Нахождение корней уравнения методом простой итерации (ЛИСП-реализация)
Изучение способов решения линейных и квадратных уравнений методом простой итерации: доказательство теоремы о сходимости и геометрическая интерпретация. Анализ математического решения задачи, ее функциональной модели, блок-схемы и программной реализации.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | реферат |
Язык | русский |
Дата добавления | 25.01.2010 |
Размер файла | 411,5 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Изучение численных методов решения нелинейных уравнений, используемых в прикладных задачах. Нахождение корня уравнения методом простой итерации и методом касательных (на примере уравнения). Отделение корней графически. Программная реализация, алгоритм.
курсовая работа [1,7 M], добавлен 15.06.2013Преобразование матрицы системы линейных алгебраических уравнений (СЛАУ) с помощью алгоритма Гаусса. Решение задачи методом простой итерации. Создание блок-схемы и текста программы для решения СЛАУ, реализованной на языке программирования Turbo Pascal.
курсовая работа [1,2 M], добавлен 15.06.2013Использование повторяющегося процесса. Нахождение решения за определенное количество шагов. Применение метода хорд и метода простой итерации. Методы нахождения приближенного корня уравнения и их применение. Построение последовательного приближения.
курсовая работа [849,1 K], добавлен 15.06.2013Определение недостатков итерационного численного способа нахождения корня заданной функции (метод Ньютона). Рассмотрение основ математического и алгоритмического решения поставленной задачи, ее функциональной модели, блок-схемы и программной реализации.
курсовая работа [364,8 K], добавлен 25.01.2010Рассмотрение двух способов решения систем линейных алгебраических уравнений: точечные и приближенные. Использование при программировании метода Гаусса с выбором главного элемента в матрице и принципа Зейделя. Применение простой итерации решения уравнения.
курсовая работа [879,8 K], добавлен 05.06.2012Методы решения нелинейных уравнений: прямые и итерационные. Методы решения трансцендентных, алгебраических уравнений. Метод деления отрезка пополам, Ньютона, простой итерации. Поиск корня уравнения методом простой итерации с помощью электронных таблиц.
контрольная работа [2,4 M], добавлен 16.12.2011Решение нелинейного уравнения шаговым методом, методом половинного деления, методом Ньютона и простой итерации с помощью программы Mathcad. Разбиение промежутка на число n интервалов. Условия сходимости корня. Составление программы для решения на С++.
лабораторная работа [207,5 K], добавлен 10.05.2012Методика реализации решения нелинейного уравнения в виде процедуры-подпрограммы следующими методами: хорд, касательных (Ньютона), простой итерации, половинного деления. Основные методы уточнения корней уравнения. Программное решение задачи, алгоритм.
курсовая работа [4,0 M], добавлен 27.03.2011Решение задачи Коши для дифференциального уравнения методом Рунге-Кутта и Адамса с автоматическим выбором шага и заданным шагом. Интерполирование табличной функции. Численное решение системы линейных алгебраических уравнений методами простой итерации.
методичка [35,8 K], добавлен 15.03.2009Описание методов дихотомии (половинного деления) и касательных. Их применение для решения нелинейных уравнений. Графическое отделение корней. Блок-схемы алгоритмов. Тексты (листинги) программ на языке Delphi. Тестовый пример решения задачи с помощью ЭВМ.
курсовая работа [944,6 K], добавлен 15.06.2013