Проектирование цифровой городской телефонной сети

Принцип распределенного управления в цифровой электронной коммутационной системе для сетей связи. Расчет поступающих и исходящих интенсивностей нагрузок для каждой абонента и их разделения по направлениям. Определение объема необходимого оборудования.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 14.03.2015
Размер файла 92,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Техническое задание

2. Принцип распределенного управления EWSD

3. Расчет поступающих и исходящих интенсивностей нагрузок для каждой РАТС и их распределения по направлениям для цифровой ГТС

4. Расчет объема оборудования РАТC

4.1 Расчет объема абонентского оборудования

4.2 Расчет числа линейных групп LTG

4.3 Выбор емкости коммутационного поля SN

4.4 Расчет объема оборудования буфера сообщений МВ(В)

4.5 Расчет объема оборудования управляющего устройства сети ОКС CCNC

4.6 Расчет объема оборудования координационного процессора СР113

Литература

Введение

Эффективность и надежность работы сетевого комплекса, будь то корпоративная сеть предприятия или рабочей группы, территориально-распределенная телекоммуникационная инфраструктура или система доступа удаленных пользователей, во многом определяется правильностью выбора и применения той или иной технологии передачи данных, конкретного оборудования и его конфигурации.

Один из наиболее сложных вопросов, который возникает перед руководителем предприятия или организации - это какая нужна информационная система, способная решить существующие и будущие цели и задачи компании, а также отвечать потребностям каждого сотрудника в соответствии с его должностными обязанностями. Как построить такую информационную систему, какое необходимо оборудование, какое программное обеспечение и какими средствами осуществить внедрение системы. Перед началом разработки конкретного решения специалисты проводят обследование объекта и консультации.

Это полный цикл работ, к которым относятся:

· предпроектное обследование;

· разработка архитектуры корпоративной информационной системы и при необходимости ее моделирования;

· выбор продуктов, необходимых для ее создания;

· создание планов для дальнейшего развития системы.

EWSD - это мощная и гибкая цифровая электронная коммутационная система для сетей связи общего пользования. Она удовлетворяет всем текущим требованиям и оборудована так, чтобы удовлетворять требования будущего.

EWSD - это уникальная система на все случаи применения с точки зрения размеров телефонных станций, их производительности, диапазона предоставляемых услуг и окружающей сеть среды. Она в равной мере может использоваться как небольшая сельская телефонная станция минимальной емкости, так и большая местная или транзитная станция максимальной емкости. Ее модульность и прозрачность ее аппаратного и программного обеспечения позволяют EWSD приспосабливаться к любой окружающей сеть среде. Одним из факторов, способствующих ее гибкости, является использование распределенных процессоров с функциями локального управления. Координационный процессор занимается общими функциями.

Не всегда возможно "подогнать" информационную систему, которая внедряется, под устаревшую модель управления предприятием, и наоборот в условиях современного ведения бизнеса, информационная система делает процесс управления еще более эффективным.

1. Техническое задание

Рассчитать объем следующего оборудования (версия 7 системы EWSD) для станции EWSD1:

- абонентского оборудования (DLU);

- число LTG различного типа (LTGG, LTGD);

- емкость коммутационного поля SN(B);

- количество функциональных блоков буфера сообщений МВ(В);

- количество функциональных блоков CCNC;

- количество функциональных блоков СР113.

Привести конфигурацию каждого однотипного статива.

Представить на чертеже план размещения оборудования станции EWSD1 и одного из выносов (RCU) в помещении. При планировке рассмотреть вопросы, связанные с электропитанием станции, а также освещение и кондиционирование.

Таблица 1 Абонентская емкость станций (аналоговые абоненты):

EWSD1

EWSD2

EWSD3

20 тыс.

30 тыс.

50 тыс.

Абонентская емкость каждого из выносов (RCU1 и RCU2) на станции EWSD1 составляет 5 тыс.

2. Принцип распределенного управления EWSD

Принцип распределенного управления не только снижает до минимума необходимый обмен информацией между различными процессорами, но также способствует высокодинамичному рабочему стандарту EWSD. Гибкость, присущая распределенному управлению, облегчает также ввод и модификацию услуг и их распределение по специальным абонентам.

Для межпроцессорной коммутации коммутационное поле устанавливает соединения 64-кбит/с таким же образом, что и соединения между абонентами. Однако соединения между процессорами остаются в установленном состоянии, по этому они относятся к полупостоянным соединениям. Это дает возможность обойтись без самостоятельной межпроцессорной управляющей сети. Телефонные станции всех типов и емкостей могут быть снабжены несколькими типами подсистем и соответствующем программным обеспечением. Цифровые абонентские блоки и линейные группы являются главными единицами наращивания телефонной станции.

Гибкость, присущая распределенному управлению, облегчает также ввод и модификацию услуг и их Рис 1. по специальным абонентам.

Цифровой абонентский комплект (рис. № 2) делит битовый поток, поступающий от абонента, на два потока по 64 кбит/с и один поток 16 кбит/с и пропускает их соответствующим образом дальше. В противоположном направлении он объединяет два канала В и канал D в один битовый поток. Цифровой модуль абонентских линий обрабатывает информацию каналов В и D для нескольких цифровых абонентских комплектов. Он выделяет информацию канала D в сигнальную информацию и, например, в данные пакетно-ориентированного режима и пропускает их дальше соответствующем образом. В обратном направлении он их объединяет и передает абоненту.

Рис. 1

Рис 2.

Расчет объема оборудования РАТC

При проектировании станционных сооружений АТС типа EWSD необходимо рассчитать объем следующего оборудования:

· Объем абонентского оборудования;

· Число линейных групп LTG различного типа;

· Емкость коммутационного поля SN;

· Количество функциональных блоков буфера сообщений МВ(В);

· Количество функциональных блоков управляющих устройств и сигнализации по общему каналу CCNC;

· Количество функциональных блоков координационного процессора CP113.

цифровой коммутационный связь абонент

3. Расчет поступающих и исходящих интенсивностей нагрузок для каждой РАТС и их распределения по направлениям для цифровой ГТС

Расчет поступающих интенсивностей нагрузок (ИН) на каждой РАТС производится по формуле:

Yi = a Ni ,

где а = 0,05 Эрл - удельная поступающая ИН от абонентов; Ni - емкость i-й станции.

YРАТС 1 = 0,05 20000 = 1000 Эрл.

YРАТC 2 = 0,05 30000 = 1500 Эрл.

YРАТC 3 = 0,05 50000 = 2500 Эрл.

Нагрузка на выходе коммутационного поля (КП) определяется как:

,

где tвх_i и tвх_i - время занятия входа и выхода КП i-й РАТС.

Для цифровых АТС с целью упрощения расчетов принимаем .

YРАТC 1 = Yвых РАТC 1 = 0,05 20000 = 1000 Эрл.

YРАТC 2 = Yвых РАТC 2 = 0,05 30000 = 1500 Эрл.

YРАТC 3 = Yвых РАТC 3 = 0,05 50000 = 2500 Эрл.

Интенсивность нагрузки на выходе коммутационного поля РАТС распределяется по следующим направлениям связи: внутристанционная связь, к УСС, к АМТС и исходящие связи к остальным РАТС.

Для определения внутристанционной нагрузки сначала рассчитывается общая исходящая ИН сети:

,

где i - номер РАТС.

Yвых_ГТС = Yвых_РАТC 1 + Yвых_РАТC 2 + Yвых_РАТC 3 = 5000 Эрл.

Затем вычисляем долю исходящей ИН для каждой АТС от общей исходящей ИН сети в процентах:

.

РАТC 1 = 20%;

РАТC 2 = 30%;

РАТC 3 = 50%.

По таблице определим процент интенсивности внутристанционной нагрузки Квн_i от интенсивности исходящей нагрузки i-й РАТС.

Квн_РАТC 1 = 38,5%;

Квн_РАТC 1 = 46 %;

Квн_РАТC 1 = 61,8%.

Расчет внутристанционных ИН производим по формуле:

.

Yвн_РАТC 1 = 385 Эрл;

Yвн_РАТC 2 = 460 Эрл;

Yвн_РАТC 3 = 618 Эрл.

Интенсивность нагрузки к УСС составляет 3% от интенсивности исходящей на РАТС нагрузки, т.е.

.

YУСС_РАТC 1 = 30 Эрл;

YУСС_РАТC 2 = 45 Эрл;

YУСС_РАТC 3 = 75 Эрл.

Интенсивность нагрузки к АМТС определяется:

,

где Ni - число абонентов i-й категории; ам - удельная междугородная ИН.

YЗСЛ_РАТC 1 = 96 Эрл;

YЗСЛ_РАТC 2 = 144 Эрл;

YЗСЛ_РАТC 3 = 240 Эрл.

Для упрощения расчетов, можно допустить, что входящая междугородная нагрузка равна исходящей:

YСЛМ_РАТC 1 = 96 Эрл;

YСЛМ_РАТC 2 = 144 Эрл;

YСЛМ_РАТC 3 = 240 Эрл.

Нагрузку в направлении от каждой РАТС к сельско-пригородной сети принимаем равной 10% от исходящей нагрузки каждой РАТС:

YУСП_РАТC 1 = 100 Эрл;

YУСП_РАТC 2 = 150 Эрл;

YУСП_РАТC 3 = 250 Эрл.

Интенсивность нагрузки в направлении других РАТС:

Yисх_i = Yвых_i YУСС_i - Yвн_i - YЗСЛ_i YУСП_i .

Yисх_РАТC 1 = 389 Эрл;

Yисх_РАТC 2 = 701 Эрл;

Yисх_РАТC 3 = 1317 Эрл.

Результаты сводятся в таблицу:

Таблица 1

Порядковый номер РАТС

Индекс АТС

Y, Эрл

Yвых, Эрл

YУСС, Эрл

YЗСЛ, Эрл

Квн

Yвн, Эрл

Yисх, Эрл

YУСП, Эрл

1

РАТС1

1000

1000

30

96

38,5

385

389

100

2

РАТС 2

1500

1500

45

144

46

460

701

150

3

РАТС 3

2500

2500

75

240

61,8

618

1317

250

При распределении ИН в направлении остальных АТС пропорционально исходящим нагрузкам определим ИН от i-й АТС к j-й АТС:

Yij = ,

где п - число АТС.

YРАТC 1-РАТC 2 = 135 Эрл.

YРАТC 1-РАТC 3 = 254 Эрл.

YРАТC 2-РАТC 1 = 160 Эрл.

YРАТC 2-РАТC 3 = 541 Эрл.

YРАТC 3-РАТC 1 = 470 Эрл.

YРАТC 3-РАТC 2 = 847 Эрл.

Составляем матрицы телефонных нагрузок для каждого из методов распределения ИН.

Таблица 2

№ РАТС

1

2

3

УСС

АМТС

УСП

1

-

135

254

30

96

100

2

160

-

541

45

144

150

3

470

847

-

75

240

250

АМТС

96

144

240

-

-

-

УСП

100

150

250

-

-

-

Число СЛ в направлениях определяем по таблице Эрлангов (для цифровых АТС) при следующих нормах потерь (по расчетной нагрузке):

УСС - 0,001;

АМТС - 0,01;

РАТС - 0,005;

Внутрист. - 0,003.

В таблице указаны: в числителе - число СЛ, а в знаменателе - число первичных цифровых трактов (ПЦТ).

Таблица 3

№ РАТС

1

2

3

УСС

АМТС

УСП

1

-

160/6

300/10

47/2

114/4

125/5

2

190/7

-

600/20

66/3

170/6

180/6

3

600/20

900/30

-

100/4

300/10

300/10

АМТС

114/4

170/6

300/10

-

-

-

УСП

125/5

180/6

300/10

-

-

-

4. Расчет объема оборудования РАТC

При проектировании станционных сооружений АТС типа EWSD необходимо рассчитать объем следующего оборудования:

· Объем абонентского оборудования;

· Число линейных групп LTG различного типа;

· Емкость коммутационного поля SN;

· Количество функциональных блоков буфера сообщений МВ(В);

· Количество функциональных блоков управляющих устройств и сигнализации по общему каналу CCNC;

· Количество функциональных блоков координационного процессора CP113.

4.1 Расчет объема абонентского оборудования

В состав абонентского оборудования системы EWSD входят цифровые абонентские блоки DLU, которые могут располагаться как на самой станции (локальные DLU), так и вне ее (удаленные DLU), а также специальные блоки дистанционного управления RCU.

В отдельный блок DLU можно включить до 952-х абонентских линий в зависимости от их типа, от предусмотренных функциональных блоков и требуемых значений трафика (пропускная способность блока до 100 Эрл).

Число блоков DLU при включении аналоговых АЛ в пределах станции равно:

NDLU = N/952,

где N - абонентская емкость станции.

NDLU РАТС1 = 10000/952 ? 11.

Число модулей аналоговых абонентов АЛ SLMA равно:

MSLMA = Na/8,

где Nа - число аналоговых АЛ.

MSLMA РАТС1 = 10000/8 ? 1250.

На одном стативе располагается до 119 модулей SLMA. Число стативов R:DLU:

SDLU = MSLMA/119.

SDLU РАТС1 = 1250/119 ? 11.

Число процессоров абонентских модулей SLMCP равно:

NSLMCP = MSLMA .

NSLMCP РАТС1 = 1250.

Блоки DLU могут эксплуатироваться в пределах станции и дистанционно. В дистанционный блок RCU могут входить до 6-ти блоков DLU. Каждый DLU блока RCU включает в себя аварийное управляющее устройство SASC, которое служит для управления соединением между абонентами RCU в аварийном режиме и устанавливается на месте 2-х абонентских модулей SLMA.

Число стативов DLU в выносном блоке RCU равно:

S'DLU = M'SLMA/117;

S'DLU RCU1 = 625/117 ? 6;

S'DLU RCU2 = 625/117 ? 6.

Где M'SLMA - число модулей SLMA в выносном RCU,

M'SLMA = N'a/8;

M'SLMA RCU1 = 5000/8 ? 625;

M'SLMA RCU2 = 5000/8 ? 625.

Где N'a - число аналоговых АЛ, включенных в RCU.

Число процессоров SLMCP в RCU равно:

N'SLMCP = M'SLMA ;

N'SLMCP RCU1 = 625;

N'SLMCP RCU2 = 625.

4.2 Расчет числа линейных групп LTG

Расчет числа линейных групп LTG производится в зависимости от их типа и количества линий, включаемых в них.

Линейная группа LTGG используется для подключения к ней блоков DLU, цифровых СЛ от РАТС сети, цифровых коммутаторов DSB. В одну группу LTGG включаются до 120 каналов пользователя, т.е. до 4-х трактов ИКМ-30, или 64 цифровых коммутаторов DSB. Особенность LTGG в том, что в однорядной модульной кассете размешаются две линейные группы. Блоки DLU включаются в LTGG через 2 или 4 ИКМ-линии (в зависимости от нагрузки DLU). Число линейных групп LTGG равно:

NLTGG = NLTGG DLU + NLTGG DSB + NLTGG ЦСЛ .

Число линейных групп LTGG DLU равно числу блоков DLU:

NLTGG DLU = NDLU ;

NLTGG DLU = 23.

Т.к. EWSD1 выполняет функции АМТС, то необходимо рассчитать количество линейных групп LTGGDSВ для включения 10-ти цифровых коммутаторов DSB, используемых для ручного установления соединения. Каждый DSB имеет два цифровых тракта, с помощью которых подключается к двум LTGGDSВ . На АМТС EWSD1 должно быть:

NLTGG DSВ = NDSB /64;

NLTGG DSВ = 10/64 = 0,16.

Но число LTGGDSВ должно быть не менее двух для надежности, т.е.

NLTGG DSВ = 2.

В линейную группу LTGGЦСЛ включаются цифровые СЛ от РАТС сети и УСП. Каждая группа LTGGЦСЛ позволяет включить до 4-х первичных цифровых трактов ИКМ-30. число блоков LTGGЦСЛ определяется как:

NLTGG ЦСЛ = ?VПЦТ/4;

NLTGG ЦСЛ = 55/4 ? 14,

где ?VПЦТ - общее число первичных цифровых трактов ИКМ по всем направлениям, включенное в АТС для связи с другими АТС.

На одном стативе R:LTGG располагаются до 5-и блоков LTGG, в каждом блоке по две линейные группы, т.е. на одном стативе могут располагаться до 10-ти линейных групп LTGG. Число стативов R:LTGG равно:

SLTGG = NLTGG /10,

SLTGG = 39/10 ? 4.

ЗСЛ и СЛМ включаются в блоки LTGD. В один блок LTGD включаются до 4-х ИКМ-трактов. При расчете числа блоков LTGD необходимо отметить, что к блокам будут подключаться ЗСЛ и СЛМ только от РАТС2 и РАТС3. Число блоков LTGD равно:

NLTGD = ?VПЦТD/4;

NLTGD = 32/4 = 8,

где ?VПЦТD - общее число первичных цифровых трактов ИКМ, включенных в блоки LTGD.

На одном стативе R:LTGD размещается до 4-х блоков LTGD. Число стативов LTGD равно:

SLTGD = NLTGD /4;

SLTGD = 8/4 = 2.

4.3 Выбор емкости коммутационного поля SN

Для выбора емкости коммутационного поля SN следует определить общее число блоков LTG, включенных на станции:

?NLTG = NLTGG + NLTGD ;

?NLTG = 39 + 8 = 47.

Выбирается стандартная емкость SN:63LTG.

Для коммутационного поля SN(В) на 63 LTG требуется всего одна кассета для каждой стороны поля, т.е. требуется две кассеты, размещенные на одном стативе:

SSN(B) = 1.

4.4 Расчет объема оборудования буфера сообщений МВ(В)

Объем оборудования буфера сообщений МВ(В) зависит от общего количества линейных групп LTG на станции и ступени емкости коммутационного поля SN. При проектировании системы EWSD следует определить объем следующего оборудования буфера сообщений МВ(В):

· Управляющих устройств передатчика/приемника T/RC;

· Блоков буфера сообщений для линейных групп MBU:LTG;

· Блоков буфера сообщений для управляющих устройств коммутационных групп MBU:SGC;

· Групп буферов сообщений MBG.

Каждый модуль управляющих устройств передатчика/приемника T/RC может обслуживать до 16 LTG, следовательно, количество таких модулей равно:

NT/RC = NLTG /16;

NT/RC = 47/16 ? 3,

где NLTG - общее количество линейных групп LTG.

В каждый блок буфера сообщений для линейных групп MBU:LTG включается до 4-х управляющих устройств передатчика/приемника T/RC, следовательно, количество блоков MBU:LTG равно:

NMBU:LTG = NT/RC /4;

NMBU:LTG = 3/4 ? 1.

Количество блоков буфера сообщений для управляющих устройств коммутационных групп MBU:SGC зависит от ступени емкости коммутационного поля. В нашем случае количество блоков равно:

NMBU:SGC = 1.

Количество групп буферов сообщений MBG находится в диапазоне от 1 до 4 и рассчитывается по формуле:

NMBG = NMBU:LTG /2;

NMBG = 1/2 ? 1.

Группы буфера сообщений MBG дублированы по соображениям надежности и работают в режиме разделения нагрузки. Таким образом, рассчитанное количество групп и блоков буферов сообщений всегда следует увеличивать в 2 раза.

На одном стативе R:MB(B) размещается до 4-х групп буферов сообщений MBG, следовательно, число стативов равно:

SMB(B) = ?NMBG/4;

SMB(B) = 2/4 ? 1,

где ?NMBG - общее количество групп буферов сообщений MBG с учетом дублирования.

На стативе, вместе с группами буфера сообщений, располагаются центральный генератор тактовой частоты CCG(A), управляющее устройство системной панели SYPS и внешние распределители тактовой частоты CDEX.

4.5 Расчет объема оборудования управляющего устройства сети ОКС CCNC

При проектировании системы EWSD, работающей с сигнализацией ОКС-7, необходимо определить количество следующих функциональных блоков управляющего устройства сети ОКС CCNC:

· Цифровых оконечных устройств звена сигнализации SILTD;

· Групп оконечных устройств звена сигнализации SILTG;

· Мультиплексоров MUXM;

· Адаптеров сигнальной периферии SIPA в процессорах сети сигнализации по общему каналу CCNP.

Для определения необходимого числа звеньев сигнализации на EWSD1 необходимо определить общее число разговоров, осуществленных всеми абонентами проектируемой станции с абонентами других РАТС, АМТС, УСС, а также необходимо учесть вызовы, поступающие по междугородным каналам на АМТС при сигнализации на сети ОКС-7.

Тогда общее количество вызовов СОКС , обслуживаемых проектируемой станцией при сигнализации на сети ОКС-7, равно:

СОКС = СИСХ + СВХ + СУСС + СМВХ + СМИСХ ;

СОКС = 8,2 + 12,2 + 0,7 + 2,6 + 3,1 = 26,8.

Где СИСХ - количество исходящих вызовов, возникающих от абонентов РАТС1 к абонентам других РАТС, УСП при сигнализации ОКС-7;

СИСХ = YИСХ / tСЛ ,

СИСХ = 489/60 = 8,2.

Где YИСХ - суммарная исходящая нагрузка проектируемой РАТС1 к другим РАТС сети, УСП, tСЛ = 60 с - средняя длительность занятия соединительной линии при местном соединении.

СВХ = YВХ / tСЛ ,

СВХ = 730/60 = 12,2.

Где YВХ - суммарная входящая нагрузка проектируемой РАТС1 от других РАТС и УСП.

Количество вызовов к УСС равно:

СУСС = YУСС / tУСС,

СУСС = 30/45 = 0,7.

Где YУСС - нагрузка к УСС, tУСС = 45 с - средняя длительность занятия при связи с УСС.

Количество вызовов, поступающих по междугородным каналам от всех РАТС к АМТС:

СМВХ = YЗСЛ / tЗСЛ ,

СМВХ = 384/150 = 2,6.

Где YЗСЛ - междугородная телефонная нагрузка по ЗСЛ от абонентов всех РАТС к АМТС, tЗСЛ = 150 с - средняя длительность соединения по ЗСЛ.

Количество вызовов, поступающих по междугородным каналам от АМТС ко всем РАТС сети:

СМИСХ = YСЛМ / tСЛМ ,

СМИСХ = 384/126 = 3,1.

Где YСЛМ - междугородная телефонная нагрузка по СЛМ от АМТС к абонентам всех РАТС сети, tСЛМ = 126 с - средняя длительность соединения по ЗСЛ.

На основании рассчитанного числа вызовов, обслуживаемых с использованием системы сигнализации ОКС-7, определяется число звеньев сигнализации VОКС:

VОКС = (МАН / (64 Кбит/с * 0,2)) + 1;

VОКС = (20582 бит/с /(64000 бит/с * 0,2)) + 1 ? 3.

Где МАН - количество бит данных, переданных по ОКС-7 для обслуживания аналоговых абонентов в ЧНН.

Объем переданных данных в ЧНН по сети ОКС от аналоговых абонентов определяется:

МАН = 2 * СОКС * 4 * 12 * 8;

МАН = 2 * 26,8 * 4 * 12 * 8 = 20582 бит/с.

Число цифровых оконечных устройств звена сигнализации SILTD равно:

NSILTD = VОКС = 3.

В одну группу оконечных устройств звена сигнализации SILTG включается до 8 SILTD, следовательно, количество групп равно:

NSILTG = NSILTD /8;

NSILTG = 3/8 ? 1.

В блоке CCNC для обеспечения надежности всегда устанавливается два процессора сигнализации по общему каналу CCNP0 и CCNP1. Один адаптер сигнальной периферии SIPA отвечает за четыре группы SILTG и их число в каждом процессоре CCNP равно:

NSIPA = NSILTG /4;

NSIPA = 1/4 ? 1.

Если на станции не более 12 групп оконечных устройств звена сигнализации SILTG, то используется один статив R:CCNP/SILTD.

4.6 Расчет объема оборудования координационного процессора СР113

При проектировании системы EWSD определяется объем следующего оборудования координационного процессора:

· Число процессоров обработки вызовов САР;

· Объем общей памяти CMY;

· Число процессоров ввода-вывода IOP;

· Число управления вводом выводом IOC.

При нормальном режиме работы координационного процессора СР113 основной процессор ВАРм выполняет функции техобслуживания и функции обработки вызовов, процессор ВАРs - занимается только обслуживанием вызовов. Если величина поступающей нагрузки на станцию превышает некоторую заданную величину, то в конфигурацию СР113 кроме основных процессоров BAPм и BAPs включаются процессоры обработки вызовов САР.

Для определения необходимой конфигурации координационного процессора СРР113 необходимо знать общее количество вызовов, поступающих на станцию в ЧНН.

Количество вызовов, поступающих на станцию в ЧНН, равно:

NЧНН = YРАТС1 * 3600/t + YСЛ ВХ * 3600/tСЛ + YЗСЛ * 3600/tЗСЛ ;

NЧНН = 1000 * 3600/72 + 730 * 3600/60 + 384 * 3600/150 ? 103016.

Где YРАТС1 - нагрузка, поступающая по абонентским линиям, t = 72 с - средняя длительность занятия при местном соединении, YСЛ ВХ - нагрузка, поступающая по соединительным линиям, tСЛ = 60 с - средняя длительность занятия соединительной линии, YЗСЛ - междугородная телефонная нагрузка по ЗСЛ от абонентов всех РАТС к АМТС, tЗСЛ = 150 с - средняя длительность соединения по ЗСЛ.

Из полученных данных следует, что для обслуживания входящих вызовов достаточно двух процессоров ВАРм и BAPs, т.к. они могут обслужить до 119000 вызовов в ЧНН.

Расчет емкости общей памяти CMY координационного процессора производится на основании табличных данных и равно 128 Мбайтам, т.к. количество LTG на станции EWSD1 равно 47.

Число процессоров ввода-вывода IOP:MB для центрального генератора тактовой частоты IOP:MB(CCG) и системной панели IOP:MB(SYP) всегда равно двум (для обеспечения надежности), остальные процессоры IOP:MB рассчитываются в зависимости от емкости станции.

Число процессоров ввода-вывода для группы буферов сообщений IOP:MBU(MBG) рассчитывается по формуле:

NIOP:MBU(MBG) = ?NMBG ;

NIOP:MBU(MBG) = 2/4 ? 1.

Где ?NMBG - общее количество групп буферов сообщений MBG с учетом дублирования.

Число процессоров ввода-вывода для устройства управления системой сигнализации ОКС-7 IOP:MBU(CCNC) рассчитывается по формуле:

NIOP:MBU(CCNC) = 2 * NCCNC ;

NIOP:MBU(CCNC) = 2 * 1 = 2.

Где NCCNC - число блоков CCNC на станции.

Расчет числа устройств управления вводом-выводом IOC проводится исходя из следующих условий:

Одно устройство управления вводом-выводом IOC позволяет включить до 16 процессоров ввода-вывода IOP, из соображений надежности устройства управления дублируются (IOC0 и IOC1).

Координационный процессор минимальной производительности (без процессоров обработки вызовов САР) занимает два статива: один для процессоров ВАР и общей памяти CMY (R:CP113A), другой статив (R:DEVD) - для процессоров ввода-вывода и устройств машинной периферии.

Литература

1) Росляков А.В. Проектирование цифровой городской телефонной сети. Самара, 1998.

2) Абилов А.В. Цифровая автоматическая телефонная станция EWSD. Ижевск, 2001.

3) Лутов М.Ф. и др. Квазиэлектронные и электронные АТС. - М.: Радио и связь, 1988.

4) Корнышев Ю.Н. и др. Станционные сооружения сельских телефонных сетей. - М.: Связь, 1978.

Размещено на Allbest.ru


Подобные документы

  • Проектирование расширения коммутационной и абонентской станции для городской телефонной сети. Назначение и построение цифровой системы коммутации "Омега". Структура и принципы работы концентратора абонентской нагрузки, коммутатора цифровых сигналов.

    дипломная работа [956,9 K], добавлен 21.11.2011

  • Разработка структурной схемы и нумерации существующей аналогово-цифровой сети. Расчет возникающих и межстанционных нагрузок, емкости пучков связей. Оптимизация топологии кабельной сети. Расчет скорости цифрового потока и выбор структуры цифровой сети.

    курсовая работа [1,3 M], добавлен 07.08.2013

  • Проектирование межстанционных связей городской телефонной сети с узлами входящих сообщений. Расчет интенсивности нагрузки для каждой АТС на входе и на выходе, ее распределение по направлениям. Определение структурных матриц потоков и соединительных линий.

    курсовая работа [75,3 K], добавлен 23.01.2011

  • Характеристика существующего фрагмента узлового района городской телефонной сети. Описание проектируемой цифровой системы коммутации. Характеристика коммутационного оборудования, анализ схемы организации связи. Технико-экономическое обоснование проекта.

    дипломная работа [3,6 M], добавлен 21.03.2014

  • Особенности организации телефонной связи на железнодорожном транспорте. Схема местной телефонной сети железнодорожного узла. Расчет телефонной нагрузки по каждому исходящему и входящему направлению. Расчет входящих и исходящих соединительных линий.

    курсовая работа [1,3 M], добавлен 16.05.2014

  • Понятие и структура городской телефонной сети, ее основные элементы и принципы построения, предъявляемые требования. Технические данные ALCATEL 1000 S-12, характеристика функциональных модулей. Расчет интенсивности нагрузок и объема оборудования.

    курсовая работа [29,7 K], добавлен 16.04.2010

  • Классификация сетей телекоммуникаций, проектирование; выбор архитектуры построения абонентской телефонной сети общего доступа. Расчет кабелей магистральной сети, определение волоконно-оптической системы передачи. Планирование и организация строительства.

    дипломная работа [26,7 M], добавлен 17.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.