунтування вибору інструментальних засобів програми.

    курсовая работа [262,4 K], добавлен 18.09.2010

  • Огляд та варіантний аналіз чисельних методів дослідження еліптичного інтегралу першого порядку. Опис методів дослідження еліптичного інтегралу першого порядку на ЕОМ. Планування вхідних та вихідних даних, описовий алгоритм головної програми, його схема.

    курсовая работа [148,0 K], добавлен 30.11.2009

  • Опис методів обчислення формули Ньютона-Котеса та поліномів Лежандра. Розгляд програмування процедур вводу меж інтегрування, ініціації елементів квадратурних формул Гауса та Чебишева. обчислення визначеного інтеграла і виводу результатів на екран.

    курсовая работа [82,1 K], добавлен 23.04.2010

  • Дослідження застосування різницевого методу для розв’язання крайової задачі. Дослідження проводиться на прикладі заданого диференційного рівняння. Дається опис методу та задачі в цілому. Застосування при обчисленні формули Чебишева і формули Гаусса.

    курсовая работа [157,2 K], добавлен 03.12.2009

  • Розробка програми для спрощення та автоматизації обчислення інтегралів методом трапецій у визначених межах інтегрування із заданою точністю. Елементи програми "Інтеграл", алгоритм, способи логічної структуризації, засоби обміну даними, мова програмування.

    курсовая работа [234,5 K], добавлен 12.12.2013

  • Обґрунтування переваги чисельного диференціювання функції з використанням інтерполяційної формули Стірлінга по відношенню до формул Ньютона, Гауса та Бесселя. Розробка оптимального алгоритму обчислення другої похідної. Лістинг, опис і тестування програми.

    курсовая работа [483,2 K], добавлен 21.10.2013

  • Алгоритм, програма на мові Pascal, розрахунок за методом трапецій площі між графіками функцій. Значення відрізку інтегрування. Цикл із заздалегідь визначеним числом повторень. Розрахована площа фігури між лініями графіків. Вирішення визначеного інтегралу.

    контрольная работа [1,3 M], добавлен 18.02.2010

  • Дослідження методу сплайнів для вирішення задачі інтерполяції. Вибір методів технічних та інструментальних засобів вирішення задачі, їх алгоритми. Розробка логічної частини програми, результати обчислень. Розв’язання задачі в пакетах прикладних програм.

    курсовая работа [278,5 K], добавлен 03.12.2009

  • Задача на пошук найкоротшої відстані, маршруту і шляху холостого пробігу машин. Обгрунтування вибору методу та алгоритм розв'язання задачі. Опис математичної моделі задачі. Інтерфейс та лістинг программи. Заповнення таблиці суміжності для заданого графу.

    курсовая работа [315,5 K], добавлен 26.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.