Внедрение технологии спектрального уплотнения на участке ст. Свердловск – ст. Тюмень

Характеристика оконечных пунктов и выбор трассы. Выбор оптического кабеля. Параметры сигналов и компонентов. Определение длины участка по затуханию и дисперсии. Анализ поляризационно-зависимых потерь. Применение мультиплексоров и демультиплексоров.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 09.03.2013
Размер файла 3,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Содержание

  • Введение
  • 1. Обоснование проектных решений
    • 1.1 Характеристика оконечных пунктов
    • 1.2 Выбор трассы
    • 1.3 Расчет пропускной способности проектируемой системы DWDM
    • 1.4 Выбор оптического кабеля
    • 1.5 Обоснование технологии
  • 2. Конструкция и архитектура аппаратных средств системы DWDM OptiX BWS 1600G
    • 2.1 Выбор типа аппаратуры
    • 2.2 Структура системы
    • 2.3 Оптический оконечный мультиплексор (OTM)
    • 2.4 Оптический линейный усилитель (OLA)
    • 2.5 Оптический мультиплексор с функцией вставки/выделения (OADM)
    • 2.6 Регенератор
    • 2.7 Оптический корректор
  • 3. Обоснование технических требований к основным компонентам системы DWDM
    • 3.1 Мультиплексоры и демультиплексоры
    • 3.2 Оптические усилители
    • 3.3 Передатчики
    • 3.4 Фотоприемники
    • 3.5 Компенсаторы дисперсии
    • 3.6 Аттенюаторы
  • 4. Измерения и настройка систем DWDM
    • 4.1 Параметры сигналов и компонентов
    • 4.2 Методы измерения и контроля
    • 4.3 Анализатор оптического спектра
    • 4.4 Анализ поляризационно-зависимых потерь
    • 4.5 Рефлектометрические измерения
  • 5. Расчет параметров регенерационного участка
    • 5.1 Определение длины участка по затуханию и дисперсии
    • 5.2 Расчет дисперсии
    • 5.3 Расчет энергетического бюджета
  • 6. Расчет стрелы провеса кабеля
  • 7. Расчет показателей надежности
  • 8. Экономическая эффективность инвестиций
    • 8.1 Исходные данные
    • 8.2 Расчет объема капитальных вложений
    • 8.3 Определение объема услуг и доходов от основной деятельности
    • 8.4 Расчет годовой суммы эксплутационных расходов
    • 8.5 Расчет прибыли и убытков
    • 8.6 Определение экономической эффективности проекта
  • 9. Расчет интегрального критерия уровня готовности к информационному обществу
  • 10. Защита от электростатического разряда (ESD)
  • 11. Охрана труда и техника безопасности
  • 12. Безопасность жизнедеятельности, природопользование и охрана окружающей среды при разработке проекта
  • Заключение
  • Библиография

Введение

В последние два десятилетия прошедшего и в начале текущего века происходит смена эпохи индустриально-технологического развития передовых государств эпохой информационно-технологической. Ярким проявлением этого процесса является невиданный по скорости и результатом прогресс в создании новых методов и средств телекоммуникаций. Бурное развитие технологии производства систем и средств связи с практически неограниченной пропускной способностью и дальностью передачи и массовое их использование, по сути, привели к информационно-технологической революции и формированию глобального информационного общества. Сегодня телекоммуникации - это одна из самых быстроразвивающихся высокотехнологических и наукоемких отраслей мировой экономики. Уровень развития технологических разработок, производства и внедрения в различные сферы деятельности телекоммуникационных систем во многом формируют положительный образ передового государства.

Значение магистральных сетей в мире связи очень велико. Именно от их надежной работы зависит функционирование международной и междугородней телефонной связи, Internet, корпоративных сетей многих крупных компаний.

Одним из основных направлений современного научно-технического прогресса является всестороннее развитие волоконно-оптических систем связи, обеспечивающих возможность доставки на значительные расстояния чрезвычайно большого объёма информации с наивысшей скоростью. Уже сейчас имеются волоконно-оптические линии связи (ВОЛС) большой информационной емкости с длиной регенерационных участков более 200 км. Однако область применения волоконно-оптических систем передачи (ВОСП) не ограничивается передачей данных на большие расстояния для непосредственной связи, а имеет более широкий спектр, от бортовых систем до локальных (LAN) и глобальных (WAN) волоконно-оптических телекоммуникационных сетей. Весьма перспективно использование волоконно-оптической техники в кабельном телевидении, так как она позволяет с одной стороны обеспечить высокое качество передачи изображения, а с другой -- существенно расширить возможности информационного обслуживания абонентов. Развитие телекоммуникационных технологий по пути многоцелевого назначения для телефонной и телеграфной связи, телевидения, передачи данных, мультимедиа приложений и т. д. как единой цифровой сети интегрированного обслуживания (ISDN), а затем появившейся технологии асинхронного режима переноса (АТМ) как связующей с транспортными сетями синхронной цифровой иерархии (SDH) вообще немыслимо без использования ВОЛС.

Пропускная способность оптических сетей никогда не бывает избыточной. Волоконно-оптические линии, не задействованные сегодня, уже завтра будут загружены “под завязку”. Преобладание трафика Internet и других пакетных сетей в суммарном объеме всей передаваемой информации требует совершенно новых подходов к организации каналов связи и приводит к проблеме нехватки волокна. Преодолеть ее можно было бы за счет прокладки дополнительных линий, однако на это требуются огромные затраты.

Потребности в дальнейшем наращивании пропускной способности систем передачи информации стимулировала исследования в направлении поиска новых методов решения этой задачи. Одной из перспективных технологий систем передачи с использованием ВОЛС является технология WDM. Эта технология становится актуальной, когда оператор заинтересован в увеличении скорости передачи своих сетей. На междугородной сети с появлением новых услуг и технологий (мультисервисных сетей, АТМ технологий, мультимедиасвязи, и.т.д.) Потребность в увеличении пропускной способности сетей связи удваивается каждый год, и этот темп вряд ли замедлится в ближайшие десять лет. Снижение цен поставщиками, ослабление монопольных позиций государства в телекоммуникациях и неослабевающий интерес к использованию Интернета приводят только к увеличению спроса на скорость передачи. На сегодняшний день технология DWDM обеспечивает самый быстрый и экономичный рост полосы пропускания, на практике показывая свою надежность. Во многих случаях благодаря применению технологии DWDM пропускная способность оптической линии связи может быть увеличена в сотни раз.

По-видимому, данная технология еще не скоро достигнет своего предела по пропускной способности. В опытных системах уже достигнута передача нескольких сотен каналов по одному оптическому волокну. Дальнейший рост числа каналов возможен за счет уменьшения спектрального расстояния между ними, использования усилителей EDFA с большей шириной спектра, или за счет применения специализированных волокон, позволяющих осуществлять передачу в диапазоне шириной до 1200 нм без дополнительного усиления.

Впечатляющий рост пропускной способности достигается при увеличении скорости передачи данных в каждом канале. В современных цифровых системах передачи эта скорость составляет 2.5 Гбит/с или 10 Гбит/с. Были продемонстрированы опытные образцы систем со скоростью передачи 40 Гбит/с на канал, причем уже возможна одновременная передача данных по 192 каналам со скоростью 40 Гбит/с в каждом. Это соответствует суммарной скорости передачи более 5 Тбит/с по одному волокну.

Чтобы получить дополнительные цифровые каналы с наименьшими капитальными затратами, и предлагается использовать спектральное уплотнение. При этом получаемые длины волн эквивалентны по пропускной способности оптическим волокнам при технологии SDH. Внедрение систем DWDM определяется несколькими факторами:

- увеличение пропускной способности волоконно-оптического кабеля с помощью мультиплексирования на основе DWDM может оказаться более экономичным, чем строительство новых кабельных линий;

- появляются новые службы - "пожиратели полосы пропускания";

- сигнал, мультиплексированный в системе DWDM, переносится в оптической форме без промежуточных преобразований.

В качестве магистральной системы передачи наиболее перспективно использование технологии DWDM, поэтому темой дипломного проекта является проект транспортной сети с использованием технологии спектрального уплотнения на участке ст. Свердловск - ст. Тюмень железной дороги.

1. Обоснование проектных решений

1.1 Характеристика оконечных пунктов

Екатеринбург расположен на восточном склоне Среднего Урала по берегам р. Исеть (приток Тобола), в 1667 км к востоку от Москвы.

Крупный транспортный узел. В Екатеринбурге сходятся широтные и меридиональные железные и автомобильные дороги. 2 аэропорта. Метрополитен.

Екатеринбург - крупный промышленный центр России.

Ведущие отрасли: машиностроение (преимущественно тяжёлое) и металлообработка, .

В городе - около 145 научно-исследовательских, конструкторских и проектных институтов и организаций. Уральский центр РАН. Уральский государственный университет.

Институты: политехнический, горный, архитектурный, медицинский, педагогический, сельского хозяйства, электромеханический, инженеров железнодорожного транспорта, юридический, лесотехнический и др. Консерватория.

Екатеринбург простирается с запада на восток на 15 км, с севера на юг на 26 км. Река Исеть, разделяющая город на западную и восточные части, превращена в систему ступенчато расположенных водоёмов (самый крупный - Верх-Исетский пруд, другие - Городской, Парковый и Нижнеисетский).

Численность населения Свердловской области на 2009 г. составляла 4394,6 тыс. человек.

Тюмень расположен в Западной Сибири на реке Туре, притоке Тобола. Климат континентальный, характерны быстрые смены погоды - средняя температура января t=-17C (минимальная t=-49С); средняя температура июля t=+18С(максимальная до +38С).

Тюмень была основана в 1586 году - это был первый русский город в Сибири. На Тюмень возлагалась защита Русских и татарских поселений от набегов степных кочевников. Со временем Тюмень стала важным пунктом на торговом пути в Среднюю Азию.

5 января 1918 г. в городе была установлена Советская Власть.

В 1930 г. в Тюмени открыт первый ВУЗ - агропедагогический институт, появились первые автомобили. В 1940г. перед войной Тюмень выпускала буксирные пароходы, баржи, станки, мебель, пиломатериалы, меховые изделия, обувь и многие другие товары.

14 августа 1944г. стала центром обширной Тюменской области.

Открытие месторождений нефти и газа на территории области стало новой страницей в истории Тюмени. В 70-е годы среди тайги, болот и тундры началось их освоение. Многие предприятия начали работать на нефтегазовый комплекс.

В это время в городе построены новые специализированные предприятия, проектные институты, ВУЗы.

За последнее десятилетие на севере области построены новые города, сюда приехали новые люди из многих регионов страны. Тюменские нефть и газ по трубопроводам поступают в многие уголки России и за рубеж. В общую энергетическую систему включены ГРЭС, работающие на попутном газе нефтяных месторождений. Завершается строительство железнодорожных веток через Новый Уренгой до Надыма и заполярного Ямбурга.

Современный Тюмень - это крупный промышленный центр, город науки, культуры и спорта, город труженик. Численность населения Тюменской области составляет 3430,2 тыс. человек.

1.2 Выбор трассы

Проектируемая сеть DWDM будет проходить от г. Екатеринбурга в восточном направлении до г. Тюмень вдоль железной дороги.

Трасса для прокладки ОК выбирается исходя из условий:

-минимальной длины между оконечными пунктами;

-выполнения наименьшего объема работ при строительстве;

-возможности максимального применения наиболее

эффективных средств индустриализации и механизации строительных работ;

-удобства обслуживания.

При разработке проекта линии связи Свердловск - Тюмень целесообразно для сравнения рассмотреть два варианта прокладки кабеля:

- прокладка в грунт;

- подвес по опорам контактной сети.

При этом опыт развитых стран, таких как США, Япония, Польша и другие, показывает, что второй вариант является наиболее предпочтительным с экономической, технической и экологической точек зрения.

Рассмотрим оба метода более подробно, первым параметром оценки является технология строительства ВОЛС. Недостатком метода прокладки в грунт является быстрый износ рабочих деталей и механизмов оборудования и, соответственно, необходимость их частичной замены. При втором методе протяжка кабеля осуществляется по опорам, что не требует строительства новой линии и разработки специального оборудования, т.е. монтаж осуществляется обычным оборудованием.

Сравним трудоемкость работ по построению линии связи с использованием того и другого метода. При прокладке кабеля в грунт большую сложность представляют пересечения трассы с реками. При протяжке кабеля по опорам эти проблемы отпадают, что приводит к значительному снижению трудоемкости работ.

Кроме того, необходимо провести оценку обоих проектов с экологической точки зрения. При протяжке кабеля по опорам особых экологических последствий не произойдет, так как линия электропередач уже действующая и необходимо произвести лишь монтаж кабеля.

При прокладке кабеля в грунт экологический ущерб довольно значительный, в связи с тем, что возникает необходимость дополнительной вырубки лесов, загрязняются водоемы, наносится урон сельскохозяйственным угодьям.

Системы связи на базе подвесных кабелей менее надежны, чем системы на основе кабелей, проложенных в грунт, является ошибочным. Так, коэффициент готовности кабельной системы на сетях связи с подвесными оптическими кабелями больше, чем в сетях на основе кабеля, проложенного в грунт в полосе отвода железных дорог. Так что все опасения по поводу эксплуатационных качеств подвесного кабеля оказались напрасными. Да, разумеется, обрывы на подвесных линиях случаются несколько чаще, но вместе с тем время, затрачиваемое на восстановление работоспособности сети, существенно меньше.

Неудачным оказался опыт эксплуатации кабеля, проложенного в пластмассовой трубе. В наших условиях трубы оказываются негерметичными, в них проникает вода, они промерзают. В результате имеет место вспучивание, проникновение песка. Ремонт поврежденного участка в этих условиях очень затруднен. Замена кабеля в трубе в зимних условиях оказывается очень трудным делом. Весьма трудна замена кабеля и в летних условиях из-за проникновения в трубы песка. Вытянуть поврежденный кусок кабеля из трубы с целью его замены проблематично, в большинстве случаев кабель не вытягивается. В итоге время замены поврежденного участка оказывается существенно больше, чем при восстановлении поврежденного участка подвесной линии, и значительно дороже. Несколько лучше показали себя бронированные кабели для прокладки в грунт. Однако и в этом случае восстановление аварийного участка кабеля не простая задача. Точная локализация места повреждения кабеля не всегда возможна. Поэтому приходится откапывать значительные участки кабеля. Таким образом, в линиях связи на основе бронированных кабелей обрывы реже, но восстановление отнимает больше времени, есть трудности и в эксплуатации.

Общая протяженность трассы Свердловск-Тюмень составляет 329 км. Это с учетом норм расхода волоконно-оптического кабеля на один км трассы:

- по опорам контактной сети 325 км;

- в кабельной канализации 4 км.

Прокладка ОК по г. Екатеринбургу и г. Тюмени будет производиться

в существующей канализации.

Исходя из вышеперечисленных условий, трасса проектируемой ВОЛП выбрана вдоль железной дороги по опорам контактной сети и представлена на рисунке 1.1.

Рисунок 1.1 - Схема трассы прокладки ВОК

1.3 Расчет пропускной способности проектируемой системы DWDM

Расчет пропускной способности системы проводится по методике [2], с целью определения количества интерфейсов и их скорости.

Население Екатеринбурга и Свердловской области - 4394,6 тыс. человек. Население Тюмени и тюменской области (без автономных округов) - 3430,2 тыс. человек. Число каналов, связывающих эти города, зависит от численности населения и от степени заинтересованности отдельных групп населения во взаимосвязи.

Население Свердловской области составляет:

НЕкб=4394600 чел.

Тюменской области составляет:

НТюм= 3430200 чел.

Рассчитаем количество телефонных каналов между заданными оконечными пунктами по формуле (1.1):

, (1.1)

где 1, 1 - постоянные коэффициенты, соответствующие фиксированной доступности и заданным потерям, 1 = 1,3; 1 = 5,6;

f1 - коэффициент тяготения, f1 = 0,1 (10%);

y - удельная нагрузка, т.е. средняя нагрузка, создаваемая одним абонентом, y=0,05 Эрл.;

mat, mbt - количество абонентов, обслуживаемых оконечными станциями АМТС соответственно в пунктах А и Б.

Количество абонентов определяется в зависимости от численности населения, проживающего в зоне обслуживания. Исходя из статистических данных, которые показывают, что в настоящее время стационарным телефоном пользуется 30% всего населения России, получаем коэффициент mt=0,3, это количество абонентов в зоне АМТС:

,

чел.,

чел.

Таким образом можно рассчитать число каналов для телефонной связи между заданными оконечными пунктами.

каналов.

Пропускная способность В0, Гбит/с системы DWDM может определена как максимальная скорость передачи информации по волокну по формуле (1.2):

В0 = ВТФ + ВОП+ВDSL+BВЫД+ ВТР, (1.2)

где, Bтф - телефонный трафик;

BОП - общая скорость передачи обычных пользователей Интернетом ;

BDSL -общая скорость DSL пользователей;

Bтр=10, Гбит/с - магистральный транзит.

Суммарный телефонный поток определяется по формуле (1.3):

ВТФ= nтф.Vтф, (1.3)

где Vтф=64 кбит/с - скорость ОЦК.

ВТФ= 3762.64000=0,241 Гбит/с.

Исходя из статистических данных, которые показывают, что в настоящее время доля постоянных пользователей интернетом составляет 21% от всего населения России.

,

чел.,

чел.

Я предполагаю, что по данной магистрали будет проходить 20% от всего интернет трафика.

Nп=(mai+mbi)•0,2=(1318000+1029000)•0,2 = 328600 чел.

Рассчитаем нагрузку цифрового потока в единицах скорости передачи в бит/с по формуле (1.4):

В=V.Э.N, (1.4)

Доля обыкновенных пользователей сети Интернет при Э=0,04 Эрл и скорости V=56 кбит/с составляет 10% от всех пользователей Интернет.

ВОП=56.10.0,04. 328600•0,1=0,074 Гбит/с.

Доля DSL- пользователей сети Интернет при Э=0,2 Эрл и скорости 1 Мбит/с составляет 36% от всех пользователей Интернет. Рассчитаем нагрузку, создаваемую DSL- пользователями.

ВDSL=1.10.0,2. 328600•0,36= 23,662 Гбит/с,

Доля пользователей выделенной линии связи сети Интернет при Э=0,2 Эрл и скорости 1 Мбит/с составляет 54% от всех пользователей Интернет. Рассчитаем нагрузку, создаваемую пользователями выделенной линии связи.

ВВЫД=1.10.0,2. 328600•0,54= 35,493 Гбит/с,

В0=0,241+0,074+23,662+35,493+10=69,470 Гбит/с.

Для расчета числа длин волн используем формулу (1.5):

Nл = В0/ВI, (1.5)

где ВI = 10 Гбит/с - скорость интерфейсного потока.

Nл = 69,470/10 ? 7

Исходя из расчетов OMUX и ODMUX будут иметь по 7 интерфейсов со скоростями 10 Гбит/с.

1.4 Выбор оптического кабеля

Выбор типа оптического кабеля определяется пропускной способностью линейного тракта ВОСП, также учитываются условия и место его прокладки, наличие на трассе источников электромагнитных полей, опасность повреждения.

При выборе конструкции кабеля для определённого назначения следует учесть ряд аспектов, к которым следует отнести:

- соответствие кабеля ГОСТ, ТУ, которые разрабатываются в соответствии с требованиями ITU-T (Международный союз электросвязи - сектор стандартизации телекоммуникации), IEC (Международная электротехническая комиссия), и CECC (комитет по электронным компонентам в составе CENELEC);

- соответствие ОК необходимым эксплуатационным характеристикам. При определении пропускной способности волокна следует учитывать потери волокна и требования по их изменению. Эти характеристики должны удовлетворять самым жестким условиям, которые наблюдаются при эксплуатации;

- кабель должен быть удобным в работе и при монтаже. Он должен иметь гибкость, цветовое кодирование, малый вес, сопротивление изгибам, раздавливанию и растяжению, создавать условия для быстрого монтажа и надёжной эксплуатации;

- кабель должен быть удобным в сварке и заделке в концевые устройства. Удобная идентификация кабеля и волокна облегчает сварку и делает её более точной. Внешние защитные оболочки и покрытия должны легко сниматься. Важным моментом является скол волокон и подгонка волокна и кабеля, а, также предохранение места сварки;

- кабель должен иметь удобную маркировку, которая способствует быстрому ремонту и сокращает время простоя кабельных магистралей;

- кабель должен соответствовать предъявляемым требованиям с учётом специфических климатических условий на месте эксплуатации. При выборе нужной конструкции кабеля для заданного назначения следует учитывать условия окружающей среды, в которой кабель будет эксплуатироваться, ГОСТ Р 52266-2004.

Для подвески на опорах контактной сети железных дорог используется кабель типа ДПТ. Кабель представлен на рисунке 1.2:

1 - центральный силовой элемент стеклопластиковый стержень; 2 - ПБТ трубка со свободно уложенными оптическими волокнами и гидрофобным заполнителем; 3 - кордель; 4 - гидрофобный заполнитель; 5 - промежуточная ПЭ оболочка; 6 - Повив из арамидных нитей; 7 - наружная ПЭ оболочка

Рисунок 1.2 - Оптический кабель марки ДПТ - 024 Н 06 - 04.

Характеристики кабеля представлены в таблице 1.1 и волокна в таблице 1.2.

Таблица 1.1 - Характеристики кабеля.

Количество оптических волокон в кабеле

24

Количество оптических волокон в модуле

6

Количество модулей в кабеле

4

Диаметр кабеля, мм

12

Масса кабеля, кг/км

110

Минимальный радиус изгиба, мм

230

Стойкость к продольному растяжению, кН

4

Стойкость к раздавливающим усилиям, кН/см

0,5

Стойкость к удару, Дж

30

Температурный диапазон эксплуатации, оС

Температурный диапазон при прокладке, оС

-60…+70

-10…+50

Таблица 1.2 - Характеристики волокна.

Тип волокон

Одномодовое со смещенной нулевой дисперсией (ITU-T G.655)

Рабочая длина волны волокна, нм

1530-1565

Коэффициент затухания, дБ/км, не более:

0,22

Коэффициент хроматической дисперсии, пс/(нм.км), в интервале длин волн (1530-1565) нм, по абсолютной величине

3

Поляризационная модовая дисперсия (ПМД), пс/км, не более

0,5

Длина волны отсечки, нм, не более

1470

Диаметр модового поля, мкм, на длине волны 1550 нм

9,50,5

Неконцентричность сердцевины относительно оболочки, мкм, не более

0,8

Диаметр оболочки, мкм

1251,0

Некруглость оболочки, %, не более

1

Диаметр защитного покрытия, мкм

24510

1.5 Обоснование технологии

Чтобы и дальше обеспечивать клиентов высококачественной и быстрой связью, необходимо увеличивать мощности основных телекоммуникационных маршрутов, и увеличивать значительно.

Есть два варианта увеличения пропускной способности сети:

- повышение каналов SDH до уровня STM-64 (10 Гбит/с) и увеличение количества таких каналов. Однако каждый следующий канал STM-64 потребует установки оборудования и проведения строительно-монтажных работ на всех узлах магистрали, а уже для третьего канала нужно будет прокладывать новый кабель. Для обеспечения растущих потребностей клиентов Компании уже в самые ближайшие годы потребуется порядка четырех каналов уровня STM-64;

- строительство сети по технологии DWDM, которая позволит увеличить пропускную способность сети во много раз, поскольку по одному волокну будет передаваться 40 каналов STM-64, а дальнейшее расширение сети потребует только установки дополнительных карт.

Очевидно, что технология DWDM обладает преимуществом, как с точки зрения пропускной способности, так и возможности дальнейшего умощнения сети:

- DWDM является стабильной платформой для предоставления услуг, а возможность значительного расширения емкости делают сеть удобной для пользователя;

- Технология обеспечивает передачу трафика широкого спектра решений, от систем IP до оборудования SDH и других;

- Существуют большие возможности для масштабирования сети, что означает уверенность в завтрашнем дне для клиентов;

- DWDM-технология позволяет сети совмещать гибкость управления относительно низкоскоростными каналами на периферии со скоростной передачей гигабитных потоков в основных магистралях.

По мере прохождения по оптическому волокну сигнал постепенно затухает. Для того чтобы его усилить, используются оптические усилители. Это позволяет передавать данные на расстояния до 4000 км без перевода оптического сигнала в электрический (для сравнения, в SDH это расстояние не превышает 200 км).

Преимущества DWDM очевидны. Эта технология позволяет получить наиболее масштабный и рентабельный способ расширения полосы пропускания волоконно-оптических каналов в сотни раз. Пропускную способность оптических линий на основе систем DWDM можно наращивать, постепенно добавляя по мере развития сети в уже существующее оборудование новые оптические каналы.

2. Конструкция и архитектура аппаратных средств системы DWDM OptiX BWS 1600G

2.1 Выбор типа аппаратуры

На всей сети ТрансТелеКом используется оборудование китайской фирмы Huawei Technologies. При выборе аппаратуры DWDM будем руководствоваться не только техническими данными аппаратуры, но и данными корректной совместной работы оборудования, без применения аппаратуры согласования.

Разработанная компанией Huawei магистральная оптическая система передачи DWDM OptiX BWS 1600G, является магистральным оптическим оборудованием передачи нового поколения большой ёмкости. Она разработана с учетом современного состояния и развития в будущем оптических сетей.

Модульная конструкция, поддержка разнообразных конфигураций и гибкие возможности резервирования позволяют системе OptiX BWS 1600G играть ведущую роль в оптической сети передачи. Ёмкость доступа оптических волокон может быть плавно увеличена от 10 Гбит/с до 1600 Гбит/с. При расширении системы отсутствует необходимость отключать оборудование или прерывать предоставление услуг. Необходимо всего лишь установить новые аппаратные средства или новый узел. В типичной конфигурации с резервированием даже добавление узла OADM не окажет влияние на работу системы.

Система может быть развернута с использованием топологии "точка-точка", линейной и кольцевой сети. Являясь магистральным уровнем сети, она используется для соединения сетей крупных городов и пропуска большого объёма трафика оптической коммутационной аппаратуры, оборудования DWDM городской сети (MAN, metropolitan area network), оборудования SDH или маршрутизаторов.

Система OptiX BWS 1600G передает однонаправленные сервисные сигналы по одному оптическому кабелю, то есть двунаправленная передача осуществляется двум оптическим волокнам, одно оптоволокно используется для передачи, а другое для приема. Использование мультиплексоров/демультиплексоров AWG-типа, эрбиевых волоконно-оптических усилителей, усилителей Рамана, источников сигналов со стабильными длинами волн, функции балансировки мощности каналов, устранение "чирпирования" (pre-chirp), компенсации дисперсии, универсальной и централизованной системы управления сетью делает OptiX BWS 1600G высоконадежной с точки зрения рабочих характеристик и гибкой с точки зрения организации сети.

Система управления сетью передачи, разработанная компанией Huawei (сокращенно NMS - network management system), не только поддерживает управление оборудованием DWDM, но также поддерживает и управление всей серией оборудования OptiX, включая оборудование SDH и METRO. Согласно Рекомендациям ITU-T NMS поддерживает большой набор функций технического обслуживания сети. Она позволяет осуществлять обработку отказов, управление рабочими характеристиками, конфигурацией, резервированием, техническим обслуживанием и тестированием всей сети OptiX. NMS также поддерживает функцию сквозного управления согласно требованиям пользователей. Она повышает качество сетевых услуг, снижает эксплуатационные расходы и гарантирует рациональное использование сетевых ресурсов.

Используемая в системе OptiX BWS 1600G NMS обладает мощными и современными функциональными возможностями и предоставляет дружественные пользователю интерфейсы “человек-машина”. Используемый в её конструкции объектно-ориентированный подход позволяет пользователю активизировать или деактивизировать любую услугу в соответствии с возможностями физической сети. В сети OptiX BWS 1600G NMS поддерживает сквозное управление каналами (длинами волн), статистический анализ ресурсов длин волн, управление аварийной сигнализацией, управление рабочими характеристиками, управление системой, управление и техническое обслуживание оборудования и т.д.

Технические характеристики системы представлены в таблице 2.1 [3].

Таблица 2.1 - Технические характеристики системы DWDM производства Huawei Technologies,КНР OptiX BWS 1600G.[3]

Модель

OptiX BWS 1600G

Диапазон длин волн

C,L

Количество длин волн в базовой системе

40

Тип используемого волокна

Одномодовое в соответствии с G.652, G.655, G. 653

Расширение количества длин волн

До 192

Наличие служебной связи

Да, аналоговые телефоны

Система управления

T2000

Интерфйсы

Fibre Channel 1 Gbps,Gigabit Ethernet, SDH (STM-16/64), SONET: OC-48c/192c,
10 Gigabit Ethernet

Разнос несущих, ГГц

50/100

Транспондеры

На фиксированную длину волны перестраиваемые

Построение OADM

С выделением 2хN оптических каналов или 40 каналов

Режим работы

3R восст.вх.сигнала 3R+инкапсуляция клиентского графика G.709 FEC функция коррекция ошибок,AFEC(усовершенствованный

Базовый мультиплексор/демультиплексор

На 40 длин волн

Сервисные интерфейсы

RS-232/422, сухие контакты 16 входов, вывод сигнализации 8 портов

Предельный OSNR на участке усиления

17дБ

Компенсаторы дисперсии

L,C на 10,40,60,80 км

Оптические усилители

Автоматическая регулировка

Канал управления

OSC управляющий оптический канал

Резервирование

Без;1+1 два транспондера и два клиентских интерфейса (маршрут); Y-кабель 2 транспондера один интерфейс

Так как обмен трафиком производится на не небольшом расстоянии, на участке ст.Свердловск - ст.Тюмень, поэтому для передачи трафика преобразование O-E-O (оптический-электрический-оптический) осуществляется только на конечных узлах, а в промежуточных узлах - лишь усиление сигнала. Для связи на большие расстояния требуется восстанавливать групповой сигнал через каждые 600 км. И тогда вместо OADM в некоторых точках необходимо установить регенераторы. Данный участок не превышает 600 км, поэтому не требуется регенератор.

Оптическая система передачи DWDM OptiX BWS 1600G включает статив, подстатив, блок питания, блок вентиляторов (включая воздушный фильтр), полку модуля компенсации дисперсии (Dispersion Compensation Module, DCM) и полку концентраторов. В стативе крепятся подстативы с различными комбинациями плат Основной полкой является статив с закрепленной задней панелью и съемными боковыми панелями с обеих сторон. Блок питания установлен сверху. Полка модуля компенсации дисперсии DCM и полка концентраторов установлены в основании статива.

В одном стативе может быть смонтировано до трех подстативов в верхней, средней и нижней частях статива. Для каждого подстатива имеется блок вентиляторов и воздушный фильтр.

Подстатив OptiX BWS 1600G разделен на четыре части: верхняя часть - это область выхода интерфейсных кабелей или, проще говоря, область интерфейсов. Здесь подключаются все внешние электрические интерфейсы, принадлежащие подстативу.

Средняя часть предназначена для установки плат и называется областью установки плат.

В нижней части помещаются область для прокладки оптоволоконных кабелей и блок вентиляторов.

Рассмотрим по подробнее область установки плат:

Всего в стативе находится 13 разъемов (IU1-IU13), которые пронумерованы слева направо как IU1, IU2, IU3 … IU13. Разъем IU7 имеет ширину 24 мм. и зарезервирован для SCC/SCE (Платы: управления системой и связи). Остальные разъемы IU (блоков интерфейсов) имеют ширину 38 мм. Все оптические интерфейсы выводятся на передние панели плат.

На рисунке 2.1 представлен фасад DWDM-оборудования, на котором изображено расположение используемых плат.

V40 - блок мультиплексирования на 40 каналов,

FIU - блок интерфейса оптоволоконного кабеля,

SCC и SCE - блок связи и управления системой,

MCA - многоканальный блок анализатора спектра,

D40 - блок демультиплексирования на 40 каналов,

OPU - блок оптического предварительного усилителя,

LWFS - блок преобразования длины волны линии приема-передачи STM64 с функцией FEC,

OAE - блок оптического усилителя

Рисунок 2.1 - Фасад DWDM оборудования

По мере роста трафика пропускная способность может быть увеличена, причем наращивание каналов будет проходить без прерывания работы сети. С введением в эксплуатацию DWDM-сети оператор сможет предлагать каналы большой емкости, что позволит воспользоваться услугами новым клиентам, которым требуется оперативно передавать очень большие объемы информации.

Преимущества DWDM очевидны. Эта технология позволяет получить наиболее масштабный и рентабельный способ расширения полосы пропускания волоконно-оптических каналов в сотни раз. Пропускную способность оптических линий на основе систем DWDM можно наращивать, постепенно добавляя по мере развития сети в уже существующее оборудование новые оптические каналы.

2.2 Структура системы

Механическая структура системы DWDM OptiX BWS 1600G включает в себя шкаф, подстатив, платы, блок вентиляторов, блок питания и т.д.. В шкаф могут устанавливаться подстативы с различными конфигурациями плат для формирования различных типов оборудования.

Компактное и изящное конструктивное исполнение позволяет более эффективно использовать пространство для установки оборудования. Конфигурация OTM с пропускной способностью 400 Гбит/с может быть реализована с использованием двух шкафов, а одиночный шкаф обеспечивает реализацию конфигурации OLA.

Один шкаф позволяет установить три подстатива, блок питания, полку DCM и полку HUB. В одной полке HUB можно установить максимум два концентратора (HUB), и в полке DCM также устанавливаются максимум две DCM.

В системе имеется пять типов оборудования:

- Оптический оконечный мультиплексор (OTM, Optical terminal multiplexer);

- Оптический линейный усилитель (OLA, Optical line amplifier);

- Оптический мультиплексор вставки/выделения (OADM, Optical Add/Drop Multiplexer);

- Регенератор (REG);

- Оптический корректор (OEQ, Optical equalizer).

В каждом типе оборудования могут быть сконфигурированы до 40 каналов.

2.3 Оптический оконечный мультиплексор (OTM)

OTM является оконечной станцией сети DWDM, то есть в этой станции для услуг внешнего оборудования реализуется доступ к сети DWDM.

На стороне передачи он осуществляет преобразование и мультиплексирование оптических сигналов, поступающих из различного оборудования на стороне клиента, например из оборудования SDH, в одну волоконно-оптическую линию для их усиления и последующей передачи. На стороне приема происходит демультиплексирование всех каналов и их транспортировка к соответствующему клиентскому оборудованию.

OTM системы состоит из следующих основных компонентов:

- Блок оптического ретранслятора (OTU, Optical transponder unit);

- Оптический блок мультиплексирования (M40);

- 40-канальный оптический блок мультиплексирования с VOA (V40);

- Блок оптического усилителя (OAU/OBU/OPU);

- Оптический блок демультиплексирования (D40);

- Блок интерфейса оптического волокна (FIU, Fiber interface unit);

- Блок однонаправленного оптического контрольного канала (SC1)/блок однонаправленного оптического контрольного канала и передачи синхронизации (TC1);

- Модуль компенсации дисперсии (DCM, Dispersion compensation module);

- Блок многоканального анализатора спектра (MCA, Multi-channel spectrum analyzer unit);

- Блок связи и управления системой (SCC, System control & Communication unit).

Рисунок 2.2 - Блок-схема принимающей стороны OTM

2.4 Оптический линейный усилитель (OLA)

Блок OLA обеспечивает усиление двунаправленных оптических сигналов и компенсацию дисперсии. Блок OLA увеличивает дальность передачи без регенерации, то есть обеспечивает передачу без использования 3R-функции.

Как показано на рисунке 2.3, модуль OLA состоит из блока оптического усилителя, усилителя Рамана (комбинированное использование усилителей Рамана и EDFA обеспечивает усиление оптических сигналов с низким уровнем собственных шумов усилителей, что позволяет увеличить протяженность участка передачи), блоков DCM, FIU, SC2, SCC и т.д.

Рисунок 2.3 - Блок-схема OLA

Как и OTM, усилители Рамана используются на приемной стороне OLA, как показано на рисунке 2.3. Они выполняют усиление (с низким уровнем собственных шумов) оптических линейных сигналов, а затем посылают эти сигналы в блок FIU.

FIU выделяет оптический контрольный сигнал из основного тракта, для того чтобы система могла извлечь из него контрольную информацию. В то же время, сигналы C-диапазона, содержащиеся в основном тракте, передаются в блок OAU (блок эрбиевого оптического усилителя), где они усиливаются.

DCM обеспечивает компенсацию дисперсии сигналов основного тракта.

2.5 Оптический мультиплексор с функцией вставки/выделения (OADM)

В системе предусмотрено два типа мультиплексоров OADM: последовательный OADM и параллельный OADM.

Последовательный OADM используется для локальных операций вставки/выделения до 16 каналов в/из основного тракта путем каскадирования плат MR2. Это основной тип OADM. Он гарантирует баланс оптической мощности для локально вставляемых и транзитных каналов, выравнивая, таким образом, суммарную оптическую мощность.

Последовательный OADM состоит из блока оптического усилителя (OAU/OBU), модуля оптического мультиплексора с функцией вставки/выделения (MR2), блоков DCM, OTU, FIU, SC2/TC2, SCC и т.д. Блок-схема последовательного OADM показана на рисунке 2.4.

Рисунок 2.4 - Блок-схема последовательного OADM

Главным функциональным блоком OADM является MR2. Каждая плата MR2 поддерживает вставку/выделение двух каналов услуг. Возможно каскадное включение восьми плат MR2, в результате чего обеспечивается вставка/выделение 16 каналов, как показано на рисунке 2.4.

На стороне приема блок FIU разделяет основной тракт на сигналы C-диапазона и оптический контрольный сигнал. Затем сигнал контрольного канала передается в SC2/TC2 для дальнейшей обработки. Сигналы C-диапазона передаются на платы MR2, на которой осуществляется вставка или выделение каналов услуг. Доступ к этим локальным вставляемым/выделяемым каналам осуществляется через OTU.

На стороне передачи регулируемый оптический аттенюатор выполняет регулировку поступающих сигналов в соответствии с установленными в системе требованиями по мощности и передает их на плату MR2. Затем все сигналы усиливаются в OBU. На последнем этапе блок FIU снова объединяет сигналы каналов C-диапазона и контрольного канала для их передачи по волоконно-оптической линии.

2.6 Регенератор

Достаточность OLA для передачи сигналов на большие расстояния уже обсуждалась. Но из-за стохастического характера распространения света в некоторых случаях при передаче на большие расстояния необходимо регенерировать исходные сигналы для устранения дисперсии, потери мощности, оптического шума, нелинейности или PMD-эффектов. Регенератор (REG) выполняет 3R-обработку, то есть

восстановление первоначальной формы сигналов (reshaping), восстановление тактовой синхронизации (re-timing) и регенерацию сигналов. REG увеличивает дальность передачи путем регенерации оптических сигналов.

Как показано на рисунке 2.5, станция REG состоит из блоков OAU, D40, OTU, M40, FIU, SC2 и SCC.

Рисунок 2.5 - Блок-схема REG

Следует отметить, что функционально два включенных встречно OTM образуют REG. Единственное отличие заключается в том, что REG не поддерживает вставку/выделение оптических сигналов подобно OTM. Все блоки обработки сигналов и функциональные блоки REG аналогичны блокам OTM, за исключением типа OTU. В REG используется OTU с поддержкой функции регенерации, который реализует 3R-функцию.

2.7 Оптический корректор

В системе передачи на сверхдальние расстояния (ELH) протяженность участка передачи без применения регенератора значительно больше по сравнению с системами передачи на большие расстояния, в связи, с чем могут возникать следующие проблемы:

- Накопление неравномерности распределения коэффициентов усиления оптического усилителя и распределения коэффициентов затухания в волоконно-оптической линии вызывают нарушение равновесия (баланса) между величиной оптической мощности и отношением “оптический сигнал/шум” на стороне приема;

- Поскольку крутизна дисперсии DCM не полностью соответствует характеристикам волоконно-оптических линий, невозможно обеспечить полную компенсацию по всем длинам волн и дисперсия на приемной стороне не соответствует требованиям системы.

Для реализации более качественной коррекции оптической мощности и компенсации дисперсии в системе ELH должен использоваться модуль OEQ.

Оборудование OEQ состоит из корректора оптической мощности и корректора дисперсии.

Корректор оптической мощности. Существует два решения этой проблемы: использование блока динамической коррекции коэффициента усиления (DGE, dynamic gain equalizer unit) для выравнивания оптической мощности каналов в основном тракте и использование блока VMUX.

Коррекция оптической мощности означает, что энергия оптических сигналов всех каналов устанавливается приблизительно равной друг другу для улучшения эффективности передачи.

В системе передачи на сверхбольшие расстояния связывается большое количество оптических усилителей. Поскольку АЧХ оптических усилителей не является прямоугольной, при усилении спектр сигнала изменяется. После прохождения оптических сигналов через несколько усилителей частотная равномерность спектра значительно снижается. Таким образом, ухудшается соотношение сигнал-шум, возрастают битовые ошибки, и эффективность передачи всей системы ограничивается. Для решения вышеупомянутых проблем используется плата DGE, регулирующая плоскостность спектра.

Корректор дисперсии применяется для систем передачи на большие расстояния, использующих технологию SuperWDM. Если расстояние передачи без регенерации превышает 1000 км (благодаря применению технологии SuperWDM), то должна учитываться необходимость коррекции дисперсии. Система передает мультиплексированные сигналы в модуль компенсации дисперсии для выполнения компенсации скорректированной дисперсии посредством платы DSE.

Корректор дисперсии может быть установлен вместе с корректором оптической мощности на одной и той же станции. Рекомендуется устанавливать его на стороне приема последней станции в секции оптического мультиплексирования.

3. Обоснование технических требований к основным компонентам системы DWDM

Основное требование к компонентам DWDM состоит в том, что они должны одинаково обрабатывать все каналы на всем протяжении оптического пути линии связи. Для этого требуется тщательный выбор оптических передатчиков, мультиплексоров, демультиплексоров, усилителей и волокна. При объединении отдельных компонентов в единую систему, небольшие различия их характеристик могут накапливаться и непредсказуемым образом влиять на параметры сети в целом. Для обеспечения гарантированной надежной сети, необходимо выполнять тестирование не только каждого компонента в отдельности, но и всей системы в целом. Важным становится контроль качества оптических характеристик и поведения системы, начиная от производства компонентов, завершая этапом системной интеграции. Такой контроль будет гарантировать ввод системы DWDM в эксплуатацию с расчетными параметрами длительную и устойчивую работу.

Для надежной работы к компонентам системы DWDM предъявляются такие требования, как достаточное количество мультиплексированных каналов, малые вносимые потери, эффективное уменьшение перекрестных помех, широкая полоса пропускания и т.д.

3.1 Мультиплексоры и демультиплексоры

Как показано на рисунке 3.1 основная функция мультиплексора заключается в объединении нескольких длин волн сигналов по одному оптическому волокну. Основная функция демультиплексора заключается в разделении нескольких длин волн сигналов, передаваемых по одному оптическому волокну. Мультиплексор и демультиплексор являются одинаковыми по принципу действия и требуют только изменения направлений входа и выхода.

Рисунок 3.1 - Мультиплексор и демультиплексор

Оптическое мультиплексирование и демультиплексирование основано на комбинированных или расположенных последовательно друг за другом узкополосных фильтрах. В частности, для фильтрации применяют тонкопленочные фильтры, волоконные или объемные брэгговские дифракционные решетки, сварные биконические волоконные разветвители, фильтры на основе жидких кристаллов, устройства интегральной оптики. В настоящее время наибольшее распространение получили устройства оптического мультиплексирования и демультиплексирования с частотным интервалом между отдельными каналами в 100 ГГц (~0,8 нм). Появляющиеся в последнее время мультиплексные устройства могут обеспечить большую плотность размещения каналов с частотным интервалом 50 ГГц и меньше на тонкопленочном фильтре.

3.1.1 Характеристики мультиплексоров - демультиплексоров

Хотя технологии при изготовлении мультиплексоров и демультиплексоров схожи, изготовление последних является более сложной задачей. Демультиплексор характеризуется параметром, который называют изоляцией - способностью изолировать друг от друга входные и выходные каналы, а мультиплексор характеризуется направленностью. Чем меньше значения каждого из этих параметров, тем выше характеристики устройства. По мере уменьшения интервала между каналами и увеличения числа каналов изготовление демультиплексора становиться более сложным.

Полоса пропускания каждого канала характеризуется следующими параметрами: центральная длина волны, интервал между каналами, полоса пропускания по уровню -3 дБ, изоляция и дальние перекрестные помехи, неравномерность пика мощности в спектре канала и однородность каналов. Рассмотрим подробнее значения каждого из этих параметров.

Центральная длина волны - это среднее арифметическое значение верхней и нижней длины волны отсечки. Длины волн отсечки - это длины волн, на которых вносимые потери достигают заданного уровня. Часто относительные слабые отклонения в форме спектра приводят к заметному изменению центральной длины волны. Номинальную длину волны передатчика стараются делать как можно ближе к центральной длине волны, как правило, это одна из длин волн соответствующих частотному плану ITU.

Интервал между каналами должен соответствовать частотному плану системы DWDM. Используются как равномерные, так и неравномерные частотные сетки каналов. Наиболее распространенным является частотный план ITU с равномерным частотным интервалом между каналами 100 ГГц. Неравномерные интервалы между каналами могут применяться для того, чтобы минимизировать или устранить нелинейность четырехволнового смешения, когда в результате нелинейного взаимодействия излучения в волокне на двух или более частотах возникают сигналы с новой частотой. При неравномерных интервалах между каналами четырехволновое смешение может привести к дополнительным шумам на длинах волн, не используемых для передачи полезного сигнала. Новый паразитный сигнал может совпасть по частоте с существующими сигналами других каналов, что может привести к возникновению перекрестных помех, при использовании равномерных интервалов между каналами.

Полоса пропускания по уровню -3 дБ. Полоса пропускания - это та часть спектра передаваемого сигнала, в пределах которой все спектральные составляющие превышают некоторый пороговый уровень. Полоса пропускания определяет тот спектральный диапазон, в пределах которого устройство может быть эффективно использовано. Конкретное пороговое значение ширины полосы пропускания зависит от степени изоляции соседних каналов [4].

Изоляция и дальние перекрестные помехи. Изоляция канала и перекрестные помехи определяют уровень ослабления данного канала в других каналах, где этот сигнал не является основным. Изоляция определяется как минимальная величина ослабления мощности сигнала с выборкой по всем не основным выходным каналам по отношению к основному входному каналу. Перекрестные помехи определяют повышение уровня мощности входного сигнала на определенной длине волны на всей суммарной утекающей мощностью этого сигнала в не основные каналы. Помимо измерения или оценки уровня наихудших перекрестных потерь между каналами в системе необходимо также определять допустимые их уровни.

Неравномерность пика мощности в спектре канала. Пиковое значение вносимых потерь характеризует уровень потерь на фиксированной длине волны, но не определяет полностью разброс уровней потерь во всей полосе пропускания или в отдельном канале. Разброс уровней - это разность между минимальным и максимальным уровнями потерь в измеренной или номинальной полосе пропускания - называют неравномерностью потерь. Неравномерность распределения потерь канала предоставляет информацию о возможном разбросе уровня передаваемой мощности при изменении длины волны передатчика в пределах номинальной полосы пропускания. Большая неравномерность неприемлема во многих практических приложениях.

Однородность каналов является мерой разброса уровня передаваемой мощности или вносимых потерь от канала к каналу в мультиплексоре -демультиплексоре [5].

3.2 Оптические усилители

Как ключевой компонент новых систем оптической передачи, оптический усилитель на волокне, легированном эрбием (EDFA), имеет много преимуществ, а именно, высокий коэффициент усиления, большая выходная мощность, широкая рабочая оптическая полоса пропускания, независимость поляризации, низкий коэффициент шума и характеристики усиления не имеют зависимости от скорости передачи и формата данных.

Усилители EDFA обеспечивают непосредственное усиление оптических сигналов, без их преобразования в электрические сигналы и обратно, обладают низким уровнем шумов, а их рабочий диапазон длин волн практически точно соответствует окну прозрачности кварцевого оптического волокна как показано на рисунке 3.2. Именно благодаря появлению усилителей с таким сочетанием качеств линии связи и сети на основе систем DWDM стали экономически привлекательными.

Рисунок 3.2 - Зависимость коэффициента усиления EDFA от длины волны

Усилитель EDFA состоит из отрезка волокна, легированного эрбием. В таком волокне сигналы определенных длин волн могут усиливаться за счет энергии внешнего излучения накачки. В простейших конструкциях EDFA усиление происходит в достаточно узком диапазоне длин волн - примерно от 1525 нм до 1565 нм. В эти 40 нм умещается несколько десятков каналов DWDM. EDFA полностью "прозрачны" - не зависят от используемых протоколов, форматов, скорости передачи и (в пределах указанных выше ограничений) длины волны оптического сигнала. Поскольку усилители EDFA независимы от сетевого протокола, их можно подключать непосредственно к различному оборудованию - коммутаторам ATM или компонентам протокола IP - не опасаясь, что они помешают друг другу. Такая гибкость - одно из основных преимуществ использования их в системах DWDM. Наряду с этим, при использовании усилителей EDFA требуется тщательно учитывать их неоднородное спектральное усиление и шум, вносимый ими за счет усиленной спонтанной эмиссии ASE (Amplified Spontaneous Emission). Сети с усилителями EDFA имеют многочисленные преимущества. Пропускную способность таких сетей можно наращивать экономично и постепенно, добавляя новые каналы по мере роста потребности.


Подобные документы

  • Обоснование трассы прокладки кабеля. Обзор оконечных пунктов. Определение числа каналов электросвязи. Расчёт параметров оптического кабеля. Выбор системы передачи. Расчёт длины регенерационного участка ВОЛП. Смета на строительство линейных сооружений.

    курсовая работа [833,4 K], добавлен 11.02.2016

  • Определение числа каналов на магистрали. Выбор системы передачи и кабеля. Выбор трассы волоконно-оптической линии передач. Расчет параметров оптического кабеля, длины участка регенерации, ослабления сигнала, дисперсии и пропускной способности оптоволокна.

    курсовая работа [359,1 K], добавлен 06.01.2016

  • Расчёт необходимого числа каналов. Выбор системы передачи и определение требуемого числа оптических волокон в оптическом кабеле. Характеристики системы передачи. Параметры кабеля, передаточные характеристики. Расчёт длины регенерационного участка.

    курсовая работа [45,9 K], добавлен 15.11.2013

  • Выбор трассы прокладки оптического кабеля на загородном участке и в населенных пунктах. Расчет необходимого числа каналов. Выбор системы передачи. Расчет параметров оптического кабеля. Проявления волноводной, материальной и профильной дисперсий.

    курсовая работа [485,1 K], добавлен 13.11.2013

  • Обоснование трассы волоконно-оптической линии передач. Расчет необходимого числа каналов, связывающих конечные пункты; параметров оптического кабеля (затухания, дисперсии), длины участка регенерации ВОЛП. Выбор системы передачи. Схема организации связи.

    курсовая работа [4,3 M], добавлен 15.11.2013

  • Ситуационная схема трассы и расчет необходимого числа каналов. Выбор системы передачи и определение требуемого числа оптических волокон в кабеле. Выбор марки кабеля и его технические параметры, расчет длины участка. Составление сметы на строительство.

    курсовая работа [363,2 K], добавлен 17.09.2014

  • Разработка транспортной оптической сети: выбор трассы прокладки и топологии сети, описание конструкции оптического кабеля, расчет количества мультиплексоров и длины участка регенерации. Представление схем организации связи, синхронизации и управления.

    курсовая работа [4,9 M], добавлен 23.11.2011

  • Выбор и обоснование трассы прокладки кабеля между пунктами Шахты-Волгодонск. Расчет необходимого числа каналов. Выбор системы передачи и определение требуемого числа волокон. Определение длины регенерационного участка. Смета на строительство и монтаж.

    курсовая работа [2,8 M], добавлен 13.11.2013

  • Выбор и обоснование трассы прокладки волоконно-оптического кабеля между пунктами Кызыл – Абакан. Характеристики системы передачи. Расчёт параметров оптического кабеля. Смета на строительство и монтаж ВОЛП. Схема расположения регенерационных пунктов.

    курсовая работа [56,3 K], добавлен 15.11.2013

  • Расчет числа каналов на магистрали. Выбор системы передачи, оптического кабеля и оборудования SDH. Характеристика трассы, вычисление длины регенерационного участка. Составление сметы затрат. Определение надежности волоконно-оптической линии передачи.

    курсовая работа [877,2 K], добавлен 21.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.