Модернизация нейтронных анализаторов раствора системы борного регулирования на Волгодонской АЭС

Рассмотрение системы аварийного расхолаживания высокого и низкого давлений, назначения, принципа работы борного регулирования. Изучение устройства составных частей анализатора, пульта измерительного базового, концентратометров НАР 12М, УНО-60М-01.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 25.03.2010
Размер файла 2,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Федеральное агентство по образованию

Государственное образовательное учреждение

высшего профессионального образования

"ЮЖНО-РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

(НОВОЧЕРКАССКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ)"

ФАКУЛЬТЕТ Открытого заочного и очно-заочного образования

КАФЕДРА Электротехника и автоматика

СПЕЦИАЛЬНОСТЬ 220301 "Автоматизация технологических процессов и производств"

УТВЕРЖДАЮ:

Заведующий кафедрой ___

___________ ___________

(Подпись) (ФИО)

"___" _________ 200__г.

ЗАДАНИЕ

на дипломный проект

Студенту Перекос Дмитрий Александрович

(Фамилия, имя, отчество)

1.Тема дипломного проекта (работы): "Модернизация нейтронных анализаторов раствора системы борного регулирования на Волгодонской АЭС"

Тема дипломного проекта (работы) утверждена приказом ректора ____- ___от ____ ____20___г.

2. Консультанты дипломного проекта (работы):

Наименование раздела, должность, ученая степень, ученое звание, ФИО

Нормативный контроль ассистент Руденко П.И.

Экономическая часть старший преподаватель, к.т.н. Драка О.Е.

По безопасности жизнедеятельности доцент, к.т.н. Рабинович Л. А.

3. Исходные данные к дипломному проекту (работе) _______________

____________________________________________________________

4. Содержание пояснительной записки к дипломному проекту (работе)

______________________________________________________

5. Перечень графического материала _____________________________

_____________________________________________________________

6. Срок сдачи студентом законченного дипломного проекта (работы)

_____________________________________________________________

7. Дата выдачи задания на дипломный проект (работу)

___________________________________________________________

Руководитель _____________________ _________________

(Фамилия, имя, отчество) (Подпись)

Задание принял к исполнению ____________ 200…г. _______________

(Дата) (Подпись)

АННОТАЦИЯ

Целью моего дипломного проекта является модернизация системы водного регулирования нейтронных анализаторов борного регулирования с целью повышения производительности и расширения технологических возможностей. Нейтронные анализаторы были разработаны на приборном заводе "Сигнал" г.Обнинск Калужской области в 80-х годах. С момента создания данной системы, она не подвергалась модернизации. В связи с появлением новых технологий, в т.ч. компьютерных, возникла необходимость в модернизации данной системы позволит в конечном итоге облегчить труд оператора и сократить технологическое время в процессе.

В первой главе описана сама система борного регулирования. Рассмотрены основные системы безопасности реакторной установки. И рассмотрена система регулирования борного концентрата. Описана работа анализатора.

Во второй главе рассмотрены существующая система нейтронного анализатора НАР-Б, его достоинства и недостатки.

В третьей части рассмотрены описание модернизированной системы нейтронного концентратомера НАР-12М, его достоинства и недостатки.

В экономической части определяется расчет трудоемкости проектирования и расчет затрат на разработку, создание и внедрение цифровой системы управления.

В разделе по безопасности жизнедеятельности рассмотрены три вопроса:

1) охрана труда: рассмотрели организацию и улучшение условий труда на рабочем месте оператора;

2) экология: Выявили, что никаких экологически вредных воздействий на окружающую среду объект не оказывает;

3) чрезвычайные ситуации: мы рассмотрели аварии разного характера, меры безопасности, действия персонала в чрезвычайной ситуации, техническое обслуживание АСУ ТП, техногенную ситуацию связанную с использованием анализаторов и концентратомеров НАР.

ОГЛАВЛЕНИЕ

Ведомость дипломного проекта

Введение

Перечень условных сокращений

1. Описание работы и назначение борного регулирования

1.1 Назначение борного регулирования

1.2 Система борного регулирования

1.2.1 Система аварийного расхолаживания низкого давления

1.2.2 Система аварийного расхолаживания высокого давления

1.3 Принцип работы анализаторов и концентратомеров

1.4 Модернизация нейтронных анализаторов и концентратомеров на технологических позициях

2. Работа и состав анализаторов НАР-Б

2.1 Устройство и работа составных частей анализатора

2.2 Пульт измерительный базовый ПИБ

2.2.1 Конструкция пульта измерительного базового

2.2.2 Устройство и работа отдельных блоков ПИБ

3. Работа и состав концентратомеров НАР 12М

3.1 Назначение и технические характеристики НАР-12М.

3.2 Устройство и работа концентратомера НАР-12М

3.2.1 Устройство и работа датчика НАР-12М

3.2.2 Подготовка датчика к монтажу3.2.3 Подготовка к работе НАР-12М

3.2.4 Подготовка к поверке НАР-12М

3.2.5 Проведение поверки НАР-12М

3.3 Описание и работа УНО 60М-01

3.3.1 Устройство и работа УНО-60М

3.3.2 Состав УНО-60М-01

3.3.3 Устройство и работа УНО-60М-01

3.3.4 Работа основных компонентов УНО-60М-01

4. Экономическая часть

4.1 Технико-экономическое обоснование необходимости АСУ ТП

4.2 Расчет капитальных вложений на покупку средств измерения, регистрации и контроля, входящих в АСУ ТП

4.2.1 Годовые расходы на электроэнергию

5. Безопасность жизнедеятельности

5.1 Охрана труда на АЭС

5.1.1 Общие вопросы охраны труда на АЭС

5.1.2 Обеспечение благоприятных условий труда пользователя АСУ ТП

5.1.3 Электробезопасность

5.1.4 Вентиляция и отопление

5.1.5 Освещение производственных помещений

5.1.6 Защита от шума и вибрации

5.1.7 Электромагнитное излучение компьютеров

5.1.8 Радиационная безопасность

5.1.9 Пожарная профилактика

5.2 Чрезвычайные положения

5.2.1 Действия персонала в аварийных ситуациях

5.2.5 Действия персонала в аварийной ситуации связанные с АСУ ТП

5.2.6 Техногенная ситуация связанная с использованием анализаторов НАР-Б и концентратомеров НАР-12

5.3 Экологический аспект

5.3.1 Экологическая аспект на АЭС

Заключение

Библиографический список

Приложение А. Схема принципиальная линии борного регулирования с навесным датчиком НАР-12М

Приложение Б. Схема принципиальная линии борного регулирования с погружным датчиком НАР-12М

Приложение В. Схема принципиальная анализаторов НАР-Б и концентратомеров НАР-12М

Приложение Г. Чертёж общего вида навесного датчика анализатора НАР-Б

Приложение Д. Чертёж общего вида датчика погружного нейтронного анализатора НАР-Б

Приложение Е. Чертёж общего вида датчика погружного концентратомера НАР-12М

Приложение Ж. Схема монтажная подключения датчиков, пультов, вторичных приборов нейтронных анализаторов

Приложение З. Чертёж общего вида навесного датчика концентратомера НАР-12М

Приложение И. Чертёж общего вида концентратомера

НАР-12М с измерительной камерой

Поз.

Обозн.

Обозначение

Наименование

Кол

Примечания

Текстовые документы

А4

2203.Д.006.595.00.01.П3

Пояснительная записка

Графические документы

А1

2203.Д.06.595.00.00_Д

Схема борного регулирования с навесным датчиком НАР-12М

1

А1

2203.Д.06.595.01.00_Д

Схема борного регулирования с погружным датчиком НАР-12М

1

А1

2203.Д.06.595.02.00_Д

Функциональная схема анализатора

1

А1

2203.Д.06.595.03.00_Д

Схема соединения датчиков и пультов анализаторов

1

А1

2203.Д.05.595.04.00_ВО

Общий вид навесного датчика НАР-Б

1

А1

2203.Д.05.595.05.00_ВО

Общий вид погружного датчика НАР-Б

1

А1

2203.Д.05.595.06.00_ВО

Общий вид навесного датчика НАР-12М

1

А1

2203.Д.05.595.07.00_ВО

Общий вид погружного датчика НАР-12М

1

А1

2203.Д.05.595.07.08_ВО

Общий вид датчика НАР-12М с измерительной камерой

1

2203. Д. 06. 595. 00. 00_ Д

Изм

Лист

№ документа

Под-пись

Дата.

Разработал.

ПерекосД.А..

Ведомость к дипломному

проекту

Лит.

Лист

Листов

Проверил.

Баран С.А.

1

1

Т. контр.

ВИЮРГТУ, 5 курс, гр. АП-01-З2.

ВВЕДЕНИЕ

Автоматизация производственных процессов - это применение комплекса средств, позволяющих осуществлять производственные процессы без непосредственного участия человека, но под его контролем. Она приводит к увеличению выпуска, снижению себестоимости и улучшению качества продукции, уменьшает численность обслуживающего персонала, повышает надежность и долговечность машин.

Задача автоматизации систем управления становится все более актуальной. Это связано с физическим и моральным износом старой автоматики.

Решение данной задачи на базе сельсиновых и дискриминационных настроек концентратомеров, связано с большими трудозатратами и недостаточно эффективно. Радикальным решением проблемы является модернизация существующей системы водного регулирования в теплоносителе первого контура АЭС типа ВВЭР-1000.

Однако такой способ требует "крутых" единовременных затрат, длительного простоя оборудования, серьёзной подготовки персонала.

Альтернативой этому способу является внедрение относительно недорогой системы, которая впишется в существующую систему дистанционного автоматизированного управления и со временем позволит все слабые звенья во всей системе управления.

В связи с этим, в данном дипломном проекте разрабатывается автоматизированная система управления технологическим процессом, а именно системы борного регулирования в теплоносителе первого контура АЭС типа ВВЭР-1000, которая позволит повысить эффективность производства; увеличить ресурс оборудования; упростить его обслуживание; уменьшить простои и исключить аварийные ситуации.

Перечень условных сокращений

АСУ ТП - автоматизированная система управления технологическим процессом;

БЩУ - блочный щит управления;

ВоАЭС - Волгодонская Атомная Электростанция;

ВВЭР-1000 - водо-водяной электрический реактор;

ВХР - водно-химическое регулирование;

МКУ - минимально контролируемый уровень;

НАР-Б - нейтронный анализатор раствора базовый;

НАР-12 - нейтронный анализатор раствора модификации 12;

УНО-60М - устройство обработки информации;

ПИБ - пульт измерительный базовый;

СВО - система водной отчистки;

БЩУ - блочный щит управления;

РЩУ - резервный щит управления;

КИП - контрольно-измерительные приборы;

РО - реакторное отделение;

ГЕ - гидроёмкость;

САОЗ - система автоматического охлаждения зоны реактора;

СБ - система безопасности;

АУПТ - автоматическая установка пожаротушения;

СИ-19Н - счётчик нейтронов;

ИБН - источник быстрых нейтронов;

ПК - персональный компьютер;

БДИН - блок детектирования нейтронов;

УД - усилитель дискриминатор;

ПФ - плата фильтров;

ПН - преобразователь напряжения;

ВВ - высоковольтный выпрямитель;

ТК - термоконтактор;

БСД - блок счёта динамического;

ВФК - Вычитатель конструктивного фона;

БЗГ - блок задающего генератора;

БД - блок делителей;

ЦАП - цифро-аналоговый преобразователь;

Сч - счёт;

БСС - блок счёта статического;

БАП - блок аналогового преобразования;

БСН - блок стабилизации напряжения;

ГТ - генератор стабильного тока;

БУИ - блок управления индикацией;

БВФ - блок вычитания фона;

ПЭ - пъезоэлемент;

СС - схема совпадений;

БИД - блок изменения уровня дискриминации;

ППА - плата предварительной обработки;

БСЧ - блок счётчиков;

БВА - блок ввода/вывода;

УСО - устройства связи с объектами.

1 ОПИСАНИЕ РАБОТЫ И НАЗНАЧЕНИЕ БОРНОГО РЕГУЛИРОВАНИЯ

1.1 НАЗНАЧЕНИЕ БОРНОГО РЕГУЛИРОВАНИЯ

Начиная с 1963 года борное регулирование, используется практически на всех мощных энергетических реакторах с водой под давлением. Оценивая влияние борной кислоты на организацию водно-химического регулирования ВХР первого контура, нужно принимать во внимание необходимость введения сильного основания КОН. В воду первого контура для поддержания оптимального значения pH (при рабочей температуре первого контура) в пределах 6,9-7,1. В течение всей кампании и уменьшения скорости коррозии конструктивных материалов при поддержании требуемой концентрации борной кислоты.

Для получения приемлемой длительности работы реактора (так называемой "кампании реактора") в него необходимо загрузить сверхкритическое количество ядерного топлива. Созданный при этом в реакторе запас реактивности необходимо компенсировать. В современных реакторах типа ВВЭР созданный запас реактивности компенсируется механическими органами регулирования и жидким поглотителем - борной кислотой, растворенной в воде первого контура.

Борное регулирование предназначена для компенсации медленных изменений реактивности и поддержания реактора в критическом состоянии при ксеноновом отравлении в режиме сброса нагрузки, а так же для изменения концентрации борной кислоты в режимах пуска и останова блока.

При замедлении нейтронов в воде происходит разрыв первичных связей молекул воды и образование свободного водорода. Аналогичное действие оказывает гамма- и бета-излучение. Радиолитическое разложение воды, протекающее по реакции: 2Н2О = 2Н2 + О2 обратимо, т.е. образующиеся радикалы могут рекомбинировать, но присутствие в теплоносителе первого контура борной кислоты сдвигает реакцию вправо в сторону разложения воды.

Такая форма управления реактивностью называется жидкостным регулированием.

Борное регулирование состоит в том, что избыточная реактивность при пуске реакторной установки после перегрузки компенсируется вводом в теплоноситель первого контура жидкого поглотителя нейтронов - борной кислоты. В ходе работы реакторной установки на мощности производится постепенное плавное уменьшение концентрации борной кислоты в теплоносителе первого контура путем водообмена для компенсации выгорания ядерного топлива.

Имеется много причин для использования растворенных в теплоносителе поглотителей. При этом уменьшается количество поглощающих стержней вместе с приводами и электрооборудованием схемы управления, что приводит к экономии затрат.

Борная кислота равномерно распределяется в теплоносителе первого контура, и поэтому при изменении ее концентрации не нарушается распределение энерговыделения в активной зоне.

Естественный бор состоит из двух изотопов (19% бора-10 и 81% бора-11), первый из которых имеет очень высокое сечение поглощения тепловых нейтронов (3838 б).

Естественный бор имеет более низкую поглощающую способность (750 б) из-за разбавления бора-10 бором-11. Борная кислота обладает целым рядом важных преимуществ по сравнению с другими растворимыми в воде поглотителями нейтронов - нейтронными ядрами: борная кислота хорошо растворима в воде и ее растворимость растет с повышением температуры; она практически не реагирует с материалами первого контура, причем ее инертность растет с повышением температуры; она не откладывается и не дает соединений, способных откладываться на внутренних поверхностях конструкционных элементов реакторной установки.

Различные операции, связанные с изменением концентрации борной кислоты в теплоносителе первого контура, условно называют борным регулированием. Для увеличения концентрации раствора борной кислоты в первом контуре концентрированный раствор борной кислоты подается в первом контур подпиточными насосами. Чтобы уменьшить концентрацию, можно использовать систему продувки-подпитки (слив теплоносителя первого контура с текущим содержанием бора и замену его чистым дистиллятом), или поглощение борной кислоты анионитными фильтрами СВО-2. Соответственно для осуществления борного регулирования в составе оборудования реакторного отделения должны иметься баки для хранения раствора борной кислоты и насосы для его подачи к потребителям. Для выполнения указанных выше задач имеются системы боросодержащей воды и борного концентрата. Оборудование систем боросодержащей воды и борного концентрата маркируется латинскими буквами TB.

Системы боросодержащей воды и борного концентрата обеспечивает определенную гибкость и автономность в работе с применяемым в технологических процессах раствором борной кислоты, а также создают оперативный резервный объем раствором борной кислоты, использующегося при регулировании мощности и останове реакторной установки.

Система борного концентрата TB10 предназначена для создания запаса и хранения борного концентрата в баках TB10B01,02; подачи его в первый контур насосами TB10D02-04 при борном регулировании в режиме нормальной эксплуатации и аварийных режимах энергоблока; а также для подачи борного концентрата для очистки на СВО-6 насосом TB10D01.

Система боросодержащей воды TB30 предназначена для создания запаса и хранения боросодержащей воды в баках TB30B01,02; заполнения первого контура, подпитки бассейна выдержки и баков TQ10,20,30B01 насосом TB30D03; приема воды при дренировании первого контура, баков TQ10,20,30B01 или БВ; или ведении водообмена; приема воды после отмывки концевых уплотнений ГЦН; а также подачи боросодержащей воды для очистки на СВО-6 насосами TB30D01-02. Насосы TB30D01-02 также могут быть использованы для подпитки БВ и баков TQ10,20,30B01.

Монжюс боросодержащей воды TB10B03 предназначен для приема воды из баков TQ14,24,34B01, баков борного концентрата TB10B01,02 при их переливе или дренировании. Опорожнение монжюса осуществляется по проекту только сжатым воздухом системы TP в баки TB30B01,02.

В составе систем боросодержащей воды и борного концентрата имеется следующее технологическое оборудование:

- насос борного концентрата ТB10DO1;

- насосы борного концентрата ТB10DO2,03,04;

- баки борного концентрата ТB10В01,02;

- насосы боросодержащей воды ТB30DO1,02;

- насос заполнения 1 контура ТB30DO3;

- баки боросодержащей воды ТB30В01,02;

- монжюс боросодержащей воды TB10B03

- трубопроводы, арматура, КИП.

Все оборудование систем боросодержащей воды и борного концентрата расположено на отметках -4.2 и 0.0 в обстройке реакторного отделения. При выборе конструкционных материалов, из которых изготовлено оборудование систем, учитывались: рабочие параметры систем, свойства среды, коррозионная стойкость материалов в рабочей среде и дезактивирующих растворах. Исходя из условий работы оборудования, трубопроводов и арматуры в качестве основного конструкционного материала принята коррозионно-стойкая нержавеющая сталь типа 08Х18Н10Т или ей подобная.

Борное регулирование является основной частью системы управления реактора и позволяет изменять концентрацию борной кислоты в теплоносителе первого контура со скоростью 15-20% в час от текущей концентрации бора. При возникновении сигнала АЗ в любом режиме закрывается арматуры на линиях подачи дистиллята от деаэратора борного регулирования на всос подпиточного насоса и арматура на подпитку чистым дистиллятом.

Сочетание борной системы регулирования с механической позволяет улучшить маневренные характеристики блока. Оборудование реакторной установки и применяемое оборудование системы продувки-подпитки допускает возможность их использования в маневренных блоках.

1.2 СИСТЕМА БОРНОГО РЕГУЛИРОВАНИЯ

При эксплуатации АЭС решающее значение имеет безопасность работы реакторной установки. Один из основополагающих принципов, на котором базируется безопасность работы реакторной установки - это ограничение последствий возможных аварий. В соответствии с требованиями ОПБ-88 в проектах реакторной установки должны иметься средства, направленные на предотвращение проектных аварий и ограничение их последствий.

Наиболее опасны аварии с потерей теплоносителя первого контура, вызываемые повреждением оборудования и трубопроводов.

В случае значительной течи давление в контуре быстро снижается, и охлаждение может производиться сначала борированной водой, автоматически подаваемой из ГЕ САОЗ, а затем от системы аварийно-планового расхолаживания. В случае же малой или средней течи для восполнения потери теплоносителя требуется установка насосов высокого давления.

Также очень опасны разрывы трубопроводов и паропроводов второго контура, которые приводят к резкому падения давления во второй контуре и увеличению теплообмена между первым и вторым контуром. Это приводит к интенсивному снижению температуры теплоносителя первого контура и, при отрицательных температурных коэффициентах реактивности, к увеличению мощности реактора. Для поддержания реакторной установки в безопасном подкритическом состоянии в данном случае необходимо производить ввод в первый контур раствора борной кислоты, что требует установки высоконапорных насосов суммарной производительностью до 200 м3/час (с учетом не включения одного насоса) и малым временем запаздывания поступления воды в первый контур.

Для этих целей и служит система аварийного ввода бора высокого давления. Система аварийного ввода бора предназначена для аварийной подачи высококонцентрированного раствора бора в первый контур при авариях, связанных с выделением положительной реактивности в активной зоне реактора с сохранением высокого давления в первом контуре, а также в режимах, связанных с разуплотнением первого контура.

1.2.1 Система аварийного расхолаживания низкого давления

Все это обуславливает необходимость в аварийной системе охлаждения активной зоны, способной вступить в действие при нарушении циркуляции теплоносителя в контуре охлаждения реактора. В соответствии со всем вышесказанным на АЭС с ВВЭР-1000 и имеется система аварийно-планового расхолаживания низкого давления, предназначенная для:

- аварийного расхолаживания активной зоны и последующего отвода остаточных тепловыделений при авариях, связанных с разуплотнением первого контура;

- планового расхолаживания во время останова реакторной установки и отвода остаточных тепловыделений активной зоны при проведении перегрузки;

- отвода остаточных тепловыделений при проведении ремонтных работ на оборудовании реакторной установки со снижением уровня теплоносителя в реакторе, до оси патрубков холодных ниток петель без выгрузки зоны.

обеспечить подачу в контур борного раствора с концентрацией не менее 16 кг/см2 борной кислоты, в начальный момент.

обеспечить подачу воды в аварийных ситуациях не позднее, чем через 35-40 сек с момента достижения давления в первом контуре 21 кгс/см2;

она должна допускать возможность опробования (поканально) при работе блока на мощности и при этом не терять своих функциональных свойств;

- система должна работать как во время аварийных ситуаций, так и в послеаварийный период (в течение всего периода нахождения топлива в активной зоне);

- система должна иметь возможность кратковременного вывода в ремонт ее элементов в составе одного канала при работе реактора на мощности;

- система обеспечивает защиту первом контура от переопрессовки в холодном состоянии;

- она должна иметь тpехканальную стpуктуpу, т.е. соответствовать стpуктуpе остальных систем безопасности.

Система САОЗ совмещает функции устройства нормальной эксплуатации и защитного устройства. Как защитная система безопасности, система обеспечивает отвод тепла от активной зоны в аварийных режимах, как устройство нормальной эксплуатации

обеспечивает отвод тепла от активной зоны в режимах планового и ремонтного расхолаживания.

В соответствии с принципами единичного отказа и необнаруженного отказа система выполнена из 3 каналов, каждый из которых может выполнять функции всей системы. Таким образом, степень резервирования равна двум. Такая степень резервирования системы достаточна для выполнения функций системы при сочетаниях повреждений, определенных в ОПБ, поэтому отказ в одном канале не приводит к потере функциональных свойств системы.

Система аварийно-планового расхолаживания является защитной системой безопасности и относится к 1 категории сейсмостойкости. Пространственное разделение каналов с установкой стен и перекрытий, огнестойкостью не менее 1,5 часа, и наличие системы АУПТ кабельных помещений позволяет сохранять работоспособность системы при пожаре в одном из каналов.

В соответствии с требованиями единичного отказа и не обнаруженного отказа система аварийно-планового расхолаживания выполнена их трех каналов, каждая из которых может выполнять назначение всей системы. САОЗ (активная часть) низкого давления состоит из трех каналов TQ12, TQ22 и TQ32 (смотреть приложение А). Каждый из каналов TQ12,22,32 включает в себя:

- насос аварийного расхолаживания TQ12(22,32)D01;

- бак аварийного запаса бора TQ10,20,30B01;

- теплообменник аварийного расхолаживания TQ10(20,30)W01;

- трубопровод Ду600, связывающий бак TQ10(20,30)B01, теплообменник TQ10(20,30)W01 и насос TQ12(22,32)D01;

- трубопровод Ду300, связывающий насос TQ12(22,32)D01 c первым контуром;

- трубопровод Ду300 отбора воды из 1 контура;

- вспомогательные трубопроводы и арматуру.

Все три канала системы обеспечивают подачу борированной воды в верхнюю и нижнюю камеры смешения реактора; в режиме ремонтного расхолаживания вода подается только в верхнюю камеру. Два канала системы подключаются к трубопроводам связи ГЕ САОЗ - реактор, а третий канал - к горячей и холодной ниткам одной из циркуляционных петель: 1 канал - к холодной и горячей ниткам петли №1; 2 канал- к YT13,14BO1; 3 канал-YT11,12BO1.

На напорной линии насоса аварийного расхолаживания устанавливается оперативная арматура, обратные клапаны, а также нормально открытая арматура, которые обеспечивают необходимое направление движения теплоносителя в режимах аварийного и планового расхолаживания. Энергоснабжение арматуры осуществляется от того же канала безопасности (2 категория надежного питания), что и двигатель насоса аварийного расхолаживания.

Установленные последовательно два обратных клапана, задвижки с дренажем обеспечивают отсечение высокого давления от низкого. Для защиты оборудования и всасывающих трубопроводов системы вне герметичной части от превышения давления на линии планового расхолаживания в герметичной части установлены предохранительные клапана.

По всосу система подключается к баку-приямку ГА-201 герметичной оболочки, а также к холодной или горячей нитке четвертой петли ГЦК (линия планового и ремонтного расхолаживания).

Бак аварийного запаса борной кислоты TQ10-30B01 представляет собой Г - образное облицованное нержавеющей сталью помещение, входящее в состав герметичной зоны реакторного отделения. Верхняя часть бака образована перекрытием на отметке 13.2, соединенным с баком тремя независимыми сливными устройствами F = 1,0 м2 в помещенияхГА-306/1,2,3. Упомянутое перекрытие является нижней эксплуатационной отметкой герметичного объема оболочки, с которой путем организации уклонов предусматривается слив поступающей воды в бак.

Бак-приямок выполнен из железобетона с облицовкой из нержавеющей стали, заанкерованной в бетон с учетом действия аварийных нагрузок. Для возможности контроля за протечками между нержавеющей облицовкой и бетонной поверхностью выполнен слой второй облицовки из углеродистой стали. Люки бака выступают над полом помещений на 200 мм и закрыты нержавеющими металлическими решетками.

При аварии вода из помещений ГА-306/1,2,3 попадает в грязные отсеки ГА-201 через эти три приемных люка, над которыми и установлены решетки, не допускающие попадания в бак-приямок крупных частей изоляции или других посторонних предметов.

В чистые отсеки вода попадает, проходя через шестирядные нержавеющие сетки специальной конструкции, установленных поперек бака-приямка около каждого приемного отверстия и делящих бак-приямок на чистое и грязное отделение.

Концентрация борной кислоты в баке измеряется периодически, после предварительного перемешивания раствора бора, находящегося в баке. Концентрация автоматически измеряется на напоре насосов аварийного расхолаживания при помощи нейтронных анализаторов типа НАР-12М. Для создания возможности перемешивания раствора борной кислоты в баке внутри его предусмотрен раздаточный коллектор, к которому присоединены линии рециркуляции Dy150 с дроссельной шайбой TQ12-32E02 и арматурой TQ12-32S02,03 от каждого насоса. Коллектор представляет собой трубопровод с равномерно размещенными отверстиями, размещенный в баке и повторяющий его конфигурацию.

Отбор борного раствора из бака-приямка ГА-201 к насосам аварийных систем выполнен с установкой рассекателей, установленных в баке на всасывающие трубопроводы СБ, чтобы с учетом понижения уровня раствора борной кислоты в ГА-201 исключить подсасывание парогазовой смеси в период аварийных режимов и исключить выход насосов из строя.

Падение давления на фильтрующих сетках бака-приямка достаточно мало, чтобы обеспечить требуемую величину располагаемого подпора на всасе насосов аварийных систем. Допустимые суммарные гидравлические потери на рассекателе и сетчатом устройстве одного канала - не более 0,3 кгс/см2 при расходе через одно любое устройство - до 2500 м3/час раствора.

Общий объем бака - 680 м3. Указанный необходимый объем был вычислен исходя из расчетных проектных потерь 300 м3 и оставшегося уровня 1,5 м.

При работе блока на мощности, в аварийной ситуации с разгерметизацией первого контура система подключена к баку-приямку, во всех остальных режимах забор воды производится из 4 петли ГЦК.

Для обеспечения заданной скорости расхолаживания 1 контура при плановом расхолаживании и аварийном расхолаживании при целом первом контуре на трубопроводе перед теплообменником САОЗ и на байпасе теплообменника установлено два регулирующих клапана.

Насос аварийного расхолаживания имеет линию рециркуляции Dy150 с дроссельной шайбой TQ12-32E02 и арматурой TQ12-32S02,03 (именуемую операторами БЩУ большой рециркуляцией), которая обеспечивает опробование насоса на ГА-201 с расходом до 248 м3/час. Насос аварийного расхолаживания также имеет линию рециркуляции Dy50 с дроссельной шайбой TQ12-32E10 без арматуры (именуемую операторами БЩУ малой рециркуляцией), которая обеспечивает лишь кратковременное опробование насоса. Нежелательность длительной работы насоса по линии малой рециркуляции определяется тем, что она рассчитана на расход до 15 м3/час, насосы при этом работают вне зоны рабочей характеристики, с малым расходом и повышенной вибрацией.

САОЗ допускает работу насосов с минимальной подачей 16 м3/час только в течение 10% времени от общей наработки до капитального ремонта.

На напоре насоса аварийного расхолаживания установлена дроссельная шайба, обеспечивающая устойчивую работу насоса при полностью разуплотненном первом контуре.

Всасывающая линия системы аварийно-планового расхолаживания TQ40 от 1 контура к насосам TQ12(22,32)D01 рассчитана на давление до 21 кгс/см2; давление гидроиспытаний - 29 кгс/см2. Для защиты всасывающего трубопровода систем САОЗ от переопрессовки проектом предусмотрена установка на всасывающей линии планового расхолаживания предохранительных клапанов. Используются предохранительные клапаны прямого действия типа СППК4-150 или Р55189-150, настраиваемые на давление срабатывания 21,6 - 22,1 кгс/см2. Сброс среды при срабатывании ПК производится на пол помещений ГА 306/2,3. Производительность предохранительных клапанов по проекту выбрана исходя из условия ложного включения одного насоса ввода бора высокого давления или двух подпиточных насосов. Пропускная способность предохранительных клапанов типа СППК4-150 составляет 200 м3/час (каждого) при полном открытии.

Клапаны регулирующие TQ41,42,43S03,04 устанавливаются на байпасе теплообменника и на трубопроводе перед теплообменником САОЗ, служат для обеспечения заданной скорости расхолаживания первого контура при плановом расхолаживании и аварийном расхолаживании.

Перед выводом реактора на МКУ должны быть работоспособны все три канала аварийно-планового расхолаживания. При работе реакторной установки на мощности допускается вывод в ремонт одного канала на срок не более трех суток с момента появления дефекта по разрешенной ГИС заявке, при условии подтверждения работоспособности двух других каналов.

Плановое расхолаживание энергоблока проводится в 2 этапа:

1) система аварийно-планового расхолаживания TQ12,22,32 на первом этапе расхолаживание проводится со скоростью 300 с/час сбросом пара из парогенераторов в конденсатор турбины;

2) второй этап расхолаживания начинается при достижении t1к = 150 0С и Р1к < 18 кгс/см2. Ввод в работу системы аварийно-планового расхолаживания возможен только на этом этапе, так как она рассчитана на низкое давление.

Ввод в работу системы аварийно-планового расхолаживания начинается со сборки технологической схемы всаса насосов TQ12(22,32)D01 из первого контура последовательным открытием TQ40S01(02),03(04); закрытием TQ10(20,30)S01 и открытием TQ41-43S01,02.

В этом режиме особенно тщательно необходимо контролировать давление в перовм контуре: 15 < Р1к < 18 кгс/см2. Это связано с тем, что при давлении в первом контуре ниже 15 кгс/см2 эксплуатация ГЦН запрещается, а при повышении давления 1 к > 18 кгс/см2 закрываются TQ40S01-05 действием защит TQS121(I,II,III), TQ111,115,119(I,II,III) и всас насосов TQ12(22,32)D01 переходит обратно на ГА-201 через TQ10(20,30)S01.

Открывать задвижки TQ41(42,43)S01,02 нужно плавно, шагами, для того, чтобы медленно поставить под давление всасывающий тракт системы аварийно-планового расхолаживания.

Далее необходимо провести разогрев системы аварийно-планового расхолаживания перед ее подключением на первый контур. Трубопроводы до задвижек TQ12(22,32)S04 должны быть прогреты таким образом, чтобы разность между их температурой и температурой первого контура была менее 60 0С.

Для разогрева трубопроводов насосы САОЗ TQ12(22,32)D01 включаются на малую рециркуляцию через дроссельную шайбу TQ12(22,32)E10 и, в дальнейшем, переводятся на рециркуляцию через TQ41(42,43)S05. Участок отбора воды из первого контура до задвижек TQ40S03,04 разогревается открытием контрольного дренажа TQ40S06. Иногда для ускорения процесса разогрева кратковременно подрывают TQ12(22,32)S02,03 для подмешивания в тракт горячей воды из первого контура.

Предусматривается совместная одновременная работа спринклерного насоса TQ11(21,31)D01 и насоса аварийно - планового расхолаживания TQ12(22,32)D01, имеющих общие теплообменники САОЗ TQ10(20,30)W01, бак аварийного запаса бора и всасывающие трубопроводы Dy600.

В основу проекта групп аварийного ввода бора высокого давления TQ13,23,33 положены следующие критерии и требования, предъявляемые к ним со стороны реакторной установки:

1) обеспечить подачу в первый контур раствора борной кислоты с расходом не менее 130 м3/час и начальной концентрацией 40 гр/кг в диапазоне давлений первого контура 90 - 15 кгс/см2, а при давлении в первом контуре 100 кгс/см2 - не менее 100 м3/час;

2) обеспечить возможность работы насоса аварийного ввода бора высокого давления из бака-приямка под оболочкой при авариях, связанных с течью первого контура, в течение времени, необходимого для расхолаживания блока и отвода остаточных тепловыделений;

3) допускать возможность опробования (поканально) при работе блока на мощности и при этом не терять своих функциональных свойств;

4) обеспечивать в аварийной ситуации подачу борного раствора в первый контур не позднее чем через 35 - 40 секунд с момента достижения давления в первом контуре 90 кгс/см2 от насоса аварийного ввода бора высокого давления;

5) она должна иметь трехканальную стpуктуpу, т.е. соответствовать стpуктуpе остальных систем безопасности.

В соответствии с требованиями единичного отказа и не обнаруженного отказа система аварийного ввода бора выполнена из трех идентичных каналов, каждый из которых может выполнять назначение всей системы. Таким образом, степень резервирования равна двум. Такая степень резервирования достаточна для выполнения функций системы при сочетаниях повреждений, поэтому отказ в одном канале не приводит к потере функциональных свойств системы.

Система аварийного ввода бора состоит из трех идентичных каналов. Каждый канал состоит из двух групп - TQ13(23,33) и TQ14(24,34) показанные в приложении Б.

В основу проекта групп аварийного ввода бора высокого давления TQ13,23,33 положены следующие критерии и требования, предъявляемые к ним со стороны реакторной установки:

- обеспечить подачу в первый контур раствора борной кислоты с расходом не менее 130 м3/час и начальной концентрацией 40 гр/кг в диапазоне давлений первого контура 90 - 15 кгс/см2, а при давлении в первом контуре 100 кгс/см2 - не менее 100 м3/час;

- обеспечить возможность работы насоса аварийного ввода бора высокого давления из бака-приямка под оболочкой при авариях, связанных с течью первого контура, в течение времени, необходимого для расхолаживания блока и отвода остаточных тепловыделений;

- она должна допускать возможность опробования (поканально) при работе блока на мощности и при этом не терять своих функциональных свойств;

- обеспечивать в аварийной ситуации подачу борного раствора в первый контур не позднее чем через 35 - 40 секунд с момента достижения давления в первом контуре 90 кгс/см2 от насоса аварийного ввода бора высокого давления;

- должна иметь тpехканальную стpуктуpу, т.е. соответствовать стpуктуpе остальных систем безопасности.

В соответствии с требованиями единичного отказа и не обнаруженного отказа система аварийного ввода бора выполнена из трех идентичных каналов, каждый из которых может выполнять назначение всей системы. Таким образом, степень резервирования равна двум. Такая степень резервирования достаточна для выполнения функций системы при сочетаниях повреждений, определенных в ОПБ, поэтому отказ в одном канале не приводит к потере функциональных свойств системы.

Система аварийного ввода бора является защитной системой безопасности и относится к первой категории сейсмостойкости.

Группа системы аварийного ввода бора TQ13(23,33) состоит из трех независимых каналов, каждый из которых включает в себя следующее технологическое оборудование:

- бак аварийного запаса концентрированного раствора борной кислоты TQ13(23,33)B01;

- насосный агрегат аварийного ввода бора TQ13(23,33)D01;

- мехфильтр TQ13N01;

- бак аварийного запаса концентрированного раствора борной кислоты TQ14(24,34)B01;

- насосный агрегат аварийного впрыска бора высокого давления TQ14(24,34)D01;

- трубопроводы, арматуру, дроссельные шайбы и КИП.

Упрощенная схема группы аварийного ввода бора (на примере канала TQ13 и канала TQ14) показана в приложении Б.

Для отвода возможных протечек через обратные клапана из полости между быстродействующими вентилями выполнен дренаж в систему оргпротечек, снабженный дроссельной шайбой TQ13(23,33)E03 и электроприводным вентилем TQ13(23,33)S09.

На напорном трубопроводе насоса TQ13(23,33)D01 установлена дроссельная шайба TQ13(23,33)E02 для обеспечения надежной работы насоса при снижении давления в первом контуре ниже 40 кгс/см2. Указанная шайба обеспечивает работу насоса в рабочей части характеристики при любых противодавлениях в первом контуре, вплоть до 1 кгс/см2, что позволяет использовать насос в аварийных ситуациях и при давлениях менее 15 кгс/см2.

Имеется линия рециркуляции с арматурой TQ13(23,33)S05,06 на бак TQ13(23,33)B01, обеспечивающая опробование насоса и его работу в режиме ступенчатого пуска и аварийных ситуациях, когда отсутствуют технологические условия на подачу борного раствора в первый контур. Арматура на линии рециркуляции управляется автоматически по технологическому параметру (расходу насоса), обеспечивая работу насоса в рабочей части характеристики.

Обратные клапаны, баки аварийного запаса бора и оперативная арматура находятся в герметичной части защитной оболочки, остальное оборудование системы располагается в негерметичной части.

Напорные трубопроводы насосов TQ13(23,33)D01 объединяются с трубопроводами от TQ14(24,34)D01 соответственно и врезаются:

от TQ13D01 - в холодную нитку петли N01;

от TQ23D01 - в холодную нитку петли N04;

от TQ33D01 - в холодную нитку петли N03.

Врезка напорных трубопроводов аварийного ввода бора Dy150 всех трех СБ в холодные нитки петель выполнена с установкой сужающих устройств TQ13,23,33H01, ограничивающих утечку из первого контура в случае разрыва указанных напорных трубопроводов.

Каналы аварийного ввода бора TQ13(23,33) обеспечивают подачу в реактор раствора борной кислоты в начале концентрацией 40 гр/кг из баков TQ13(23,33)B01 объемом 15 м3, а после их опорожнения - раствора бора с концентрацией 16 гр/кг из бака-приямка герметичной оболочки ГА-201 объемом 680 м3.

Бак TQ13(23,33)B01, расположенные в помещениях обстройки реакторного отделения помещение ГА-036/1,2,3 соответственно, предназначен для хранения аварийного запаса раствора борной кислоты концентрацией 40 гр/л.

Основными параметрами, характеризующими нормальное функционирование группы аварийного ввода бора, являются давление на напоре насосов аварийного ввода бора TQ13-33D01, а также обеспечиваемые ими расходы раствора борной кислоты. Для измерения указанных параметров и вывода информации на рабочее место оператора технолога (РМОТ) и на средства унифицированного комплекса технических средств (УКТС) используются измерительные преобразователи давления типа "Метран", термопреобразователи сопротивления типа ТСП-8053, анализаторы бора типа НАР-12М.

При аварии основным видом управления для насосов TQ13(23,33)D01 является автоматическое управление по командам защит САОЗ, реализуемое через аппаратуру ступенчатого пуска, воздействующего на комплекс технических средств. Включение подсистемы аварийного ввода бора TQ13,23,33 автоматически происходит по следующим сигналам:

- обесточению, т.е. снижению напряжения менее 0,25 Uном на II ступени ПСП;

- разрывной защите первого контура ts10, когда разность между t насыщения теплоносителя первого контура и t в горячих петлях менее 10 0С;

- разрывной защите первого контура Рго > 1,3 кгс/см2, когда давление в гермооболочке более 1,3 кгс/см2;

- разрывной защите второго контура ts75, при уменьшении давления в паропроводе до 50 кгс/см2 и увеличении разности температур насыщения первого и второго контуров до 75 0С.

При срабатывании любой из этих защит автоматически включается насос TQ13(23,33)D01, открывается напорная арматура TQ13(23,33)S07, и если давление в первом контуре из-за течи упадет ниже 110 кгс/см2, то начнется поступление воды от насосов в первый контур. Имеющаяся на блоках 1-3 вторая арматура TQ13(23,33)S08 на напорной линии от насосов в первый контур согласно алгоритмов технических защит и блокировок всегда открыта (блокировки TQS31,41,51 для 1,2,3 СБ соответственно).

При этом в случае исчерпания запаса раствора борной кислоты в баках TQ13(23,33)B01 предусмотрена работа насосов аварийного ввода бора TQ13(23,33)D01 из ГА-201 с открытием TQ13(23,33)S26.

Для исключения .зависания. давления в первом контуре при работе насосов TQ13(23,33)D01 на плотный первый контур предусмотрено снятие запрета на закрытие арматуры на напорной линии по повышению уровня в КД до 8000 мм. При повышении уровня в КД оператор может закрыть арматуру на напоре, арматура на линии ециркуляции при этом автоматически открывается. При снижении уровня в КД до 3500 мм арматура на напоре автоматически открывается, а на линии рециркуляции закрывается.

В основу проекта группы аварийного впрыска бора высокого давления TQ14,24,34 положены следующие критерии и требования, предъявляемые к ней со стороны реакторной установки:

обеспечить подачу в первый контур раствора борной кислоты с расходом 6м3/час, с концентрацией 40 гр/кг при давлении в диапазоне 0-160 кгс/см2;

- она должна допускать возможность опробования (поканально) при работе блока на мощности и при этом не терять своих функциональных свойств;

- она должна обеспечивать в аварийной ситуации подачу борного раствора в первый контур не позднее чем через 5 минут;

- она должна иметь тpехканальную стpуктуpу, т.е. соответствовать стpуктуpе остальных систем безопасности.

В соответствии с требованиями ОПБ-88 на каждом энергоблоке АЭС пpедусматpивается по тpи независимых канала аварийного впрыска бора высокого давления TQ14(24,34), каждый из которых включает в себя следующее технологическое оборудование:

- бак аварийного запаса концентрированного раствора борной кислоты TQ14(24,34)B01;

- насосный агрегат аварийного впрыска бора высокого давления TQ14(24,34)D01;

- трубопроводы, арматуру, дроссельные шайбы и КИП.

На напорных трубопроводах внутри гермозоны установлены по два электро приводных быстродействующих вентиля, далее по ходу установлено четыре обратных клапана объединенных попарно-параллельно, каждая пара обратных клапанов имеет байпас, выполненный из трубопровода Ду15 с дроссельной шайбой и двумя ручными вентилями.

Всасывающие, напорные трубопроводы и трубопроводы рециркуляции насосов аварийного ввода бора высокого давления выполнены из стали 08Х18Н10Т.

Напорные трубопроводы насосов TQ14(24,34)D01 объединяются в гермооболочке с напорными трубопроводами от TQ13(23,33)D01 и врезаются:

от TQ14D01 - в холодную нитку петли N01;

от TQ24D01 - в холодную нитку петли N04;

от TQ34D01 - в холодную нитку петли N03.

Врезка напорных трубопроводов аварийного ввода бора Dy150 всех трех СБ в холодные нитки петель выполнена с установкой сужающих устройств TQ13,23,33H01, ограничивающих утечку из первого контура в случае разрыва указанных напорных трубопроводов.

Насосы TQ14(24,34)D01 имеют линии рециркуляции на бак с арматурой TQ14,24,34S03,04 и дроссельными шайбами TQ14,24,34E02.

Как уже указывалось, имеется тpи независимых канала TQ14,24,34, каждый из которых способен выполнить требуемые функции в полном объеме. Таким образом, степень резервирования равна двум. Такая степень резервирования системы достаточна для выполнения функций системы при сочетаниях повреждений, определенных в ОПБ, поэтому отказ в одном канале не приводит к потере функциональных свойств системы.

Баки TQ14(24,34)B01, расположенные в помещениях обстройки реакторного отделения А-123/1,2,3 соответственно, предназначены для хранения аварийного запаса раствора борной кислоты концентрацией 40 гр/л и представляют из себя цилиндрические емкости из нержавеющей стали.

Основными параметрами для контроля нормального функционирования системы является:

1) расход продувочной и подпиточной воды, их разность как показатель течи теплоносителя первого контура;

2) уровень в компенсаторе объема;

3) качественный состав подпиточной воды;

4) концентрация борной кислоты в подпиточной воде;

5) температура продувочной и подпиточной воды.

Все подсистемы технологически связаны между собой, а также со следующими системами: организованных протечек первого контура TY, системой СВО-2 TE, дистиллята TN, сжигания водорода TS10, борного концентрата TB, греющего пара низкого давления RQ, технической водой группы А и В, промконтура TF, гидроиспытаний и продувки датчиков КИП.

При работе энергоблока группа аварийного впрыска бора высокого давления TQ14-34 должна находится в дежурстве, т.е состоянии полной готовности к выполнению своих функций в случае возникновения аварии. При этом все оборудование (насосы, арматура, трубопроводы) находятся в исправном состоянии, электрические схемы собраны, в рабочем состоянии находится система КИП и сигнализации. Баки TQ14,24,34B01 должны быть заполнены необходимыми растворами раствором борной кислоты до номинального уровня.

Для защиты плунжерных насосов TQ14(24,34)D01 от работы в без расходном режиме они имеют линии рециркуляции на бак с арматурой TQ14,24,34S03,04. Причем согласно алгоритмов технологических защит и блокировок на отключенных насосах TQ14,24,34D01 арматура TQ14,24,34S03,04 автоматически открывается (блокировки TQS65,73,81 для 1,2,3 СБ соответственно).

Существует следующее требование по расходной эффективности каналов аварийного впрыска бора высокого давления TQ14-34:

- расход TQ14(24,34)D01 при P1K 160 кгс/см2 должен быть не менее 6,3 м3/час.

- работы по выводу (вводу) в ремонт (из ремонта) каналов TQ14,24,34, их испытания с подачей борного раствора в реактор, заполнение или дозаполнение баков аварийного запаса раствора борной кислоты TQ14,24,34B01, переключения, связанные с возможностью нарушения готовности к работе систем безопасности, или связанные с возможностью переопрессовки (повышения давления более 35 кгс/см2) корпуса реактора в холодном состоянии при температуре металла корпуса ниже критической температуры хрупкости в каналах TQ14,24,34 являются ядерно-опасными.

При давлении в первом контуре ниже 35 кгс/см2 и средней температуре теплоносителя первого контура ниже критической температуры хрупкости металла корпуса реактора или при работе активной части САОЗ в режиме планового расхолаживания первого контура должны быть закрыты TQ14,24,34S07,08 и разобраны их электросхемы.

1.2.2 Система аварийного расхолаживания высокого давления

Система промконтура состоит из трех насосов промконтура, двух теплообменников, дыхательного бака, трубопроводов, арматуры и потребителей охлаждающей воды.

В теплоносителе первого контура борной кислоты сдвигает реакцию вправо в сторону разложения воды.

Для выполнения указанных выше задач на блоке АЭС с ВВЭР-1000 имеется система продувки-подпитки. Система продувки-подпитки предназначена для:

- изменения концентрации поглотителя нейтронов (борной кислоты) в теплоносителе первого контура с целью регулирования реактивности по мере выгорания топлива (при изменениях нагрузки, пусках и остановах реактора);

- обеспечения во всех нормальных режимах работы блока требуемого качества теплоносителя первого контура, величина продувки-подпитки при этом составляет 20-60 тонн/час;

- для работы системы СВО-1 с пониженным расходом при разогреве или расхолаживании первого контура.

В основу проекта системы аварийно-планового расхолаживания активной зоны положены следующие критерии и требования, предъявляемые к ней со стороны реакторной установки во всех ситуациях обеспечить подачу в первый контур раствора борной кис-лоты с расходом 250-300 м3/час при давлении в первом контуре 21 кгс/см2 и 700 -750 м3/час при давлении в первом контуре 1 кгс/см2 и температуру раствора борной кислоты не ниже 20 0С.

Системы безопасности должны:

1) обеспечить подачу в контур борного раствора с концентрацией не менее 16 кг/кг борной кислоты, в начальный момент;

2) допускать возможность опробования (поканально) при работе блока на мощности и при этом не терять своих функциональных свойств;

3) обеспечить подачу воды в аварийных ситуациях не позднее, чем через 35-40 сек с момента достижения давления в первом контуре 21 кгс/см2;

4) допускать возможность опробования (поканально) при работе блока на мощности и при этом не терять своих функциональных свойств;

5) работать как во время аварийных ситуаций, так и в послеаварийный период (в течение всего периода нахождения топлива в активной зоне);

6) иметь возможность кратковременного вывода в ремонт ее элементов в составе одного канала при работе реактора на мощности;

Система САОЗ совмещает функции устройства нормальной эксплуатации и защитного устройства. Как защитная система безопасности, система обеспечивает отвод тепла от активной зоны в аварийных режимах, как устройство нормальной эксплуатации обеспечивает отвод тепла от активной зоны в режимах планового и ремонтного расхолаживания.


Подобные документы

  • Описание принципа действия выбранной системы автоматического регулирования. Выбор и расчет двигателя, усилителя мощности ЭМУ, сравнивающего устройства. Определение частотных характеристик исходной САР. Оценка качества регулирования системы по ее АЧХ.

    курсовая работа [1,2 M], добавлен 06.10.2011

  • Рассмотрение конструкции реостатного измерительного преобразователя и принципа его работы. Изучение структурной схемы преобразования аналогового сигнала с измерительного регулятора в цифровую форму. Исследование принципа работы параллельного АЦП.

    контрольная работа [557,0 K], добавлен 15.01.2012

  • Описание структурной схемы и оценка устойчивости нескорректированной системы. Осуществление синтеза и разработка проекта корректирующего устройства для системы автоматического регулирования температуры подаваемого пара. Качество процесса регулирования.

    курсовая работа [1,8 M], добавлен 11.08.2012

  • Описание технологического процесса и принципа работы системы автоматического регулирования температуры бумажного полотна: расчет синтеза САР по математической модели. Определение периода дискретности в соответствии с требованиями к точности измерения.

    курсовая работа [1,2 M], добавлен 17.06.2012

  • Описание устройства и работы автоматической системы, разработка ее функциональной схемы. Логарифмическая амплитудно-частотная характеристика корректирующего устройства. Расчет передаточной функции скорректированной системы автоматического регулирования.

    курсовая работа [913,9 K], добавлен 22.12.2014

  • Особенности разработки измерительной части системы регулирования температуры. Характеристика структурной и электрической схемы электронного устройства. Анализ элементов схемы электронного устройства и источника питания. Методика испытания отдельного узла.

    дипломная работа [2,8 M], добавлен 19.06.2012

  • Исследование принципа работы схемы сумматора структуры адреса, основных электрических параметров микросхем. Изучение последовательности операций параметрического контроля. Обзор алгоритма интерполяции по методу цифровых дифференциальных анализаторов.

    курсовая работа [3,5 M], добавлен 22.05.2012

  • Виды работ по техническому обслуживанию и ремонту регистрирующего измерительного оборудования. Методы организации технического обслуживания. Описание и работа составных частей прибора Диск–250, его ремонт. Диапазон измерения температур и типы датчиков.

    дипломная работа [1,1 M], добавлен 19.06.2015

  • Знакомство с основными этапами разработки системы автоматического регулирования. Особенности выбора оптимальных параметров регулятора. Способы построения временных и частотных характеристик системы автоматического регулирования, анализ структурной схемы.

    курсовая работа [1,6 M], добавлен 17.05.2013

  • Описание принципа регулирования скорости асинхронного двигателя в каскадных схемах. Анализ основных динамических характеристик системы АВК с суммирующим усилителем. Особенности использования подчинённого регулирования координат в данной системе.

    презентация [149,4 K], добавлен 02.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.