Усовершенствование характеристик видеотерминальных устройств (дисплеев)

Изучение принципов функционирования видеомониторов и их компонентов, виды и классификация видеотерминальных устройств. Анализ особенностей различных технических и эксплуатационных характеристик дисплеев и исследование способов их усовершенствования.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 13.07.2010
Размер файла 4,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Технология TFT.

Thin Film Transistor (TFT), т.е. тонкопленочный транзистор - это те управляющие элементы, при помощи которых контролируется каждый пиксель на экране. Тонкопленочный транзистор действительно очень тонкий, его толщина 0,1 - 0,01 микрона.

В первых TFT-дисплеях, появившихся в 1972г., использовался селенид кадмия, обладающий высокой подвижностью электронов и поддерживающий высокую плотность тока, но со временем был осуществлен переход на аморфный кремний (a-Si), а в матрицах с высоким разрешением используется поликристаллический кремний (p-Si).

Технология создания TFT очень сложна, при этом имеются трудности с достижением приемлемого процента годных изделий из-за того, что число используемых транзисторов очень велико. Заметим, что монитор, который может отображать изображение с разрешением 800х600 пикселей в SVGA режиме и только с тремя цветами имеет 1440000 отдельных транзисторов.

Производители устанавливают нормы на предельное количество транзисторов, которые могут быть нерабочими в LCD дисплее. Правда, у каждого производителя свое мнение о том, какое количество транзисторов могут не работать.

Пиксель на основе TFT устроен следующим образом: в стеклянной пластине друг за другом интегрировано три цветных фильтра (красный, зеленый и синий). Каждый пиксель представляет собой комбинацию трех цветных ячеек или субпиксельных элементов (см. приложение Ж, рис. 11). Это означает, например, что у дисплея, имеющего разрешение 1280x1024, существует ровно 3840x1024 транзистора и субпиксельных элемента. Размер точки (пикселя) для 15.1" дисплея TFT (1024x768) приблизительно равен 0.0188 дюйма (или 0.30 мм), а для 18.1" дисплея TFT - около 0.011 дюйма (или 0.28 мм).

TFT обладают рядом преимуществ перед ЭЛТ-мониторами, среди которых - пониженное потребление энергии и теплоотдача, плоский экран и отсутствие следа от движущихся объектов. Последние разработки позволяют получить изображение более высокого качества, чем обычные TFT.

Совсем недавно специалистами компании Hitachi была создана новая технология многослойных ЖК-панелей Super TFT, которая значительно увеличила угол уверенного обзора ЖК панели. Технология Super TFT использует простые металлические электроды, установленные на нижней стеклянной пластине и заставляет молекулы вращаться, постоянно находясь в плоскости, параллельной плоскости экрана. Так как кристаллы обычной ЖК-панели поворачиваются к поверхности экрана оконечностями, то такие ЖКД более зависимы от угла зрения, чем ЖК-панели Hitachi с технологией Super TFT, в результате изображение на дисплее остается ярким и четким даже при больших углах обзора, достигая качества, сопоставимого с изображением на ЭЛТ-экране.

Некоторые параметры, определяющие качество LCD-монитора:

- Разрешение монитора.

Разрешение любого дисплея - это полное количество пикселей, формирующих изображение. Например, разрешение 1280 х 1024 означает, что изображение состоит из 1024 строк по 1280 точек в каждой. Чем выше разрешение, тем, естественно, более четким получается изображение.

Что касается разрешения LCD-дисплеев, то оно является единственным, его еще называют native, оно соответствует максимальному физическому разрешению CRT-мониторов. Именно в native разрешении LCD-монитор воспроизводит изображение лучше всего. Это разрешение определяется размером пикселей, который у LCD-монитора фиксирован. Например, если LCD-монитор имеет native разрешение 1024x768, то это значит, что на каждой из 768 линий расположено 1024 электродов, читай: пикселей. При этом есть возможность использовать и более низкое, чем native, разрешение. Для этого есть два способа. Первый называется "Centering" (центрирование); суть метода в том, что для отображения изображения используется только то количество пикселей, которое необходимо для формирования изображения с более низким разрешением. В результате изображение получается не во весь экран, а только в середине. Все неиспользуемые пиксели остаются черными, т.е. вокруг изображения образуется широкая черная рамка.

Второй метод называется "Expansion" (растяжение). Суть его в том, что при воспроизведении изображения с более низким, чем native, разрешением используются все пиксели, т.е. изображение занимает весь экран. Однако, из-за того, что изображение растягивается на весь экран, возникают небольшие искажения, и ухудшается резкость.

Сегодня каких-либо официальных стандартов обозначения разрешений дисплеев не существует, однако сложилась и успешно развивается полуофициальная система подобных наименований (см. приложение Е, таблица 1.1.).

- Угол обзора.

Пропускная способность жидкого кристалла зависит от угла наклона падающего света. Поэтому если смотреть на LCD-дисплей не строго перпендикулярно, а сбоку, то происходит затемнение изображения или искажение цвета. Некоторые фирмы предлагают различные технологии для устранения этого эффекта. В Apple Studio Display, например, используют особое пленочное покрытие, которое увеличивает качество изображения при «боковом» чтении. Существуют и другие технологии, однако в целом ряде случаев приемы, увеличивающие угол обзора, снижают динамические параметры отображения информации. Небольшой угол обзора -- это серьезная проблема, и стоит она тем острее, чем больше размер экрана. По свидетельству основных производителей, сегодняшняя технология позволяет увеличить этот угол до 140-150° в горизонтальной и 120° -- в вертикальной плоскости.

- Степень интерференции

Интерференция проявляется за счет влияния активизированных пикселов на соседние пассивные. Это явление в меньшей степени проявляется в мониторах с активной матрицей и в большей -- в мониторах с пассивной матрицей.

- Яркость

Яркость дисплея определяется яркостью заднего освещения и пропускной способностью панели. Пропускная способность жидкого кристалла мала, поэтому для увеличения яркости изображения применяют апертурную решетку с большим относительным отверстием и цветовые фильтры с высокой пропускной способностью.

- Контрастность.

Контрастность LCD-монитора определяется отношением яркостей между самым ярким белым и самым темным черным цветом. Хорошим контрастным соотношением считается 120:1, что обеспечивает воспроизведение живых насыщенных цветов. Контрастное соотношение 300:1 и выше используется тогда, когда требуется точное отображение черно-белых полутонов.

Сравнительные характеристики ЭЛТ и ЖК - мониторов представлены в таблице 1.2. (см приложение К).

1.4 Плазменные дисплеи

Коммерческий цикл любого изобретения не вечен, и производители, запустившие массовое производство LCD-мониторов, готовят следующее поколение технологий отображения информации. Устройства, которые придут на смену жидкокристаллическим, находятся на разных стадиях развития. Некоторые, такие, как LEP (Light Emitting Polymer -- светоизлучающие полимеры), только выходят из научных лабораторий, а другие, например на основе плазменной технологии, уже представляют собой законченные коммерческие продукты.

Размер всегда был главным препятствием при создании широкоэкранных мониторов. Мониторы размером больше 24 дюймов, созданные с использованием ЭЛТ технологии, слишком тяжелые и громоздкие. ЖК-мониторы -- плоские и легкие, но экраны, размер которых больше 20 дюймов, обладают слишком высокой себестоимостью. Плазменная технология нового поколения идеально подходит для создания больших экранов. Она позволяет выпускать плоские и легкие мониторы глубиной всего 9 сантиметров. Поэтому, несмотря на большой экран, они могут быть установлены в любом месте -- на стене, под потолком, на столе.

Благодаря широкому углу обзора изображение видно с любой точки. И что самое главное, плазменные мониторы способны передать цвет и резкость, которые раньше были недостижимы при таком размере экрана.

Идея использования газового разряда в средствах отображения не нова. Подобные устройства выпускались много лет назад в СССР в Рязани в НПО «Плазма». Однако размер элемента изображения был достаточно велик, так что для получения приличного изображения было нужно создавать огромные табло. Изображение было некачественным, передавалось мало цветов, устройства были крайне ненадежными.

За рубежом исследования и разработки в области этой технологии начались еще в начале 60-х годов. Еще лет пятьдесят назад было открыто одно интересное явление. Как оказалось, если катод заострить на манер швейной иглы, то электромагнитное поле в состоянии самостоятельно «выдергивать» из него свободные электроны. Необходимо только подать напряжение. По такому принципу работают лампы дневного света. Вылетающие электроны ионизируют инертный газ, чем заставляют его светиться. Трудность заключалась лишь в отработке технологии получения таких игольчатых матриц. Ее решили в Университете штата Иллинойс в 1966 году. В начале семидесятых годов компания Owens-Illinois довела проект до коммерческого состояния. В восьмидесятых годах эту идею пытались воплотить в реальный коммерческий продукт компании Burroughs и IBM, но тогда еще безуспешно.

Надо сказать, что идея плазменной панели появилась вовсе не из чисто научного интереса. Ни одна из существовавших технологий не могла справиться с двумя простыми задачами: добиться высококачественной цветопередачи без неизбежной потери яркости и создать телевизор с широким экраном, чтобы он при этом не занимал всю площадь комнаты. А плазменные панели (PDP), тогда только теоретически, подобную задачу как раз могли решить. Первое время опытные плазменные экраны были монохромными (оранжевыми) и могли удовлетворить спрос только специфических потребителей, которым требовалась, прежде всего, большая площадь изображения. Поэтому первую партию PDP (около тысячи штук) купила Нью-йоркская фондовая биржа.

Направление плазменных мониторов возродилось после того, как стало окончательно ясно, что ни ЖК-мониторы, ни ЭЛТ не в состоянии недорого обеспечить получение экранов с большими диагоналями (более двадцати одного дюйма). Поэтому лидирующие производители бытовых телевизоров и компьютерных мониторов, такие, как Hitachi, NEC и другие, вновь вернулись к PDP. В область плазменной технологии также обратили свои взоры и корейские компании «второй мировой линии», среди которых, например, Fujitsu, производящая более дешевую электронику, что тут же внесло остроту конкуренции. Сейчас Fujitsu, Hitachi, Matsushita, Mitsubishi, NEC, Pioneer и другие производят плазменные мониторы с диагональю 40 дюймов и более.

Принцип работы плазменной панели состоит в управляемом холодном разряде разреженного газа (ксенона или неона), находящегося в ионизированном состоянии (холодная плазма). Рабочим элементом (пикселем), формирующим отдельную точку изображения, является группа из трех субпикселей, ответственных за три основных цвета соответственно. Каждый субпиксель представляет собой отдельную микрокамеру, на стенках которой находится флюоресцирующее вещество одного из основных цветов (см. приложение Л, рис. 12). Пиксели находятся в точках пересечения прозрачных управляющих хром-медь-хромовых электродов, образующих прямоугольную сетку.

Для того, чтобы «зажечь» пиксель, происходит приблизительно следующее. На питающий и управляющий электроды, ортогональные друг другу, в точке пересечения которых находится нужный пиксель, подается высокое управляющее переменное напряжение прямоугольной формы. Газ в ячейке отдает большую часть своих валентных электронов и переходит в состояние плазмы. Ионы и электроны попеременно собираются у электродов, по разные стороны камеры, в зависимости от фазы управляющего напряжения. Для «поджига» на сканирующий электрод подается импульс, одноименные потенциалы складываются, и вектор электростатического поля удваивает свою величину. Происходит разряд -- часть заряженных ионов отдает энергию в виде излучения квантов света в ультрафиолетовом диапазоне (в зависимости от газа). В свою очередь, флюоресцирующее покрытие, находясь в зоне разряда, начинает излучать свет в видимом диапазоне, который и воспринимает наблюдатель. 97% ультрафиолетовой составляющей излучения, вредного для глаз, поглощается наружным стеклом. Яркость свечения люминофора определяется величиной управляющего напряжения.

Высокая яркость до 650 кд/м2 и контрастность до 3000:1 наряду с отсутствием дрожания являются большими преимуществами таких мониторов (для сравнения: у професионального ЭЛТ-монитора яркость равна приблизительно 350 кд/м2, а у телевизора -- от 200 до 270 кд/м2 при контрастности от 150:1 до 200:1). Высокая четкость изображения сохраняется на всей рабочей поверхности экрана. Кроме того, угол по отношению к нормали, под которым увидеть нормальное изображение на плазменных мониторах, существенно больше, чем у LCD-мониторов. К тому же плазменные панели не создают магнитных полей (что служит гарантией их безвредности для здоровья), не страдают от вибрации, как ЭЛТ-мониторы, а их небольшое время регенерации позволяет использовать их для отображения видео- и телесигнала. Отсутствие искажений и проблем сведения электронных лучей и их фокусировки присуще всем плоскопанельным дисплеям. Необходимо отметить и стойкость PDP-мониторов к электромагнитным полям, что позволяет использовать их в промышленных условиях -- даже мощный магнит, помещенный рядом с таким дисплеем, никак не повлияет на качество изображения. В домашних же условиях на монитор можно поставить любые колонки, не опасаясь возникновения цветных пятен на экране.

Главными недостатками такого типа мониторов является довольно высокая потребляемая мощность, возрастающая при увеличении диагонали монитора и низкая разрешающая способность, обусловленная большим размером элемента изображения. Кроме этого, свойства люминофорных элементов быстро ухудшаются, и экран становится менее ярким. Поэтому срок службы плазменных мониторов ограничен 10000 часами (это около 5 лет при офисном использовании). Из-за этих ограничений, такие мониторы используются пока только для конференций, презентаций, информационных щитов, то есть там, где требуются большие размеры экранов для отображения информации. Однако есть все основания предполагать, что в скором времени существующие технологические ограничения будут преодолены, а при снижении стоимости, такой тип устройств может с успехом применяться в качестве телевизионных экранов или мониторов для компьютеров.

Неплохие перспективы PDP связывают с относительно низкими требованиями к производственным условиям; в отличие от TFT-матриц PDP-экраны можно изготовлять в условиях низких температур методом прямой печати.

Практически каждый производитель плазменных панелей добавляет к классической технологии некоторые собственные ноу-хау, улучшающие цветопередачу, контрастность и управляемость. В частности, NEC предлагает технологию капсулированного цветового фильтра (CCF), отсекающего ненужные цвета, и методику повышения контрастности за счет отделения пикселей друг от друга черными полосами (такая же технология используется Pioneer). В мониторах Pioneer также используются технология Enhanced Cell Structure, суть которой в увеличении площади люминофорного пятна, и новая химическая формула голубого люминофора, который дает более яркое свечение, и, соответственно, повышает контрастность. Компания Samsung разработала конструкцию монитора повышенной управляемости -- панель разделена на 44 участка, каждый из которых имеет собственный электронный блок управления.

Компании Sony, Sharp и Philips совместно разрабатывают технологию PALC (Plasma Addressed Liquid Crystal), которая должна соединить в себе преимущества плазменных и LCD экранов с активной матрицей. Дисплеи, созданные на основе данной технологии, сочетают в себе преимущества жидких кристаллов (яркость и сочность цветов, контрастность) с большим углом видимости и высокой скоростью обновления плазменных панелей. В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения. Первые образцы на основе технологии PALC появились в 1998 году.

Можно привести несколько удачных примеров использования плазменных мониторов. В торговом центре в Осло установлено 70 дисплеев, на которых покупают рекламное время небольшие магазинчики. Там PDP-мониторы окупили себя за 2,5 месяца. Используют их и в аэропортах. В частности, в Вашингтоне они установлены в зале прилета. Благодаря своей динамичности такой способ подачи информации привлекает гораздо больше внимания, чем традиционные табло. Есть опыт применения плазменных мониторов и в ресторанах McDonalds. Различные телевизионные компании, например CBS, NBC, BBS, MTV и российская НТВ используют в оформлении своих студий PDP-мониторы. Это связано с тем, что высокая частота обновления позволяет вести съемку PDP-дисплея обычной камерой, и при этом не возникает мерцания или стробоскопического эффекта.

1.5 Перспективы развития видеотерминальных устройств

Стереоскопические 3-D дисплеи.

Идея создания устройств, обеспечивающих воспроизведение 3D объектов, существует уже более 30 лет. Естественная трансформация черно-белой картинки в цветную, моно звука в стерео звук, оставляют инженерам последнюю задачу - превращение 2D в 3D.

Чтобы понять, как работают стереоскопические дисплеи, сначала необходимо разобраться в том, как устроено человеческое пространственное зрение. Это открытие было сделано ещё в XIX. Дело в том, что восприятие пространства связано с расстоянием между глазами. Поэтому любой объект каждый глаз видит под несколько другим углом (см. приложение М, рис. 13).

Посмотрите на один из углов вашего монитора, закрыв один глаз. Затем повторите эту же процедуру для другого глаза. Угол будет как бы перемещаться вправо-влево. То есть перспектива для каждого глаза немного отличается. С помощью этой разницы мозг высчитывает расстояние до объекта, а затем строит его трёхмерное пространственное представление.

Однако не у каждого есть подобная возможность. Некоторые люди не обладают стереоскопическим зрением из-за разной фокусировки глаз, аномалий зрачка или других причин. В этом случае мозг тоже адаптируется, используя другие способы для создания пространственной картины.

Компьютерный экран плоский. Поэтому создать на нём реалистичную трёхмерную картинку без технологических трюков или специальных устройств невозможно - ведь дисплей даёт картинку, которую оба глаза видят одинаково. Как мы уже говорили ранее, для трёхмерного восприятия оба глаза должны смотреть на объект под немного разными углами. То есть трюк заключается в том, чтобы каждый глаз получил свою картинку, несмотря на то, что зритель будет смотреть на одну и ту же поверхность.

Хотя в прошлые годы появились различные способы вывода 3D-сцены на 2D-плоскости, ни один из них так и не получил широкого применения - по крайней мере, в сфере бытовой электроники.

Авто-стереоскопические дисплеи.

Авто-стереоскопические (autostereoscopic) дисплеи способны создавать 3D-эффект без помощи каких-либо дополнительных устройств типа очков. Производители решили опереться на оптические эффекты, которые позволяют направлять лучи монитора напрямую в глаза зрителя. Если голова зрителя находится в определённом положении перед монитором, в так называемой стерео-зоне, то он получит 3D-картинку (см. приложение М, рис.14).

В данном случае эффект достигается даже с помощью обычного ЖК-дисплея, если добавить на него специальную пластину с линзами, разработанную для данной конкретной модели. Линзы Френеля преломляют свет таким образом, чтобы каждый глаз зрителя получал только одну колонку пикселей. К примеру, левый глаз будет видеть все чётные колонки, а правый - все нечётные. Соответствующее программное обеспечение подготавливает стерео-картинку для такого монитора. В итоге пользователь получает реалистичную 3D-картинку, если находится в определённой области перед экраном. И без каких-либо дополнительных устройств (см. приложение Н, рис.15).

К сожалению, эта технология тоже имеет свои недостатки. Во-первых, она страдает из-за уменьшенного горизонтального разрешения. Дисплей с "родным" разрешением 1600x1200 даст всего 800x1200 пикселей, так как каждый глаз будет видеть только чётные или нечётные пиксели. Мозг действительно будет комбинировать половинки в стереоскопическую картину, но от уменьшения разрешения деться будет некуда. Кроме того, подобный дисплей неспособен выводить обычную 2D-картинку, так как линзы всегда будут разлагать изображение на стереоскопическое. Третий большой недостаток связан с размерами стерео-зоны. Если голова уходит за пределы зоны, то картинка становится инвертированной

Параллельно с автостереоскопическими системами развивались различные устройства виртуальной реальности (шлемы, очки). В них использовались либо подача стерео пар на оба глаза пользователя, либо чередование левых-правых изображений (shattering). Чередование изображений наиболее простой способ, поэтому очки такого рода достаточно дешевы. Однако, чередование дает лишь небольшой эффект 3D, основанный на способности нашего мозга "додумывать" детали изображений. Шлемы или очки виртуальной реальности, с подачей правого и левого ракурса на соответствующие глаза, стоят дороже , но и качество обеспечивают выше. Кроме того, системы виртуальной реальности сильнее изолируют пользователя от окружающего мира (хотя это может рассматриваться и как недостаток). Наибольшей проблемой очков и шлемов является психологический дискомфорт пользователя, поскольку глаза человека обладают свойством фокусироваться на ближайшей плоской поверхности и в то же время сходится на предмете наблюдения. В реальном мире эти два противонаправленных процесса находятся компромисс. В системах виртуальной реальности такой компромисс практически невозможен.

В целом большинство систем генерации 3D изображений:

- не обеспечивают достаточного качества 3D изображений (разрешение, угол обзора);

- не обеспечивают легкости перехода 2D - ЗD и обратно;

- достаточно дороги для индивидуального пользователя;

- требуют создания специального контента.

Имея десятилетний опыт в оптике и голографии, специалисты компании НейрОК четко осознавали ограниченность имеющихся подходов. Поэтому, как обычно принято в России, мы решили пойти "своим путем". В качестве средства обмануть природу была выбрана математика, а в качестве железа были взяты две ЖК панели расположенные одна за другой.

Далее задача стояла так: выпустить с каждой из панелей такой свет, чтобы результирующее световое поле было почти таким же, как у реального объекта. Точно эту задачу решить никогда нельзя - ограничения той же математики. В качества алгоритма решающего эту задачу приближенно были выбраны нейросети. Нейросети - это специальный класс алгоритмов, работающий по образу и подобию человеческого мозга и хорошо решающий задачи в области распознавания образов и приближенного моделирования.

Нейросеть запрограммировали таким образом, что бы она рассчитывала специальные картинки для каждой из ЖК панелей (в принципе, их может быть и более двух). Далее свет, проходя сквозь эти картинки, генерирует светового поле, в целом схожее со световым полем реального объекта. Существуют следующие важные свойства системы.

Система обеспечивает нормальное качество 3D изображения. Поскольку обе ЖК панели активны, информация не теряется и разрешение 3D картинки такое же, как и разрешение 2D. Кроме того, поскольку мы генерируем световое поле, а не стерео пары для левого и правого глаза. Можно качать головой влево и вправо без проблем (но пока еще есть ограничение в пределах 30 - 40 градусов) или играть в игру вместе с другом за одним монитором. Причем в игре, допустим гонки на машинах, для двух играющих экран обычного монитора разделяется по горизонтали - так называемый split screen. А с использованием 3D монитора, каждый играющий сможет видеть полноразмерную собственную картинку, так как одной из возможностей использования 3D монитора является формирование под разными углами обзора монитора разных изображений.

Можно также использовать 3D дисплей, как 2D, просто выключив переднюю панель. Объемное изображение может быть расположено как за, так и перед панелями. Однако, положение изображения всегда рассчитывается с учетом "реальности". Планируется также добавить в будущем в систему дополнительный блок, следящий не за головой пользователя, а за направлением фокусировки его глаз для улучшения качества показа картинки.

Система относительно дешева - от обычного ЖК монитора ее отличает только дополнительная панель, что при нынешних постоянно снижающихся ценах на ЖК панели не критично. Так как изготовление одного сдвоенного монитора требует меньше ресурсов, чем изготовление двух обычных LCD, то предварительные оценки дают увеличение стоимости сдвоенного LCD монитора на 30% по сравнению с обычной LCD панелью.

Голографические дисплеи.

Голографические 3D дисплеи (далее H3D) воспроизводят непрерывное световое поле, соответствующее световому полю реальной 3D сцены. Однако, современная техника немыслима без цифровой обработки сигналов, стало быть, любая непрерывная функция с некоторой точностью апроксимируется рядом дискретных значений.

Обычно, когда речь заходит о H3D, имеют в виду устройство, способное воспроизводить на некоемом материале подобие традиционной голограммы, то есть вычислять и отображать фиксируемую ей в виде дифракционных структур интерференционную картину светового поля, причем делать это в реальном времени. Такой подход не учитывает, что каждый малый участок голограммы представляет из себя дифракционную решетку, выполняющую роль отклоняющего элемента и нет нужды каждый раз, когда нужно изменить угол отклонения луча, рассчитывать и отображать ее. Самое удивительное, что есть ученые, разрабатывающие это финансово и информационно сверхзатратное направление. Например, американцы из Массачусетского технологического разработали прототип, в котором воспроизводится изображение, рассчитанное на компьютере (см. приложение Н, рис.16, приложение О, рис.17). Голограмма формируется с помощью акустооптического модулятора: луч лазера модулируется акустическими колебаниями, воздействующими на кристалл, который расположен перед фокусирующей линзой.

Прорисовка изображения выполняется механической зеркальной разверткой. Для монохромной картинки размером 15 x 15 x 20 см требуется поток данных около 2 гигапикселов в секунду. Японцы пытаются воспроизводить голограммы с помощью проекционных LCD матриц (используются в видеопроекторах), каждая из которых воспроизводит небольшой отдельный участок голограммы. Поскольку диагональ таких матриц не превышает 1,8 дюйма, для получения голограммы нужной площади пришлось использовать множественные конфигурации и устройства сведения для объединения различных частей голограммы. Поток данных, требуемый для воссоздания полноценного образа, достигает приблизительно одного терабайта в секунду.

Команда исследователей из Университета Южной Калифорнии (University of Southern California) сообщает о разработке голографического дисплея, способного воспроизводить наиболее реалистичную на сегодняшний день 3D-картинку. Созданная установка воспроизводит полностью трехмерную голограмму (при наблюдении в горизонтальной плоскости), которую можно обозревать с любой стороны.

В состав "голографического дисплея" входят: быстро вращающееся зеркало, покрытое анизотропным голографическим диффузором; FPGA-микроконтроллер, отвечающий за декодирование видеосигнала, передаваемого посредством стандартного DVI-дисплея; высокоскоростной видеопроектор и обычный персональный компьютер. В качестве графической подсистемы компьютера выступила единственная видеокарта NVIDIA GeForce 8800. При этом разработчики отмечают, что их решение позволяет видеть трехмерную картинку, не используя специальных очков, с любой точки и неограниченному количеству зрителей.

За формирование трехмерной картинки отвечает видеокарта GeForce 8800, создающая более 5.000 изображений трехмерного объекта в секунду. Изображения проецируются на быстро вращающееся зеркало при помощи высокоскоростной проекционной системы. Здесь же необходимо отметить разработку исследователями специального MCOP-алгоритма, который обеспечивает корректное отображение картинки, независимо от места расположения наблюдателя и его расстояния до голографического дисплея.

Уникальная система уже демонстрировалась публике, причем в качестве "экспоната" был выбран космический корабль из фантастического фильма "Star Wars" (см. приложенеие О, рис.18). В данный момент исследователи заняты работой над улучшением системы - повышением качества голограммы, реализацией возможности формирования правильного изображения при изменении положения точки наблюдения в вертикальной плоскости.

Является необходимым определить возможные области применения 3-D технологий:

- геология (анализ и оценка спутниковых фотографий или карт);

- 3D-анимация и 3D-видео;

- образование;

- 3D-рабочие станции/САПР;

- компьютерные игры;

- дизайн и архитектура;

- медицина;

- военные применения;

- биохимия и химия;

- управление воздушным движением.

Конечно, этот список не претендует на завершённость. Но он позволяет дать общее представление. Как правило, 3D-дисплей может существенно облегчить работу там, где требуется пространственное представление.

Схемы дисплея и видеотерминального устройства изображены в Приложении П, рис. 19 и рис. 20.

2 УСОВЕРШЕНСТВОВАНИЕ ХАРАКТЕРИСТИК ВИДЕОТЕРМИНАЛЬНЫХ УСТРОЙСТВ

Максимальная яркость дисплеев ЭЛТ -- 100-120 кд/м2. Увеличить ее трудно из-за непомерного роста ускоряющих напряжений на катодах электронных пушек, что приводит к побочным эффектам -- таким, как повышенный уровень излучения и ускоренное выгорание люминофорного покрытия. У ЖК-мониторов в этой области нет конкурентов. Максимальная величина яркости в принципе определяется характеристиками ламп дневного света, которые используются для подсветки экрана. Не является проблемой получение яркости порядка 200-250 кд/м2. Хотя технически вполне возможно ее увеличение до значительно более высоких значений, этого не делают, чтобы не ослепить пользователя.

После настройки монитора на заводе он проделывает долгий путь, прежде чем попадет на стол к пользователю. На этом пути монитор подвергается различным механическим, термическим и прочим воздействиям. Это приводит к тому, что предустановленные настройки сбиваются и после включения изображение на экране отображается не очень качественно. Этого не может избежать ни один монитор. Для того, чтобы устранить эти, а также прочие, возникающие в процессе использования монитора, дефекты, монитор должен обладать развитой системой регулирования и управления, в противном случае потребуется вмешательство специалистов.

Под управлением понимают подстройку таких параметров, как яркость, геометрия изображения на экране. Существуют два типа систем управления и регулирования монитора: аналоговые (ручки, движки, потенциометры) и цифровые (кнопки, экранное меню, цифровое управление через компьютер). Аналоговое управление используется в дешевых мониторах и позволяет напрямую изменять электрические параметры в узлах монитора. Как правило, при аналоговом управлении пользователь имеет возможность настраивать только яркость и контраст. Цифровое управление обеспечивает передачу данных от пользователя к микропроцессору, управляющему работой всех узлов монитора. Микропроцессор на основании этих данных делает соответствующие коррекции формы и величины напряжений в соответствующих аналоговых узлах монитора. В современных мониторах используется только цифровое управление, хотя количество контролируемых параметров зависит от класса монитора и варьируется от нескольких простейших параметров (яркость, контраст, примитивная подстройка геометрии изображения) до сверхрасширенного набора -- 25-40 параметров, обеспечивающие точные настройки и более простые в эксплуатации.

Большинство производителей электронно-лучевых трубок нормирует среднее время безотказной работы (MTBF -- Mean Time Before Failure) от 30 до 60 тыс. часов, что обеспечивает бесперебойную работу устройства в течение не менее 3,5 лет. После этого изображение может начать терять яркость и контрастность.

В данном проекте предлагается усовершенствование монитора на ЭЛТ посредством введения блока автоматического регулирования яркости свечения экрана от освещенности рабочего места.

Блок состоит из фоторезистора, который регулирует, посредством своего сопротивления током на базе управляющего транзистора. Сопротивление фоторезистора зависит от освещенности последнего.

2.1 Фоторезисторы

Фоторезисторы как элементы цепи преобразования информации применяются в различных системах, предназначенных для контроля и измерения геометрических размеров и скоростей движения объектов, температуры, управления различными механизмами, для определения качественного состава твердых, жидких и газообразных сред, включения и выключения различных устройств и т. д. При этом во многих случаях фоторезисторный способ получения и обработки информации дает явное преимущество по сравнению с другими способами.

Эксплуатация фоторезисторных устройств показывает их высокую надежность и широкие возможности.

Успехи в развитии фоторезисторной автоматики стали возможными благодаря значительному усовершенствованию конструкции и расширению номенклатуры серийно выпускаемых фоторезисторов. Они обладают высокой чувствительностью, достаточно малой инерционностью, имеют незначительные габариты, долговечны в работе, обеспечивают бесконтактные измерения и контроль. При их применении достигается односторонность связи между источником сигнала информации - излучателем и потребителем - фоторезистором.

В последние годы фоторезисторы широко применяются во многих отраслях науки и техники. Это объясняется их высокой чувствительностью, простотой конструкции, малыми габаритами и значительной допустимой мощностью рассеяния. Значительный интерес представляет использование фоторезисторов в оптоэлектронике. В современной электронной технике широко используются полупроводниковые приборы, основанные на принципах фотоэлектрического и электрооптического преобразования сигналов. Первый из этих принципов обусловлен изменением электрофизических свойств вещества в результате поглощения в нем световой энергии (квантов света). Второй принцип связан с генерацией излучения в веществе, обусловленной приложенным к нему напряжением и протекающим через светоизлучающий элемент током. Указанные принципы составляют научную основу оптоэлектроники - нового научно-технического направления, в котором для передачи, обработки и хранения информации используются как электрические, так и оптические средства и методы.

2.1.1 Устройство, характеристики, принцип действия фоторезисторов

Все многообразие оптических и фотоэлектрических явлений в полупроводниках можно свести к следующим основным:

- поглощение света и фотопроводимость;

- фотоэффект в p-n переходе;

- электролюминесценция;

- стимулированное когерентное излучение.

Явлением фотопроводимости называется увеличение электропроводности

полупроводника под воздействием электромагнитного излучения. Причина

фотопроводимости -- увеличение концентрации носителей заряда -- электронов в зоне проводимости и дырок в валентной зоне. Вследствие этого проводимость полупроводника возрастает на величину

Ds = e (mn Dni + mp Dpi), (2.1)

где e - заряд электрона;

mn - подвижность электронов;

mp - подвижность дырок;

Dni - концентрация генерируемых электронов;

Dpi - концентрация генерируемых дырок.

Поскольку основным следствием поглощения энергии света в полупроводнике является перевод электронов из валентной зоны в зону проводимости, то энергия кванта света фотона должна удовлетворять условию

hnкр ? DW, (2.2)

где h - постоянная Планка;

DW - ширина запрещенной зоны полупроводника;

nкр - критическая частота электромагнитного излучения (красная граница фотопроводимости).

Излучение с частотой n < nкр не может вызвать фотопроводимость, так как энергия кванта такого излучения hn < DW недостаточна для перевода электрона из валентной зоны в зону проводимости. Если же hn > DW, то избыточная относительно ширины запрещенной зоны часть энергии квантов передается электронам в виде кинетической энергии.

Критической частоте nкр соответствует граничная длина волны:

lгр=с / nкр, (2.3)

где с - скорость света (3·108 м/с).

При длинах волн, больших граничной, фотопроводимость резко падает. Так, для германия граничная длина волны составляет примерно 1.8 мкм. Однако спад фотопроводимости наблюдается и в области малых длин волн. Это объясняется быстрым увеличением поглощения энергии с частотой и уменьшением глубины проникновения падающей на полупроводник электромагнитной энергии. Поглощение происходит в тонком поверхностном слое, где и образуется основное количество носителей заряда. Появление большого количества избыточных носителей только у поверхности слабо отражается на проводимости всего объема полупроводника, так как скорость поверхностной рекомбинации больше объемной и проникающие вглубь не основные носители заряда увеличивают скорость рекомбинации в объеме полупроводника.

Фотопроводимость полупроводников может обнаруживаться в инфракрасной, видимой или ультрафиолетовой частях электромагнитного спектра в зависимости от ширины запрещенной зоны, которая, в свою очередь, зависит от типа полупроводника, температуры, концентрации примесей и напряженности электрического поля.

Рассмотренный механизм поглощения света, приводящий к появлению свободных носителей заряда в полупроводнике, называют фото активным. Поскольку при этом изменяется проводимость, а следовательно, внутреннее сопротивление полупроводника, указанное явление было названо фоторезистивным эффектом.

Основное применение фоторезистивный эффект находит в светочувствительных полупроводниковых приборах - фоторезисторах, которые широко используются в современной оптоэлектронике и фотоэлектронной автоматике.

Фоторезистор представляет собой непроволочный дискретный полупроводниковый резистор, омическое сопротивление которого определяется степенью освещенности. Под воздействием светового потока электрическое сопротивление слоя меняется в несколько раз (у некоторых типов фотосопротивлений оно уменьшается на два- три порядка). В зависимости от применяемого слоя полупроводникового материала фотосопротивления подразделяются на сернисто-свинцовые, сернисто-кадмиевые, сернисто-висмутовые и поликристаллические селено - кадмиевые. Фотосопротивления обладают высокой чувствительностью, стабильностью, экономичны и надежны в эксплуатации. В целом ряде случаев они с успехом заменяют вакуумные и газонаполненные фотоэлементы.

Многие фоторезисторы, представленные в справочнике, имеют старое обозначение, состоящее из двух букв: ФС, последней буквы, указывающей на материал фоточувствительного элемента (K-CdS, Д-CdSe, A-PbS); цифры -- указа на конструктивное оформление фоторезистора, иногда первой цифрой стоит буква Г или П характеризующие конструктивное исполнение ,и означающие, что конструкция для условий тропического климата и повышенной

влажности.(Г - герметизированные, П - пленочные).

Новое обозначение фоторезисторов состоит из букв ФР и номера разработки.

Например, ФР-193 Д означает: фоторезистор с номером разработки 193, группы Д.

Название типа фоторезисторов слагается из букв и цифр, причем в старых обозначениях буквы А, К, Д обозначали тип использованного светочувствительного материала, в новом же обозначении эти буквы заменены цифрами.

В табл.2.1 приведены наименования наиболее распространенных обозначений фоторезисторов.

Таблица 2.1- Типовые обозначения фоторезисторов

Вид фоторезисторов

Сернисто-свинцовые

ФСА-0, ФСА-1, ФСА-6, ФСА-Г1, ФСА-Г2

Сернисто-кадмиевые

ФСК-0,1,2,4,5,6,7,ФСК-Г1,ФСК-Г2,ФС'Р;-Г7, ФСК-П1 СФ2-1, 2, 4, 9, 12

Селенисто-кадмиевые

ФСД-0, ФСД-1, ФСД-Г1 СФ3-1, 8

Фоторезисторы выпускаются в пластмассовом или метал корпусе, а также в бескорпусном варианте. Большинство приборов является неохлаждаемыми, т. е. предназначеными для работы при температуре окружающей среды. Но целый ряд приборов охлаждаемых, работа которых возможна только после заливки в специальный сосуд хлада, предназначенного для охлаждения фоточувствительно элемента.

Полупроводниковые фоторезисторы работают в цепях как постоянного, так и переменного тока. Техническими условиями допускается так же использование фоторезисторов в импульсных режимах, при средней мощности рассеяния, не превышающей максимально-допустимого значения. Фоторезисторы могут работать при больших интенсивностях света, при условии не превышения предельногозначения фототока и мощности рассеяния.

Для изготовления серийных фоторезисторов используются различные типы материалов: сернистый кадмий (CdS), селенис кадмий (CdSe), сернистый свинец (PbS) и селенид свинца (PbSe). Фоторезисторы чувствительные к инфракрасному излучению длинноволнового диапазона изготавливают на основе кадмий-ртуть-теллур и антимонида индия (InSb).

Светочувствительный элемент в некоторых типах фоторезисторов выполнен в виде круглой или прямоугольной таблетки, спрессованной из порошкообразного сульфида или селенида кадмия, в других он представляет собой тонкий слой полупроводника, нанесенного на стеклянное основание. В том и другом случае с полупроводниковым материалом соединены два металлических вывода. В зависимости от назначения фоторезисторы имеют совершенно различное конструктивное оформление. Иногда это просто пластина полупроводника на стеклянном основании с токонесущими выводами, в других случаях фоторезистор имеет пластмассовый корпус с жесткими штырьками. Среди таких фоторезисторов следует особо отметить ФСК-6, приспособленный для работы от отраженного света, для чего его корпус имеет в центре отверстие для прохождения света к отражающей поверхности. Выпускаются фоторезисторы в металлическом корпусе с цоколем, напоминающим ламповый, или в корпусе, как у герметизированных конденсаторов или транзисторов. Малогабаритные пленочные фоторезисторы выпускаются в пластмассовых и металлических корпусах с влагозащитным покрытием светочувствительного элемента прозрачными эпоксидными смолами.

Конструкция монокристаллического и пленочного фоторезисторов показана на рис.2.1 и рис. 2.2.

Рисунок 2.1 - Монокристаллический фоторезистор

Рисунок 2.2 - Пленочный фоторезистор

Основным элементом фоторезистора является в первом случае монокристалл, а во втором - тонкая пленка полупроводникового материала.

Если фоторезистор включен последовательно с источником напряжения (рис. 2.3 ) и не освещен, то в его цепи будет протекать темновой ток

Iт = E / (Rт + Rн), (2.4)

где Е - э. д. с. источника питания;

Rт - величина электрического сопротивления фоторезистора в темноте,

называемая темновым сопротивлением;

Rн - сопротивление нагрузки.

Рисунок 2.3 - Схема включения для измерения параметров и характеристик фоторезисторов

При освещении фоторезистора энергия фотонов расходуется на перевод электронов в зону проводимости. Количество свободных электронно-дырочных пар возрастает, сопротивление фоторезистора падает и через него течет световой ток

Iс= E / (Rс + Rн). (2.5)

Разность между световым и темновым током дает значение тока Iф, получившего название первичного фототока проводимости

Iф=Iс - Iт. (2.6)

Когда лучистый поток мал, первичный фототок проводимости практически безынерционен и изменяется прямо пропорционально величине лучистого потока, падающего на фоторезистор. По мере возрастания величины лучистого потока увеличивается число электронов проводимости. Двигаясь внутри вещества, электроны сталкиваются с атомами, ионизируют их и создают дополнительный поток электрических зарядов, получивший название вторичного фототока проводимости. Увеличение числа ионизированных атомов тормозит движение электронов проводимости. В результате этого изменения фототока запаздывают во времени относительно изменений светового потока, что определяет некоторую инерционность фоторезистора.

К основным характеристикам фоторезисторов относятся:

- вольтамперная, характеризующая зависимость фототока (при постоянном световом потоке Ф) или темнового тока от приложенного напряжения. (рис.2.4 ). Закон Ома нарушается в большинстве случаев только при высоких напряжениях на фоторезисторе. Эта характеристика линейна в довольно широких пределах. Для некоторых типов фоторезисторов при напряжениях меньше рабочего наблюдается нелинейность. Световая (люксамперная), характеризующая зависимость фототока от падающего светового потока постоянного спектрального состава. Полупроводниковые фоторезисторы имеют нелинейную люксамперную характеристику (рис.2.5). Наибольшая чувствительность получается при малых освещенностях. Это позволяет использовать фоторезисторы для измерения очень малых интенсивностей излучения. При увеличении освещенности световой ток растет примерно пропорционально корню квадратному из освещенности. Наклон люкс амперной характеристики зависит от приложенного к фоторезистору напряжения.

Рисунок 2.4 - Вольтамперная характеристика фоторезистора

Рисунок 2.5 - Световая характеристика фоторезистора

- спектральная, характеризующая чувствительность фоторезистора при действии на него потока излучения постоянной мощности определенной длины волны.

Спектральная характеристика определяется материалом, используемым для изготовления светочувствительного элемента. Как видно из этих характеристик, фоторезисторы с сернисто-кадмиевым светочувствительным элементом имеют максимальную чувствительность в видимой части спектра, фоторезисторы, выполненные на основе селенистого кадмия, наиболее чувствительны к красной и инфракрасной части спектра, а сернисто-свинцовые фоторезисторы имеют максимум чувствительности в инфракрасной, области спектра (рис.2.6).

-частотная, характеризующая чувствительность фоторезистора при действии на него светового потока, изменяющегося с определенной частотой. Наличие инерционности у фоторезисторов приводит к тому, что величина их фототока зависит от частоты модуляции падающего на них светового потока - с

увеличением частоты светового потока фототок уменьшается (рис.2.7).

Инерционность ограничивает возможности применения фоторезисторов при работе с переменными световыми потоками высокой частоты.

.

Рисунок 2.6 - Спектральные характеристики фоторезистора

Рисунок 2.7 - Частотные характеристики фоторезистора

Как видно из характеристики, величина сигнала, снимаемого с фоторезистора, уменьшается с увеличением частоты модуляции светового потока.

Чувствительность фоторезисторов меняется (уменьшается) впервые 50 часов работы, оставаясь в дальнейшем практически постоянной в течение всего срока службы, измеряемого несколькими тысячами часов. Интервал рабочих температур для сернисто-кадмиевых фоторезисторов составляет от -60 до +85°С для селенисто-кадмиевых - от -60 до +40°С и для сернисто-свинцовых - от -60 до +70°С.

К основным параметрам фоторезисторов относятся:

- рабочее напряжение Uр - постоянное напряжение, приложенное к фоторезистору, при котором обеспечиваются номинальные параметры при длительной его работе в заданных эксплуатационных условиях (гарантирующее продолжительную работу фоторезистора). При работе в импульсном режиме у

сернисто-кадмиевых и селенисто-кадмиевых фоторезисторов допустимое напряжение может в 2-3 раза превышать рабочее. У сернисто-свинцовых фоторезисторов рабочее напряжение можно принять равным 0,1 Rт, где Rт в килоомах;

- максимально допустимое напряжение фоторезистора Umax - максимальное значение постоянного напряжения, приложенного к фоторезистору, при котором отклонение его параметров от номинальных значений не превышает указанных пределов при длительной работе в заданных эксплуатационных условиях.

- темновое сопротивление Rт - сопротивление фоторезистора в отсутствие падающего на него излучения в диапазоне его спектральной чувствительности. У некоторых типов фоторезисторов темновое сопротивление может иметь значительный разброс

- световое сопротивление Rс - сопротивление фоторезистора, измеренное

через определенный интервал времени после начала воздействия излучения, создающего на нем освещенность заданного значения.

- кратность изменения сопротивления KR - отношение темнового сопротивления фоторезистора к сопротивлению при определенном уровне освещенности (световому сопротивлению). Это один из важнейших параметров, характеризующий чувствительность фоторезистора. С увеличением освещенности

кратность возрастает по линейному закону, с уменьшением - снижается.

Наименьшей чувствительностью обладают сернисто-свинцовые фоторезисторы, у которых кратность при освещенности 200 лк не ниже 1,2. У остальных типов фоторезисторов чувствительность значительно выше

- допустимая мощность рассеяния мощность, позволяющая длительную

эксплуатацию фоторезистора при температуре +20° С в окружающей среде без

опасности появления необратимых изменений в светочувствительном слое.

- общий ток фоторезистора - ток, состоящий из темнового тока и фототока.

- фототок - ток, протекающий через фоторезистор при указанном напряжении на нем, обусловленный только воздействием потока излучения с заданным спектральным распределением.

- удельная чувствительность - отношение фототока к произведению величины падающего на фоторезистор светового потока на приложенное к нему напряжение,мкА / (лм · В)

К0= Iф / (ФU), (2.7)

где Iф - фототок, равный разности токов, протекающих по фоторезистору в темноте и при определенной (200 лк) освещенности, мкА;

Ф - падающий световой поток, лм;

U - напряжение, приложенное к фоторезистору, В.

Если величину чувствительности умножить на рабочее напряжение, то получится интегральная чувствительность.

- интегральная чувствительность - произведение удельной чувствительности на предельное рабочее напряжение:

Sинт= К0Umax. (2.8)

постоянная времени tф - время, в течение которого фототок изменяется на 63%, т. е. в e раз. Постоянная времени характеризует инерционность прибора и влияет на вид его частотной характеристики.

При включении и выключении света фототок возрастает до максимума (рис.2.8) и спадает до минимума не мгновенно.

Рисунок 2.8 - Кривая релаксации фототока

Характер и длительность кривых нарастания и спада фототока во времени

существенно зависят от механизма рекомбинации неравновесных носителей в данном материале, а также от величины интенсивности света. При малом уровне инжекции нарастание и спад фототока во времени можно представить экспонентами с постоянной времени t, равной времени жизни носителей в полупроводнике. В этом случае при включении света фототок iф будет нарастать и спадать во времени по закону


Подобные документы

  • Изучение принципов работы жидкокристаллических дисплеев, плазменных панелей. Исследование характеристик полупроводниковых приборов и электронных устройств: полевых транзисторов, диодов, усилительных каскадов. Двоичные системы счисления в электронике.

    курсовая работа [1,5 M], добавлен 24.10.2015

  • Качество контроля и диагностики зависит не только от технических характеристик контрольно-диагностирующей аппаратуры, но и от тестопригодности испытываемого изделия. Сигналы, возникающие в процессе функционирования основной и контрольной аппаратуры.

    реферат [29,0 K], добавлен 24.12.2008

  • Архитектура терминальных устройств. Тонкий клиент и толстый клиент. Бездисковая рабочая станция. Организация терминального доступа средствами Windows 2003 Server. Лицензирование терминальных служб. Технические характеристики терминальных устройств.

    дипломная работа [98,7 K], добавлен 02.03.2009

  • Понятие, виды, структура светодиодов, их свойства и характеристики, особенности принципа работы. Возможности, недостатки и эффективность светодиодных ламп. Применение органических светодиодов при создании устройств отображения информации (дисплеев).

    реферат [587,6 K], добавлен 23.07.2010

  • Принципы формирования изображения на всех существующих типах дисплеев. Жидкокристаллический монитор и его особенности. Принцип действия и углы обзора TFT-LCD дисплеев, их плюсы и минусы. Наиболее распространенные технологии изготовления TFT-LCD.

    реферат [156,1 K], добавлен 17.02.2015

  • Определение количественных и качественных характеристик надежности устройств железнодорожной автоматики, телемеханики и связи. Анализ вероятности безотказной работы устройств, частоты и интенсивности отказов. Расчет надежности электронных устройств.

    курсовая работа [625,0 K], добавлен 16.02.2013

  • Параметры и свойства устройств обработки сигналов, использующих операционного усилителя в качестве базового элемента. Изучение основных схем включения ОУ и сопоставление их характеристик. Схемотехника аналоговых и аналого-цифровых электронных устройств.

    реферат [201,0 K], добавлен 21.08.2015

  • Изучение различных типов устройств СВЧ, используемых в схемах распределительных трактов антенных решеток. Практические расчеты элементов автоматизированного проектирования устройств СВЧ на основе метода декомпозиции. Конструирование баз и устройств СВЧ.

    контрольная работа [120,9 K], добавлен 17.10.2011

  • История развития устройств хранения данных на магнитных носителях. Доменная структура тонких магнитных пленок. Принцип действия запоминающих устройств на магнитных сердечниках. Исследование особенностей использования ЦМД-устройств при создании памяти.

    курсовая работа [1,6 M], добавлен 23.12.2012

  • Проектирование устройств фильтрации по рабочим параметрам. Виды аппроксимации частотных характеристик. Моделирование разрабатываемого фильтра на функциональном уровне в MathCAD, в частотной и временной областях, в нормированном и денормированном виде.

    курсовая работа [2,8 M], добавлен 28.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.