Проектирование радиорелейных линий связи

Особенности выбора трассы и структуры проектируемой радиорелейной линии связи. Изучение требований, предъявляемых при выборе трассы РРЛ. Определение количества интервалов на участке РРЛ. Методы определения высоты подвеса антенн для устойчивости связи.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 06.06.2010
Размер файла 67,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство информационных технологий и связи РФ

Федеральное агентство связи

УрТИСИ ГОУ ВПО СибГУТИ

Курсовой проект

ПРОЕКТИРОВАНИЕ И РАСЧЕТ ТРАССЫ РРЛ

Альбом МЕ 72.07

Студента 3 курса МЕ-72 группы
Плишкина Михаила
Екатеринбург, 2010
ЗАДАНИЕ

ИСХОДНЫЕ ДАННЫЕ

Тип аппаратуры: РАДАН МС-11

Длинна РРЛ: L = 100 км.

Длинна интервала: R0 = 30 км.

Вертикальный градиент: = - 8.0·10-8 1/м

Стандартное отклонение: у = 7,5·10-8 1/м

Потери в сосредоточенных элементах: аэл = 3 дБ

Погонные потери ап = 0,05 дБ/м

Вид модуляции: ЧМ

Скорость передачи: В = 2,048 Мбит/с

Мощность сигнала на выходе передатчика: 19 дБм

Чувствительность приемника при пороговом уровне сигнала: -92 дБн

Диаметр антенны: 1 м

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА СОДЕРЖИТ

1. Введение 2. Выбор трассы, определение структуры проектируемой РРЛ

3. Расчет интервала РРЛ 4. Выводы по проделанной работе

5. Список литературы

2. ГРАФИЧЕСКАЯ ЧАСТЬ ПРОЕКТА СОДЕРЖИТ ДВА ЛИСТА ЧЕРТЕЖЕЙ А4
1. Профиль интервала.
2. Структурная схема организации связи для проектируемой РРЛ.
Дата выдачи Срок окончания
Преподаватель - руководитель Вронская Е. В.

СОДЕРЖАНИЕ

Введение

1. Выбор трассы. Определение структуры проектируемой РРЛ

1.1 Требования, предъявляемые при выборе трассы РРЛ

1.2 Определение типа РРЛ

1.3 Структура проектируемой РРЛ

1.4 Определение количества интервалов на участке РРЛ

1.5 Составим схему размещения станций на участке

2. Расчет интервала РРЛ

2.1. Построение профиля интервала

2.2. Определение высот подвеса антенн

2.3. Определение устойчивости связи

2.4 Определение процента времени, в течение которого VVmin из-за интеренционных замираний

2.5 Расчет величины Тд(Vmin).

2.6 Расчет уровней сигнала на входе

Выводы по проделанной работе

Список литературы
ВВЕДЕНИЕ

Одним из основных видов средств связи являются радиорелейные линии прямой видимости, которые используются для передачи сигналов многоканальных телефонных сообщений, радиовещания и телевидения, телеграфных и фототелеграфных сигналов, передача газетных полос. Все виды сообщений передаются по РРЛ на большие расстояния с высоким качеством и большой надежностью.

В начале 70-х годов на магистральных РРЛ были внедрены новые радиорелейные системы “Восход” и “Дружба”, рассчитанные уже на передачу 1920 ТФ каналов в одном стволе, а также сигналов черно-белого или цветного телевидения совместно с сигналами четырех каналов звукового сопровождения.

1. ВЫБОР ТРАССЫ. ОПРЕДЕЛЕНИЕ СТРУКТУРЫ ПРОЕКТИРУЕМОЙ РРЛ

1.1 Требования, предъявляемые при выборе трассы РРЛ

Обеспечение связью населенных пунктов с учетом перспективы их развития.

Обеспечение высокого и стабильного по уровню и по времени принимаемого сигнала. Надежность и качество связи должна удовлетворять нормам.

Релейные станции располагаются зигзагообразно во избежание интерференционных замираний.

Необходимо обеспечить удобство электроснабжения, подъездные пути, возможность реализации продукции связи.

Радиорелейные станции по возможности располагаются на естественных возвышенностях с целью снижения высоты подвеса антенн.

Радиорелейные станции по возможности располагаются вдали от аэродромов. Запрещается использование плодородных пахотных земель.

1.2 Определение типа РРЛ

Тип РРЛ определяется исходя из протяженности трассы, а так же исходя из скорости передачи цифровых сигналов. Протяженность проектируемой трассы составляет 100 км., а скорость передачи 2,048 Мбит/с. Следовательно данная линия является линией местной связи.

1.3 Составим структуру проектируемой РРЛ

Определим количество участков проектируемой РРЛ

Участком называется расстояние между двумя узловыми станциями или между оконечной и ближайшей узловой, а в случае если участок один, то между оконечными.

(1)

где L1 - длина цифровой линии местной сети

L-длина всей линии,L=100

n-количество участков

.

Выбираем n=1

Определим длину участка проектируемой РРЛ

Длина участка проектируемой РРЛ определяется по формуле (2):

(2)

.

1.4 Определим количество интервалов на участке РРЛ

Интервал называется расстояние между двумя соседними станциями.

Количество интервалов на участке РРЛ определяется по формуле (3):

(3)

1.5 Составим схему размещения станций на участке

ПРСОРС

ОРСПРС

Рисунок 1. Схема размещения станций.

2. РАСЧЕТ ИНТЕРВАЛА РРЛ

2.1 Построение профиля интервала

Профилем интервала называется вертикальный разрез местности с указанием на нем леса, высотных строений и т.д.

Высотные отметки профиля интервалов в метрах и относительная координата даны в таблице 1.

Таблица 1.

Ki

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h, м

73

60

72

71

70

66

58

57

68

72

78

yi, м

0

6,3

11,2

14,7

16,8

17,5

16,8

14,7

11,2

6,3

0

(y+h),м

73

66,3

83,2

85,7

86,8

83,5

74,8

71,7

79,2

78,3

78

Расчет линии условного нулевого уровня (ЛУНУ).

Расчет произведем по формуле (4):

(4)

где а - диаметр земли (6370 км.);

yi - соответствующая координата ЛУНУ;

Ri - расстояние от начала отсчета до интересующей нас точки.

Для удобства расчетов преобразуем формулу (4) в формулу (5):

(5)

результаты расчета занесем в таблицу 1

По данным расчета строим профиль интервала.

Для этого выберем масштаб и строим ЛУНУ.

По горизонтали в 1 см=2 км.

По вертикали в 1 см=10м.

Расстояние h+y откладываем в соответствии с теми же координатами Ki, а затем соединяем полученные точки ломаной линией.

Профиль интервала построен.

2.2 Определение высот подвеса антенн.

Определяем относительную координату наивысшей точки профиля интервала по формуле (6):

,(6)

где -расстояние до наивысшей точки профиля

Определим просвет интервала Н0, м. при распространении радиоволн в свободном пространстве, по формуле (7):

(7)

где л = 2,73 см. - средняя длинна волны

м.

Статистика показывает, что примерно 50% рабочего времени, работа происходит не в условиях свободного пространства, а в условиях положительной рефракции, т.е. распространение радиоволн происходит с небольшим огибанием земной поверхности, поэтому реальный просвет становится больше чем в свободном пространстве, и такой интервал называют открытым, а увеличение просвета характеризует приращение просвета ДН(q).

Определим приращение просвета ДН(q) при положительной рефракции характерной для 50% рабочего времени, по формуле (8):

(8)

где,q-вертикальный градиент

м.

Слишком большой просвет быть не должен т.к.

1) Возрастает опасность интерференционных замираний, когда в точку приема приходит основной сигнал и отражается от земли или тропосферы в противофазе с основным.

2) Недостатком большого просвета является удорожание антенных опор и необходимости сигнального освещения мачт и дополнительные потери в фидерах.

Рекомендуемый просвет Н, м. выбираем в пределах, по формуле (9):

(9)

м.

Определим высоту подвеса антенны по чертежу профиля интервала

От наивысшей точки профиля интервала вертикально вверх откладываем полученную величину Н. Через полученную точку проводим прямую линию так чтоб высоты подвеса антенн были примерно одинаковыми.

Определим относительный просвет интервала P(q), по формуле (10):

(10)

2.3 Определение устойчивости связи

Для расчета устойчивости связи необходимо рассчитать минимально допустимый множитель ослабления.

Множитель ослабления зависит от параметров аппаратуры и от коэффициента ослабления антенно-волноводного тракта (АВТ).

Определим потери в АВТ по формуле (11):

(11)

где аЭЛ = 3 дБ - потери в сосредоточенных элементах

аn = 0,05 дБ/м - погонное затухание

LВЕР 0 - длинна вертикального фидера. LВЕР = 0 так как приемное и передающее оборудование совмещено с антенной.

LГОР - длинна горизонтального фидера. Выбираем LГОР = 0,5 м для каждой станции.

дБ.

Определим минимально допустимый множитель ослабления , дБ по формуле (12):

(12)

где = -92 дБн - чувствительность приемника при пороговом уровне сигнала (BER = 10-3).

= 19 дБм - мощность сигнала на выходе передатчика.

л = 2,73 см - длинна волны.

- затухание в свободном пространстве определяется по формуле (13):

(13)

G - коэффициент усиления приемопередающей антенны определяется по формуле (14):

(14)

где D = 1 м - диаметр антенны.

13229

Определим параметры сферы для оценки влияния экранирующего действия препятствия.

Для этого от наивысшей точки профиля интервала вертикально вниз откладываем расстояние, равное просвету свободного пространства H0. Через полученную точку проводим линию параллельную прямой соединяющей антенны до пересечения с профилем интервала.

Определим ширину препятствия r, км.

r = 11,5 км

Определим относительную величину препятствия L, км., по формуле (15):

(15)

Определим параметр , характеризующий радиус кривизны препятствия, по формуле (16):

(16)

Определяем относительный просвет интервала для Vmin доп.

P(q0) = -1.8

Определяем вспомогательный параметр A, необходимый для дальнейшего расчета устойчивости связи, по формуле (17):

(17)

Определяем параметр ш, необходимый для расчета процента времени в течение, которого множитель ослабления V < Vmin, доп., из-за экранирующего действия препятствия, по формуле (18):

(18)

Если ш > 5.2, то. экранирующее действие препятствия не вызывает срыва связи на интервале T0(Vmin)= 0.

2.4 Определение процента времени, в течение которого VVmin из-за интеренционных замираний

Определим процент времени , % в течение, которого V < Vmin доп, из-за интерференционных замираний, по формуле (19):

Выбираем коэффициент отражения от подстилающей поверхности Ф = 0.6

(19)

-47,55дБ = 20lgx

x = 0,0042

Т.к. подкоренное выражение отрицательно и равно - 0.26, значит, срыва связи из-за интерференционных замираний не будет.

2.5 Расчет величины Tд(Vmin)

Величина Tд(Vmin) учитывается на ЦРРЛ работающих на частотах выше 8 ГГц.

По известному значению Vmin определяем максимально-допустимую интенсивность дождей для данного пролета.

J = 200 мм/год

По графику в зависимости от номера климатического района определяем Tд от Vmin. Tд = 0,0001%, т.к. район Урала сухопутный район.

Расчет допустимого времени срывов связи для всей линии.

Определим допустимое время срывов связи для одного интервала по формуле (20):

(20)

Определение времени в течении которого коэффициент ошибок 10-3 по формуле (21):

(21)

Определим параметр Ттр по формуле (22): Tтр - это процент времени когда реальный множитель ослабления меньше Vmin допустимого из-за свойств тропосферы.

где параметр учитывающий вероятность возникновения замираний с перепадом диэлектрической проницаемости воздуха рассчитывается по формуле (23):

(23)

300 МГц f 20 ГГц

Определим допустимую устойчивость связи Удоп, % по формуле (24):

Устойчивость связи - разность между 100% и временем срыва связи.

(24)

Определим расчетную устойчивость связи Урасч, % по формуле (25):

(25)

2.6 Расчет уровня сигнала на входе приемника

Расчет уровня сигнала на входе приемника делается по основному уровню радиосвязи по формуле (26):

(26)

Определим минимальную мощность сигнала на входе приемника по формуле (27):

(27)

ВЫВОДЫ ПО ПРОДЕЛАННОЙ РАБОТЕ

Расчетное время срывов связи равно 2,73*10-8% и значительно меньше, чем допустимое время срывов связи, которое равно 0,01 %, следовательно, срывов связи не будет.

СПИСОК ЛИТЕРАТУРЫ

Макавеева М. М. Радиорелейные линии связи. - М.: Радио и связь, 1988. - 312 с.

Мордухович Л. Г. Радиорелейные линии связи. Курсовое проектирование: Учеб. Пособие для техникумов. - М.: Радио и связь, 1989. - 160 с.


Подобные документы

  • Рассмотрение использования радиорелейных линий прямой видимости для передачи сигналов сообщений. Выбор трассы и определение структуры проектируемой линии. Построение профиля интервала, расчет высот подвеса антенн и уровня сигнала на входе приемника.

    курсовая работа [310,1 K], добавлен 03.06.2014

  • Выбор оптимальной трассы и мест расположения трассы РРЛ. Частотный план и выбор поляризации на интервалах. Расчет запаса на замирание, количества времени ухудшения связи из-за дождя, вызванного субрефракцией радиоволн, оптимизация высоты подвеса антенн.

    курсовая работа [682,9 K], добавлен 10.04.2011

  • Краткая характеристика региона прохождения РРЛ-трассы, обоснование е выбора. Выбор радиотехнического оборудования. Разработка схемы организации связи на проектируемой линии. Расчет минимально допустимого множителя ослабления, устойчивости связи антенн.

    курсовая работа [2,0 M], добавлен 06.10.2013

  • Общие характеристики систем радиорелейной связи. Особенности построения радиорелейных линий связи прямой видимости. Классификация радиорелейных линий. Виды модуляции, применяемые в радиорелейных системах передачи. Тропосферные радиорелейные линии.

    дипломная работа [1,1 M], добавлен 23.05.2016

  • Выбор трассы и расстановка цифровой радиорелейной линии ЦРРЛ. Расчет и построение профилей интервалов радиорелейных линий. Выбор типа и состава оборудования. Разработка схемы организации связи по проектируемой ЦРРЛ. Построение диаграммы уровней сигнала.

    дипломная работа [631,5 K], добавлен 01.10.2012

  • Структурная схема радиорелейной линии. Оптимальные высоты подвеса антенн на пролётах ЦРРЛ. Расчёт устойчивости связи на ЦРРЛ с учётом резервирования. Применение волн с различным типом поляризации, принципа зигзагообразности при размещении станций.

    курсовая работа [12,4 M], добавлен 16.08.2010

  • Анализ существующей системы связи Селихино-Хурмули. Выбор трассы и определение расположения станций радиорелейной линии. Определение профилей интервалов. Выбор типа оборудования. Определение высот антенных опор на интервалах. Расчет устойчивости связи.

    дипломная работа [134,8 K], добавлен 20.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.