контрольная работа  Решение смешанной краевой задачи для гиперболического уравнения разностным методом

Сетка, аппроксимация частных производных разностными отношениями. Операторная форма записи дифференциальных краевых задач. Нормы, погрешность приближённого решения. Сходимость и её порядок. Cмешанная краевая задача с граничными условиями третьего рода.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

 #######  ##        ##         #######  ##        
##     ## ##    ##  ##    ##  ##     ## ##    ##  
       ## ##    ##  ##    ##         ## ##    ##  
 #######  ##    ##  ##    ##   #######  ##    ##  
       ## ######### #########        ## ######### 
##     ##       ##        ##  ##     ##       ##  
 #######        ##        ##   #######        ##  

Введите число, изображенное выше:

Рубрика Программирование, компьютеры и кибернетика
Вид контрольная работа
Язык русский
Дата добавления 08.10.2011
Размер файла 501,6 K

Подобные документы

  • Исследование конечно-разностных методов решения краевых задач путем моделирования в среде пакета Micro-Cap V. Оценка эффективности и сравнительной точности этапов получения решений методом математического, аналогового моделирования и численными расчетами.

    курсовая работа [324,3 K], добавлен 23.06.2009

  • Численный метод для решения однородного дифференциального уравнения первого порядка методом Эйлера. Решение систем дифференциальных уравнений методом Рунге–Кутта. Решение краевой задачи. Уравнения параболического типа, а также Лапласа и Пуассона.

    курсовая работа [163,5 K], добавлен 27.05.2013

  • Программа вычисления интеграла методом прямоугольников. Решение задачи Коши для дифференциальных уравнений. Модифицированный метод Эйлера. Методы решения краевой задачи для обыкновенного дифференциального уравнения. Задачи линейного программирования.

    методичка [85,2 K], добавлен 18.12.2014

  • Решение конечно-разностной задачи Дирихле для уравнения Лапласа в прямоугольной области. Погрешность замены дифференциального уравнения разностным. Использование схемы узлов при получении сеточных уравнений. Сущность метода Зайделя. Листинг программы.

    курсовая работа [348,5 K], добавлен 26.04.2011

  • Прикладной математический пакет Maple. Набор инструментов для работы с дифференциальными уравнениями в частных производных. Метод разделения переменных. Метод функций Грина. Построение формального решения на входном Maple-языке. Основные типы операций.

    курсовая работа [193,2 K], добавлен 03.08.2012

  • Графическое решение задач. Составление математической модели. Определение максимального значения целевой функции. Решение симплексным методом с искусственным базисом канонической задачи линейного программирования. Проверка оптимальности решения.

    контрольная работа [191,1 K], добавлен 05.04.2016

  • Понятие разностных схем, сеточная функция, пространство и нормы. Аппроксимация дифференциальных операторов. Корректность разностной схемы и сходимость. Одномерное уравнение переноса с переменными и постоянными коэффициентами. Схема бегущего счета.

    дипломная работа [388,3 K], добавлен 11.11.2009

  • Краткий обзор решения транспортных задач. Экономическая интерпретация поставленной задачи. Разработка и описание алгоритма решения задачи. Построение математической модели. Решение задачи вручную и с помощью ЭВМ. Анализ модели на чувствительность.

    курсовая работа [844,3 K], добавлен 16.06.2011

  • Постановка задачи линейного программирования и формы ее записи. Понятие и методика нахождения оптимального решения. Порядок приведения задач к каноническому виду. Механизмы решения задач линейного программирования аналитическим и графическим способами.

    методичка [366,8 K], добавлен 16.01.2010

  • Теоретические основы вариационного исчисления и область применения метода. Практическое решение задач оптимизации методом вариационного исчисления. Нахождение экстремума функционала и частных производных. Составление дифференциального уравнения Эйлера.

    лабораторная работа [99,5 K], добавлен 16.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.