Исследование и расчет цепей постоянного тока
Опытная проверка законов Кирхгофа и принципа наложения. Расчет токов в ветвях заданной электрической цепи методами контурных токов, узловых потенциалов, эквивалентного генератора. Построение потенциальной диаграммы. Сравнение результатов опыта и расчета.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 09.02.2013 |
Размер файла | 1,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Кафедра «Теоретические основы электротехники»
Дисциплина «ФЭТП»
Курсовая работа
Исследование и расчет цепей постоянного тока
Выполнил:
студент гр
Проверил:
Преподаватель:
Цель работы:
1. Освоение методики измерения токов, напряжений, потенциалов.
2. Опытная проверка законов Кирхгофа и принципа наложения.
3. Расчёт токов в ветвях заданной электрической цепи методами контурных токов, узловых потенциалов, эквивалентного генератора.
4. Построение потенциальной диаграммы.
5. Составление баланса мощностей.
6. Сравнение результатов опыта и расчёта.
1. Экспериментальная часть
ток генератор кирхгоф электрический
1) Измеряем Е1 и Е2 , показания заносим в таблицу 1.1.
Таблица1.1- Параметры исследуемой цепи
Значения ЭДС, В |
Сопротивления резисторов , Ом |
Сопротивления амперметров, Ом |
|||||||||
Е1 |
Е2 |
R1 |
R2 |
R3 |
R4 |
R5 |
R6 |
RA1 |
RA2 |
RA3 |
|
10 |
8 |
83 |
33 |
54 |
42 |
41 |
55 |
1 |
1 |
1 |
2) При замкнутом ключе S измеряем токи от действия обеих ЭДС, полученные значения заносим в таблицу 1.2 и 1.4.
Таблица 1.2 - Сравнение значений токов, полученных расчётами и в опыте
Токи в ветвях, мА |
Способ определения |
|||||
I1 |
I2 |
I3 |
I4 |
I5 |
||
45 |
26 |
75 |
Опытным путём |
|||
41 |
29 |
70 |
92 |
120 |
Методом контурных токов |
|
41 |
29 |
70 |
92 |
120 |
Методом узловых потенциалов |
|
70 |
Методом эквивалентного генератора |
3) Принимаем потенциал одного из узлов схемы (узла номер 3) равным нулю, измеряем потенциалы указанных точек, заносим их в таблицу 1.3
Таблица 1.3 - Сравнение значений потенциалов, полученных расчетом и в опыте
Потенциалы точек цепи, В |
Способ определения |
||||||
ц1 |
ц2 |
ц3 |
ц4 |
ц5 |
ц6 |
||
-5 |
0 |
-3,8 |
3,9 |
-5,5 |
3 |
Опытным путём |
|
-5,03 |
0 |
-3,83 |
Методом узловых потенциалов |
4) Измеряем и заносим в таблицу 1.4 значения токов от действия Е1, Е2 .
Таблица 1.4 - Проверка принципа наложения
Е1 |
Токи, мА |
||||||
Опыт |
Расчет |
||||||
Преобразованная цепь |
|||||||
65 |
-23 |
37 |
58 |
-27 |
31 |
||
Е2 |
Преобразованная цепь |
||||||
-13 |
55 |
42 |
-17 |
56 |
39 |
||
Е1,Е2 |
Преобразованная цепь |
||||||
44 |
30 |
72 |
41 |
29 |
70 |
5) Включаем в схему Е1 и Е2, измеряем ток I3 при R3=0, затем размыкаем ключ S и измеряем напряжение между точками 2 и 3. полученные значения заносим в таблицу 1.5
Таблица 1.5 - Параметры эквивалентного генератора
Напряжение холостого хода Eг=U23Х,X, В |
Ток короткого замыкания IЗ К.З, А |
Сопротивление RГ , Ом |
Способ определения |
|
6,7 |
70 |
42 |
Опыт |
|
6,77 |
41,8 |
Расчёт |
2. Расчётная часть
Законы Кирхгофа
Законы Кирхгофа являются фундаментальными законами электротехники.
Первый закон Кирхгофа формулируется для узла электрической цепи: алгебраическая сумма токов ветвей, сходящихся в узле электрической цепи, равна нулю. При этом подходящие к узлу токи записываются с одним знаком, отходящие - с другим.
Второй закон Кирхгофа формулируется для контура электрической цепи: алгебраическая сумма падений напряжений на участках контура равна алгебраической сумме ЭДС того же контура. При этом, если направление ЭДС совпадает с направлением обхода контура, то она берется со знаком „плюс", если не совпадает - со знаком „минус”. Падение напряжения на элементе берется со знаком „плюс", если направление тока в элементе совпадает с направлением обхода, если не совпадает - со знаком „минус".
Схема исследования
Исследуемая схема приведена на рисунке 1.1.
Рисунок 1.1 - Исследуемая схема
- Для начала напишем уравнения по законам Кирхгофа для данной цепи:
- по первому закону составляем 2 уравнения (т.к.):
- 3. Расчет методом контурных токов
- В этом методе за неизвестные принимают токи независимых контуров (контурные токи), а токи ветвей выражают через контурные.
- Последовательность определения токов ветвей методом контурных токов
- 1) Выбираются независимые контуры и направления контурных токов.
- 2) Записывается система уравнений в общем виде. Число уравнений равно числу независимых контуров схемы минус число контуров, содержащих источники тока. Количество слагаемых в левой части уравнения равно числу независимых контуров.
- 3) Определяются коэффициенты при неизвестных - собственные и общие сопротивления контуров, а также контурные ЭДС. Если общей ветвью контуров является источник ЭДС без сопротивления, то общее сопротивление этих контуров равно нулю.
- 4) Рассчитываются контурные токи.
- 5) Выбираются направления токов ветвей.
- 6) Определяются, токи ветвей
- Выберем три независимых контура. Обозначим контурные токи: I11, I22, I33, выбрав направление обхода произвольно.
Рисунок 1.2 - Схема исследования для метода контурных токов
Запишем 3 уравнения (т.к. выбрано 3 контура) для решения задачи:
,
Для данной схемы при выбранных направлениях обхода контуров их параметры выражаются следующим образом:
подставляя численные значения, получим следующее:
подставляем значения, тогда система уравнений имеет вид:
,
Решив полученную систему уравнений, найдем контурные токи:
I11 = 0,041 mA;
I22 = -0,029 mA;
I33 = -0,12 mA.
Теперь выражаем и подсчитываем необходимые токи через контурные:
4. Баланс мощностей
Проверим правильность подсчета токов в задаче при решении любым из методов, для этого составим баланс мощностей:
или
Следовательно токи найдены правильно, при следующих расчетах баланс мощностей проверять не будем, а будем сверяться с величинами, найденными методом контурных токов. (Отклонение значений - результат погрешности округления).
5. Метод узловых потенциалов
В этом методе за неизвестные принимают потенциалы узлов схемы, а токи ветвей находят по закону Ома.
Последовательность определения токов ветвей методом узловых потенциалов
1) Записывается система уравнений в общем виде. Число уравнений системы на единицу меньше числа узлов схемы. Если в схеме содержится ветвь с источником ЭДС без сопротивлений, то 2 = 1 + E1. Приняв 1 = 0, получим 2 = E1.
2) Определяются коэффициенты при неизвестных - собственные и общие проводимости, также задающие токи узлов.
3) Рассчитывается потенциалы узлов.
4) Выбираются направления токов ветвей.
5) Определяются токи ветвей.
Рисунок 1.3 - Схема исследования для метода узловых потенциалов
Запишем систему уравнений для потенциалов узлов 1 и 2:
По исходным данным вычислим значения задающих токов и проводимостей ветвей:
Подставим полученные значения в систему уравнений:
Решив систему уравнений, получим потенциалы узлов:
Исходя из потенциалов узлов и 2-го закона Кирхгофа, найдем токи ветвей:
Значения, полученные методом узловых потенциалов, совпадают со значениями, полученными методом контурных токов.
6. Метод наложения
В данном методе последовательно преобразуем схему, оставляя в ней по одному ЕДС. Определяем токи в ветвях от действия этого ЭДС. После рассчитываем токи от действия другого ЭДС. Полученные токи складываем с соответствующими знаками (сонаправлены они или нет), получаем необходимые токи в ветвях.
Сделаем схему зависимой только от источника Е1:
Рисунок 1.4 - Схема исследования для метода наложения
Пусть
тогда схема исследования преобразуется в следующую схему:
Рисунок 1.5 - Упрощенная схема исследования для метода наложения
Составим систему уравнений по первому и второму закону Кирхгофа:
Решив эту систему, получим токи:
- Проводим аналогичные исследования для схемы, в которой присутствует только источник Е2.
Рисунок 1.6 - Упрощенная схема исследования для метода наложения
Составим систему уравнений по первому и второму закону Кирхгофа:
Решив эту систему, получим токи:
Теперь "накладываем" токи друг на друга, учитывая направления отдельных токов:
Это и есть искомые токи, которые получились при расчетах другими методами и при экспериментах.
7. Метод эквивалентного генератора
При расчетах линейных электрических цепей возможна замена части цепи, содержащей источник ЭДС и тока, относительно зажимов выделенной ветви ab активным двухполюсником, состоящим из последовательно соединенных ЭДС и сопротивления. В этом случае указанную ветвь можно рассматривать как нагрузку эквивалентного генератора с ЭДС ЕГ и сопротивлением RГ.
Рисунок 1.7 - Иллюстрация к методу эквивалентного генератора
Эквивалентная ЭДС ЕГ равна напряжению на зажимах ab при разомкнутой ветви RH, т.е. напряжению холостого хода Uх.х.
Сопротивление RГ равно входному сопротивлению цепи относительно зажимов ab при разомкнутой ветви RH. Источники при этом исключаются из схемы.
Эквивалентные параметры ЕГ и RГ могут быть определены опытным путем из режимов холостого хода и короткого замыкания:
ЕГ = Uх.х ;
Найдем I3 методом эквивалентного генератора, для этого преобразуем схему в следующую:
Рис.1. 8 - Схема исследования для метода эквивалентного генератора
Рассчитаем параметры эквивалентного генератора (Еэкв и Rэкв), для этого приведем его схему.
Рисунок 1.9 - Приведённая схема исследования для метода эквивалентного генератора
Для заданной схемы ЭДС эквивалентного генератора, рассчитанная с использованием метода узловых потенциалов.
Выразим второй параметр эквивалентного генератора - Rэкв:
Осталось подсчитать ток, протекающий по R3' (то есть ток I3). Он будет равен:
.
Значение тока I3, найденный с помощью метода эквивалентного генератора, совпадает со значениями найденными методами контурных токов, узловых потенциалов, наложения.
8. Потенциальная диаграмма
Рисунок 1.10 - Исследуемая схема
Найдем потенциалы всех узлов, обозначенных на схеме:
1 = -5,034 (В);
2 = 0;
3 = -3,831 (В);
4 = 3,966 (В);
5 = -5,554 (В);
6 = 3,405(В);
Рисунок 1.11 - Потенциальная диаграмма
9. Вывод
Наиболее эффективным методом при расчете цепи постоянного тока является тот метод, который приводит к наименьшему числу уравнений, составляющих систему решения. Поэтому выбор способа решения напрямую зависит от исследуемой схемы. Если в этой схеме малое количество узлов, то решение удобнее проводить методом узловых потенциалов, если же в схеме небольшое количество независимых контуров, то удобней решать методом контурных токов. Метод эквивалентного генератора можно применять в очень сложных цепях, когда требуется найти один какой-либо параметр. При использовании этого метода число ветвей в схеме для анализа уменьшается на одну, что упрощает расчет.
Расчеты, проведенные в данной работе, позволяют глубже понять суть методов расчета электрических цепей постоянного тока и соотношение их с практикой. Их результаты показывают, что изучаемые методы расчета абсолютно точны в принципе, а погрешности или расхождение с практикой могут появиться только в результате округления чисел в расчетах или использования неполных математических моделей реальных схем.
Наиболее простым для понимания и решения в данной работе для меня оказался метод наложения, потому что он использует только тождественные преобразования электрической цепи и закон Ома и не используются искусственные приемы (расчет контурных токов, потенциалов узлов и т.д.). Использование метода узловых потенциалов при расчете цепи дает более простые уравнения, чем метода контурных токов - в схеме 2 узла с неизвестными потенциалами и три независимых контура.
Сложнее всего оказывается метод эквивалентного генератора: для расчета ЭДС эквивалентного генератора приходится использовать метод узловых потенциалов, так как результирующая схема содержит два контура и два узла. При этом также необходимо использовать преобразование цепи для расчета сопротивления эквивалентного генератора. Таким образом, в данной схеме выигрыш в объеме расчетов дает именно метод узловых потенциалов.
При этом всегда следует учитывать то, что выбор конкретного метода для расчета заданной электрической цепи всегда стоит осуществлять, ориентируясь не только на ее структуру, но и учитывая глубину понимания данного метода расчета, т.к. это в конечном итоге может сократить требуемое время для расчета, что при одинаковых результатах расчета может служить критерием оптимального способа решения.
Размещено на Allbest.ru
Подобные документы
Основные характеристики электропривода. Расчет цепи постоянного и переменного тока по законам Кирхгофа, по методу контурных токов и узловых потенциалов. Сравнение результатов, полученных разными методами. Построение потенциальной и векторной диаграммы.
курсовая работа [3,1 M], добавлен 02.07.2014Составление баланса мощностей для электрической схемы. Расчет сложных электрических цепей постоянного тока методом наложения токов и методом контурных токов. Особенности второго закона Кирхгофа. Определение реальных токов в ветвях электрической цепи.
лабораторная работа [271,5 K], добавлен 12.01.2010Расчет линейных электрических цепей постоянного тока. Расчет однофазных и трехфазных линейных электрических цепей переменного тока. Определение токов во всех ветвях схемы на основании законов Кирхгофа. Метод контурных токов. Баланс мощностей цепи.
курсовая работа [876,2 K], добавлен 27.01.2013Расчет токов и напряжений в элементах электрической цепи, ее частотных характеристик с применением методов комплексных амплитуд. Проверка результатов для узлов и контуров цепи с помощью законов Кирхгофа. Построение полной векторной диаграммы цепи.
курсовая работа [164,7 K], добавлен 12.11.2010Расчет токов резисторов и мощности, потребляемой цепью, по заданной схеме. Определение параметров неразветвленной цепи переменного тока с активными, индуктивными и емкостными сопротивлениями. Построение в масштабе векторной диаграммы напряжения и токов.
контрольная работа [107,5 K], добавлен 10.12.2010Проектирование в прикладном пакете MATLAB аналогового фильтра Баттерворта верхних частот и произвольного фильтра. Система для метода контурных токов, расчет собственных и взаимных сопротивлений контуров, токов и напряжений в методе контурных токов.
контрольная работа [571,0 K], добавлен 24.04.2009Выбор варианта схемы. Составление системы уравнений для расчета токов и напряжений. Определение выражения для комплексного коэффициента передачи. Расчет токов и напряжений в сложной электрической цепи методом Крамера. Построение графиков АЧХ и ФЧХ.
курсовая работа [1,7 M], добавлен 23.01.2013Составление расчетной электрической схемы. Расчет токов в исследуемой электрической цепи. Проверка выполнения законов Кирхгоффа. Выбор измерительных приборов и схема включения электроизмерительных приборов. Схемы амперметров выпрямительной системы.
курсовая работа [989,1 K], добавлен 24.01.2016Основы метода контурных токов. Решение системы контурных уравнений. Теорема взаимности. Свойства резистивных цепей и область их применения. Режим постоянного тока в электрических цепях. Понятие магазина затухания. Особенности реактивных элементов цепи.
реферат [88,5 K], добавлен 12.03.2009Расчет простой электрической цепи. Составление системы уравнений для вычисления токов и напряжений в сложной электрической цепи методами Крамера и обращения матрицы. Составление выражения комплексного коэффициента передачи. Построение графиков АЧХ и ФЧХ.
курсовая работа [508,9 K], добавлен 07.05.2012