контрольная работа Численное интегрирование методом прямоугольников
Обзор элементов языка программирования Паскаль, решение задач путем использования численных методов на компьютере. Алгоритм нахождения интеграла функции с помощью метода прямоугольников. Комплекс технических средств, необходимых для решения задачи.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Программирование, компьютеры и кибернетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 07.06.2010 |
Размер файла | 36,6 K |
Подобные документы
Интегрирование аналитических выражений с помощью приближенных численных методов. Реализация численного интегрирования функции двух переменных. Понятие двойного интеграла, его геометрический смысл. Решение с помощью метода ячеек, программная реализация.
курсовая работа [398,5 K], добавлен 25.01.2010Выбор математической модели задачи. Применение численного интегрирования и его методы: прямоугольников, парабол, увеличения точности, Гаусса и Гаусса-Кронрода. Суть математического метода аппроксимации. Интерполяционные методы нахождения значений функции.
курсовая работа [172,4 K], добавлен 08.04.2009Применения численного интегрирования. Интерполяционные методы нахождения значений функции. Методы прямоугольников, трапеций и парабол. Увеличение точности, методы Гаусса и Гаусса-Кронрода. Функциональные модели и программная реализация решения задачи.
курсовая работа [450,9 K], добавлен 25.01.2010Разработка программы, которая по заданной самостоятельно функции будет выполнять интегрирование методом прямоугольников. Блок-схема алгоритма вычисления интеграла (функция rectangle_integrate). Экспериментальная проверка программы, ее текст на языке C.
курсовая работа [232,0 K], добавлен 27.05.2013Решение нелинейного уравнения: отделение корней и уточнение корня по методу хорда. Численное интегрирование: метод входящих прямоугольников. Вычисление площади криволинейной трапеции с разбивками. Решение примера методом интегрирования по частям.
курсовая работа [197,9 K], добавлен 20.01.2009Методы левых и правых прямоугольников численного интегрирования для вычисления интегралов. Геометрический смысл определённого интеграла. Программная реализация, блок-схемы алгоритмов. Результат работы тестовой программы. Решение задачи с помощью ЭВМ.
курсовая работа [180,4 K], добавлен 15.06.2013Решение нелинейного уравнения. Отделение корней - исследование количества, характера и расположения корней, нахождение их приближенных значений. Уточнение корня до заданной степени точности. Численное интегрирование и квадратурные формулы прямоугольников.
курсовая работа [51,9 K], добавлен 04.02.2009Разработка программы, выполняющей интегрирование методом входящих прямоугольников с кратностями и методом Симпсона. Расчет определённого интеграла приближенным и точным методами. Оценка погрешности при вычислении приблизительного значения интеграла.
контрольная работа [71,7 K], добавлен 13.02.2016Логические конструкции в системе программирования Паскаль. Команды языка программирования, использование функций, процедур. Постановка и решение задач механики в среде системы Паскаль. Задачи статики, кинематики, динамики решаемые с помощью языка Паскаль.
курсовая работа [290,9 K], добавлен 05.12.2008MPI - библиотека передачи сообщений на языке программирования C/C++, ее переносимость, стандартизация, эффективная работа, функциональность. Форматы фактических вызовов MPI. Метод прямоугольников для приближенного вычисления определенного интеграла.
курсовая работа [286,0 K], добавлен 20.06.2012