Прибор для измерения кровотока, основанный на эффекте Доплера

Необходимость измерения скорости и направления кровотока. Доплеровские методы и аппараты. Доплеровские системы с двухмерной визуализацией. Разработка электрической принципиальной схемы и конструкции ультразвукового датчика прибора для измерения кровотока.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 07.05.2010
Размер файла 611,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

введение

В настоящее время существует ряд методов исследования микроциркуляторного русла. Среди них выделяют микроскопические техники, в частности офтальмоскопия, компьютерная ТV-микроскопия сосудов конъюнктивы глазного яблока, ногтевого ложа, сосудов кожи. Они позволяют оценить структуру и диаметр микрососудов, состояние их тонуса, выявить различные внутиивнесосудистые изменения (замедление кровотока, стаз, липидные включения и т.д.). Ряд методов позволяет определить линейную скорость кровотока. Однако данные методы исследования не позволяют оценить тканевой кровоток в целом, выявить особенности его регуляции. Существуют методы оценки тканевого кровотока, в том числе окклюзионная плетизмография, вымывание радиоактивных изотопов, флюорисцентная микроангиография, введение меченых микросфер и т.д. Однако некоторые из них нашли применение лишь в экспериментальной медицине из-за сложности применения у человека, другие связаны с необходимостью использования дорогостоящей техники. Кроме того, вышеперечисленные методы исследования микрокровотока позволяют лишь косвенно оценить особенности регуляции периферической гемодинамики.

Использование приборов на основе доплеровского эффекта является наиболее распространенным и удобным неинвазивным методом исследования кровотока, который позволяет выявить особенности регуляции кровотока.

В данной дипломной работе необходимо разработать прибор для измерения кровотока на основе доплеровского эффекта, в котором применяется ультразвуковые волны.

Цель дипломной работы - разработать прибор для измерения кровотока, основанный на эффекте Доплера.

Исходя из цели основными задачами дипломной работы являются:

- рассмотрение сущности доплеровского эффекта;

- рассмотрение этапов развития доплеровских методов, а также основных принципов построения доплеровской аппаратуры;

- рассмотрение электроакустических принципов построения доплеровских приборов;

- литературный обзор возможных типов преобразователей для приборов измерения кровотока;

- выбор функциональной схемы прибора;

- разработка электрической принципиальной схемы прибора;

- разработка конструкции измерительного преобразователя;

- технико-экономическое обоснование разработки;

- выявление отрицательных факторов при работе приборами, основанными на эффекте Доплера.

При написании дипломной работы использовался большой объем источников информации: учебники, справочная литература, нормативные документы, периодические и монографические издания специалистов.

Актуальность, цель и задачи, информационная база предопределили структуру дипломной работы. Она состоит из шести глав. Первая глава посвящена теоретическим аспектам доплерографии. Вторая глава включает выбор функциональной схемы прибора. Третья глава носит проектный характер и посвящена разработке схемы электрической принципиальной для прибора, а также расчету основных параметров схемы. В четвертой главе разрабатывается конструкция измерительного преобразователя. Пятая глава посвящена экономической стороне разработки - технико-экономическое обоснование разработки. В шестой главе рассматриваются вопросы безопасности жизнедеятельности и экологичности разработки.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1.1 Необходимость измерения скорости и направления кровотока

Сердечно-сосудистая система состоит из сердца и сосудов - артерий, капилляров и вен. Транспортная функция сердечно-сосудистой системы заключается в том, что сердце (насос) обеспечивает передвижение крови (транспортируемой среды) по замкнутой цепи сосудов (эластических трубок).

В физиологических условиях почти во всех отделах кровеносной системы наблюдается ламинарное, или слоистое течение крови. При таком типе течения жидкость движется вдоль сосуда, причем, все ее частицы перемещаются только параллельно оси сосуда. Линейная скорость кровотока ламинарного типа связана с длиной сосуда, градиентом давления, вязкостью крови, но, главным образом, зависит от диаметра сосуда.

При сокращении сердца кровь поступает из левого желудочка в выходящий тракт (аорту) только во время периода изгнания. В ходе пульсовых колебаний скорость кровотока меняется следующим образом: после открытия аортальных клапанов она резко возрастает, затем к концу периода изгнания падает почти до нуля. От начала периода расслабления и до закрытия сворок аортального клапана наблюдается кратковременный обратный ток крови в левый желудочек.

Различают объемную и линейную скорости кровотока.

Объемной скоростью Q называют величину, численно равную объему жидкости, протекающему в единицу времени через данное сечение трубы:

(1)

Линейная скорость - представляет путь, пройденный частицами крови в единицу времени:

(2)

Поскольку линейная скорость неодинакова, но сечению трубы, то в дальнейшем речь будет идти только о линейной скорости, средней по сечению.

В покое максимальная скорость кровотока в аорте превышает 100 см/сек, средняя скорость в течение всего периода изгнания около 70 см/сек. Поскольку средняя скорость кровотока обратно пропорциональна поперечному сечению сосудов, она значительно ниже в периферических артериях, и особенно в концевых артериях и артериолах (2 - 10 см/сек). Медленнее всего кровь течет в капиллярах - линейная скорость кровотока в них составляет 0,03 см/сек.

Измерение скорости кровотока в магистральных артериях и венах имеет большое диагностическое значение, поскольку косвенно свидетельствует о патологическом изменении геометрии сосуда и упругих свойствах стенки сосудов. В связи с этим, в клинической практике широко применяются методы для регистрации кровотока в крупных сосудах, а также структурах сердца.

Возможность неинвазивной, объективной и динамической оценки кровотока по сосудам малого калибра остается одной из актуальных задач современной ангиологии и смежных специальностей. От ее решения зависит успех ранней диагностики таких заболеваний, как облитерирующий эндартериит, диабетическая микроангеопатия, синдром и болезнь Рейно. Не менее важным аспектом проблемы эхолокации низкоскоростных потоков крови является мониторинг проходимости микрососудистых анастомозов при реимплантации сегментов конечностей, трансплантации тканевых лоскутов и органов.

Нарушения мозгового кровообращения являются одной из основных причин смертности населения развитых стран. Ишемическая болезнь мозга по распространенности практически соответствует ишемической болезни сердца и составляет около 36% в структуре сердечно-сосудистых заболеваний. Особое место среди причин, приводящих к нарушениям мозгового кровообращения, занимает патологическая извитость сонных артерий. С одной стороны, это связано с ее высокой распространенностью в качестве причины недостаточности мозгового кровообращения, уступающей только распространенности атеросклеротического поражения каротидных артерий. С другой стороны, до сих пор нет единого мнения о гемодинамической значимости деформации сонных артерий и целесообразности ее хирургической коррекции.

Стенозирующие поражения брахиоцефальных артерий в настоящее время занимают второе место по частоте летальных осложнений. Отмечается увеличение количества больных с атеросклеротическим поражением внутренних сонных артерий (ВСА).

Следовательно, успешное предупреждение и эффективное лечение нарушений мозгового кровообращения во многом зависит от диагностики параметров кровотока.

Для измерения скорости и направления кровотока в медицине принято применять приборы и аппараты, которые основаны на эффекте Доплера, который используется как с ультразвуком, так и с лазерным излучением. В нашем дипломном проекте рассматривается применение эффекта Доплера с ультразвуком, который получил значительно более широкое распространение.

Сущность эффекта Доплера рассматривается в следующем пункте теоретической главы.

1.2 Сущность эффекта Доплера

Эффект Доплера - изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника.

Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемые им волны, то длина волны уменьшается. Если удаляется - длина волны увеличивается.

Сущность эффекта Доплера, применяемого в медицинской практике, сводится к следующему. Ультразвуковые колебания, генерируемые пьезоэлементами с определенной заданной частотой, распространяются в исследуемом объекте в виде упругих волн. По достижении границы между 2 средами, характеризующимися различным акустическим сопротивлением, часть энергии переходит во вторую среду, а часть ее отражается от границы раздела сред. При этом частота колебаний, отраженных от неподвижного объекта, равна первоначальной частоте генерируемых ультразвуковых импульсов. Если объект движется с определенной скоростью по направлению к источнику ультразвуковых импульсов, то его отражающая поверхность соприкасается с ультразвуковыми импульсами чаще, чем при неподвижном положении объекта. В результате этого частота отраженных колебаний превышает частоту генерируемых ультразвуковых импульсов. Напротив, при движении отражающих поверхностей от источника излучения частота отраженных колебаний становится меньше испускаемых импульсов. Разница между частотой генерируемых и отраженных импульсов называется допплеровским сдвигом. Допплеровский сдвиг имеет положительные значения при движении объекта по направлению к источнику ультразвуковых колебаний и отрицательные - при движении от него.

В медицине эффект Допплера в основном применяется для измерения скорости движения крови. Причем отражающей поверхностью в данном случае являются в основном эритроциты.

1.3 Доплеровские методы и аппараты, основанные на них

1.3.1 Основные этапы развития доплеровских методов

На первом этапе создания ультразвуковых доплеровских приборов были разработаны простейшие приборы с непрерывным излучением и представлением информации доплеровского сдвига в виде звуковых сигналов через встроенный в прибор динамик. В дальнейшем совершенствование элементной базы и новые методические подходы позволили менее чем за два десятилетия достичь уровня технических решений, которые в наиболее полной мере отвечают функциональным задачам потребителя (см. табл. 1).

Таблица 1 - Основные достижения в области создания ультразвуковой доплеровской аппаратуры

Достижение

Год

Ранние ссылки (автор)

Описание эффекта Доплера

1842

Doppler

Первые сообщения о применениях в медицине

1956

Satumora, Franklin

Доплеровские системы с выделением направлений

1966

Pourcelot, McLeod,

Gross, Light

Импульсные доплеровские системы

1967

Wells, Baker

Мультистробируемые системы

1970-1975

Baker, Keller, Brandestini,

Nowicki&Reid

Доплеровская визуализация

1971

Mozersky, Reid&Spencer,

Fish

Дуплексные эхо-импульсные системы

1974

Barber, Phillips

Цветовое доплеровское картирование в режиме реального времени

1979-1982

Pourcelot, Eyeretal,

Namekawa

Транскраниальная доплерография

1982

Aaslid

Энергетический доплер, доплеровская тканевая визуализация

1994

Arenson

Появление в начале 80-х годов приборов с цветовым картированием потоков позволило потребителю успешно решать задачи локализации исследуемого сосуда по направлению и глубине, детектировать направление потоков с помощью специальных световых шкал, производить объективную оценку как интегральных скоростей потоков, так и распределений в частотно-временной области на основе спектрального анализа, выполнять вычисление объемных показателей скоростей потоков в выбранном сечении сосуда.

На сегодняшний день доплеровские методы стали неотъемлемым элементом практически во всех областях клинического применения ультразвуковой диагностики.

Применительно России, первые серийные образцы простейших приборов с непрерывным излучением «ИСКН» были созданы в конце 70-х годов. В дальнейшем появились приборы «Диск» с выделением направления потоков и простейшей компьютерной обработкой.

На новый качественный уровень вывела отечественные разработки научно-производственная корпорация ВНИИ медицинского приборостроения и французской фирмы DMS. С 1989 г. в рамках лицензионного соглашения было освоено производство приборов «Ангиодоп», создано оригинальное программное обеспечение, освоена технология производства ультразвуковых доплеровских датчиков.

Значительно расширить функциональные возможности приборов и повысить их эксплуатационные характеристики позволило активное применение современных компьютерных технологий, передовой электронной элементной базы, единых унифицированных решений. В 1992-1994 годах было разработано семейство приборов «Сономед», которое на основе модульного принципа построения позволило реализовать полный спектр доплеровских приборов - от простейших (с непрерывным потоком) до приборов с визуализацией потоков. Отечественные спектральные анализаторы доплеровских сигналов по своим функциональным возможностям стали сравнимы с зарубежными аналогами.

Передовые технические решения были реализованы в серии приборов «Биомед», которые позволили осуществить режим мониторинга при интракраниальных обследованиях, реализовали режим двухканальной визуализации спектров, расширили диапазон ультразвуковых датчиков до 16 МГц, обеспечили возможность детектирования эмболов.

Для эффективного применения аппаратуры необходимо знание основных принципов работы доплеровского прибора, его режимов и функциональных возможностей.

1.3.2 Основные принципы построения доплеровской аппаратуры

Разработчиками последовательно были созданы несколько поколений ультразвуковых доплеровских приборов: с непрерывным излучением без выделения направления кровотока (простейшие индикаторные приборы); с выделением направления - разделением прямого и обратного кровотока и получением графического отображения кривой (огибающей) усредненной по объему скорости кровотока; с импульсным излучением для локализации по глубине исследования; со спектральным анализом информации - для получения частотного и временного распределения скоростей в исследуемом объекте.

Для построения приборов непрерывного и импульсного излучения используется ряд известных радиотехнических электронных узлов и блоков, разработанных с учетом специфики взаимодействия с электроакустическим элементом доплеровского прибора - ультразвуковым датчиком.

Блок-схема непрерывноволнового доплеровского прибора приведена на рис. 1. Задающий генератор 1 вырабатывает синусоидальную волну, поступающую на усилитель мощности 2 и далее на передающий пьезоэлемент 3, который создает непрерывную ультразвуковую волну 4.

Рис. 1 - Блок-схема непрерывноволнового доплеровского прибора. 1 - задающий генератор; 2 - усилитель мощности; 3 - передающий пьезоэлемент; 4 - ультразвуковая волна; 5 - кровеносный сосуд; 6 - эритроциты; 7 - приемный пьезоэлемент; 8 - предусилитель; 9 - демодулятор

Отражаясь от движущихся в кровеносном сосуде 5 форменных элементов крови 6, ультразвуковая волна поступает на приемный пьезоэлемент 7 и далее на выход предусилителя 8 с малым уровнем шума, который усиливает слабые отраженные сигналы до уровня их детектирования демодулятором 9. На выходе демодулятора сигнал имеет форму доплеровской разностной волны с частотой .

Главным недостатком измерителя потока крови с непрерывным излучением ультразвука является отсутствие разрешения по дальности. Любая движущаяся цель, попадающая в зону диаграммы направленности ультразвукового датчика, будет вносить вклад в окончательный выходной доплеровский сигнал. В результате во время клинического использования таких приборов не всегда представляется возможным выделить потоки крови в соседних сосудах. А селективность по дальности иногда может быть главным требованием в доплеровских исследованиях.

Наиболее простым методом кодирования ультразвуковой волны является амплитудная модуляция непрерывных колебаний. В приборе, известном как импульсный доплеровский анализатор скорости кровотока, короткие импульсы ультразвука передаются с регулярными интервалами на движущуюся цель, а отраженные сигналы исследуются для определения доплеровских сдвигов частоты.

Импульсный доплеровский прибор объединяет возможности разрешения по дальности и детектирования доплеровских эхо-сигналов. Как и у любой эхо-импульсной системы, в основу работы прибора положен принцип передачи коротких импульсов волн на цель и последующего ожидания возвращения отраженных сигналов. Так как звуковые волны проходят через человеческую ткань с примерно постоянной скоростью, задержка времени между передачей импульса и приемом отраженных сигналов зависит от дальности цели. Когда отраженные сигналы обрабатываются для получения доплеровских сдвигов, результирующий доплеровский сигнал может возникать только от целей, движущихся внутри «объема выборки», соответствующей выбранной задержки времени. В любой момент после передачи импульса объем выборки может быть определен как область, расположенная перед преобразователем, в которой должны возникать все возвращающиеся отраженные сигналы. Размеры объема выборки определяются в осевом направлении длительностью импульса, принимаемого приемником, а в поперечном - шириной пучка объединенной системы передатчик-приемник. Используя выборку тех доплеровских компонентов, которые после передачи возвращаются с существующей постоянной задержкой, возможно определить положение фиксированного объема выборки и, таким образом, опросить только цели, движущиеся на определенной дальности от преобразователя.

На рис. 2 представлены основные узлы эхо-импульсной доплеровской системы.

Рис. 2 - Блок-схема импульсного доплеровского прибора. 1 - задающий генератор; 2 - селектор передачи; 3 - усилитель мощности; 4 - генератор импульсов; 5 - предусилитель; 6 - селектор по дальности; 7 - когерентный демодулятор; 8 - селектор задержки; 9 - схема выборки хранения; 10 - полосовой фильтр; 11 - датчик; 12 - выбранная дальность; 13 - объем выборки

Задающий генератор вырабатывает синусоидальную волну на резонансной частоте преобразователя. Один раз за каждый период повторения импульса несколько периодов задающего колебания проходят через селектор передачи и усилитель для преобразования. Селектор задержки вырабатывает временную задержку, которая позволяет пачке переданных ультразвуковых колебаний проходить на заданную дальность и возвращаться обратно. Затем возвращающиеся отраженные сигналы дискретизируются посредством открытия селектора по дальности и подачи на когерентный демодулятор, который управляется задающим генератором. Каждый отселектированный по времени отраженный сигнал вызывает короткий выходной импульс демодулятора, который формирует часть отсчитанного выходного сигнала доплеровского прибора. В случае необходимости эти отсчеты могут собираться (например, в схеме выборки-хранения) до прихода следующего переданного импульса. Это так называемый метод «с запоминанием отсчета» позволяет получать выходной сигнал более сглаженной формы, который затем может быть отфильтрован для устранения каких-либо компонентов, отстающих от частоты повторения импульсов, а также для устранения мешающих низкочастотных эхо-сигналов. К недостаткам эхо-импульсных доплеровских приборов следует отнести:

- дально-скоростные ограничения;

- большое отклонение максимальной от средней излучаемой мощности (интенсивности).

Поскольку средняя интенсивность строго определяет чувствительность системы и есть подтверждения того, что ультразвук высокой интенсивности может оказывать определенное воздействие на человеческую ткань, то характеристика сигнал/шум, а следовательно, чувствительность импульсной доплеровской системы строго ограничивается условиями безопасности пациента.

В соответствии с эффектом Доплера каждой скорости движения элементов кровотока соответствует доплеровский сигнал определенной частоты, поэтому формирование распределения доплеровских скоростей элементов кровотока сводится к выявлению набора частотных составляющих в сигнале, т.е. к спектральному анализу сигнала. При выполнении спектрального анализа формируется распределение доплеровских скоростей элементов кровотока. Спектральный анализ осуществляется путем использования набора фильтров, равномерно делящих частотный диапазон сигнала. При этом каждый фильтр выделяет узкий участок спектра сигнала, и чем уже частотная характеристика фильтра, тем уже разрешение по частоте. Для получения приемлемого спектрального разрешения доплеровских сигналов число фильтров должно быть достаточно велико. Поэтому использование спектрального анализа в доплеровских приборах стало возможно только с появлением малогабаритных устройств цифровой обработки сигналов - цифровых спектроанализаторов.

В цифровом спектроанализаторе формирование спектральных составляющих сигнала выполняется цифровым способом на основе реализации эффективного в вычислительном отношении алгоритма быстрого преобразования Фурье (БПФ). Перед выполнением спектрального анализа сигнала в цифровой форме осуществляется преобразование выходного сигнала приемного тракта в последовательность цифровых кодов с помощью аналого-цифрового преобразователя. Далее отсчеты сигнала накапливаются в буферной памяти.

После накопления последовательности отсчетов сигнала выполняется вычисление спектра сигнала с помощью алгоритма БПФ.

Современная доплеровская система со спектральным анализом выполняет следующие основные функции:

- формирование зондирующих сигналов;

- прием эхо-сигнала и выделение доплеровских смещений;

- формирование звуковых сигналов прямого и обратного кровотока;

- формирование доплерограммы и отображение ее в реально масштабе времени на экране монитора;

- вычисление параметров и индексов кровотока.

Реализацию вышеперечисленных функций рассмотрим на примере доплеровской системы «Сономед-300», блок-схема которой приведена на рис. 3.

Доплеровская система включает в себя: ультразвуковой датчик импульсного излучения 2МГц; ультразвуковые датчики непрерывного излучения 4 и 8 МГц; передатчик; приемник; цифровой спектроанализатор; управляющий компьютер (совместимый с персональным РС).

Рис. 3 - Блок-схема доплеровского прибора со спектральным анализом

Передатчик генерирует электрический сигнал возбуждения датчиков. В датчике электрический сигнал преобразуется в механические колебания пьезоэлектрической пластины, которые и передаются на тело пациента.

Эхо-сигналы от внутренних структур тканей, поступающие на датчик, преобразуются с помощью пьезоэлектрической пластины датчика в электрические колебания.

Приемник путем смешения сигнала возбуждения с эхо-сигналом и последующей фильтрации выделяет доплеровский сигнал кровотока, который поступает затем на цифровой спектроанализатор. После дополнительной обработки с помощью фазосдвигающих цепей, выполняющих разделение сигналов прямого и обратного кровотока, и усиления этот сигнал выдается на громкоговорители для звукового воспроизведения.

В цифровом спектроанализаторе выполняется преобразование доплеровского сигнала в цифровую форму, после чего производится вычисление спектра доплеровского сигнала.

Сформированные спектральные линии накапливаются в видеопамяти управляющего компьютера и выдаются на экран монитора. Кроме формирования изображения управляющий компьютер обеспечивает интерфейс с пользователем для создания режимов работы прибора, выполняет расчет параметров кровотока, накопление результатов измерений на магнитных носителях, регистрацию результатов с помощью внешних печатающих устройств.

1.3.3 Электроакустические принципы построения доплеровских приборов

Основные критерии оценки доплеровской информации.

Ультразвуковой доплеровский прибор представляет собой локационное устройство, принцип работы которого заключается в излучении зондирующих сигналов в тело пациента, приеме и обработке эхо-сигналов, отраженных от движущихся элементов кровотока в сосудах. Функционирование доплеровского прибора аналогично работе любого другого локационного устройства движущихся объектов для самых различных применений.

Особенность ультразвукового прибора состоит в использовании в качестве зондирующего сигнала механических колебаний, передаваемых в тело человека.

Возбуждение ультразвуковых колебаний и прием эхо-сигналов при работе доплеровского прибора выполняется датчиком, в состав которого входит один или несколько ультразвуковых преобразователей. Ультразвуковой преобразователь представляет собой пластину из пьезоэлектрического материала и предназначен для преобразования поступающих на него электрических сигналов в ультразвуковые волны при излучении зондирующего сигнала, и, соответственно, для обратного преобразования ультразвуковых волн в электрические сигналы в процессе приема эхо-сигналов.

Состояние кровотока оценивают как по качественным, так и по количественным характеристикам.

К качественным показателям относят: характер звукового доплеровского сигнала; форму доплерограммы; распределение частот в доплерограмме; направление кровотока.

Вид доплерограммы позволяет более точно оценить состояние кровотока, поскольку при нарушениях кровотока форма спектра претерпевает существенные изменения.

Количественная оценка кровотока производится как на основании непосредственно измеряемых параметров, так и с помощью рассчитываемых на их основе индексов. К непосредственно измеряемым параметрам кровотока относятся: максимальная систолическая скорость; скорость в конце диастолического цикла; средняя скорость за один сердечных цикл.

Однако необходимо помнить, что указанные параметры зависят от угла наклона датчика по отношению к направлению кровотока. На практике наклон датчика выставляют таким образом, чтобы получить максимальную насыщенность изображения спектра, которая достигается при значении угла около 45°.

Чтобы получить количественные параметры кровотока, не зависящие от угла наклона датчика, широко применяют специальные индексы: индекс сопротивления, систоло-диастолический индекс, индекс пульсации, процент стеноза.

Эксплуатационные параметры доплеровской системы.

Эксплуатационные параметры доплеровской системы определяются способами реализации основных этапов формирования, обработки и отображения сигналов.

Качество эксплуатационных характеристик ультразвуковой доплеровской системы непосредственно связано с понятием пространственного разрешения, разрешения по времени и скорости (доплеровской частоте).

Параметры зондирующих сигналов и способы обработки эхо-сигналов определяют следующие характеристики доплеровской системы: пространственное разрешение, глубина зондирования, вид доплерограммы.

Для получения качественной диагностической информации в доплеровской системе предусматривают управление параметрами тракта формирования зондирующего сигнала, приемного тракта и тракта формирования доплерограммы.

К основным параметрам доплеровской системы, которые могут изменяться оператором, относят: параметры зондирующего сигнала - тип излучения, мощность, частота и длительность излучения; параметры обработки эхо-сигналов - усиление, характеристики фильтров шумов и мешающих отражений; параметры формирования доплерограммы.

1.4 Ограничения доплеровского метода

Каждый из двух используемый в доплеровской системе режимов излучения имеет свои преимущества и недостатки, которые необходимо учитывать для выбора оптимального режима работы с системой.

Преимущества использования непрерывного излучения:

1) качественное выделение сигналов с малым уровнем шумов;

2) приемлемые характеристики, получаемые при небольшой мощности излучения;

3) отсутствие ограничений по величине измеряемой скорости кровотока.

Ограничения при использовании непрерывного излучения:

1) эхо-сигнал выделяется со всей глубины в пределах зоны чувствительности, следовательно, невозможно разделить сигналы от разных сосудов, попадающих в зону чувствительности прибора, а также невозможно оценить диаметр сосуда;

2) минимально возможная измеряемая доплеровская скорость ограничивается фильтром высоких частот, который используют для подавления мощных сигналов от медленно движущихся стенок сосудов; недостаточное подавление этих сигналов приводит к перегрузке приемного тракта;

3) при установленных нормах на безопасную для пациента мощность излучения кость является непреодолимым препятствием распространению ультразвука, что делает невозможным проведение транскраниальных исследований.

Преимущества использования импульсного излучения:

1) возможна точная установка измерительного объема на выбранной глубине, что делает возможным разделение сигналов от разных сосудов вдоль направления излучения, и в частности сигналов от близкорасположенных сосудов с разными направлениями кровотока;

2) для излучения и приема используют одну пьезоэлектрическую пластину, следовательно, ультразвуковой луч может быть более узким, чем в случае непрерывного излучения с применением разделенного датчика.

Ограничения при использовании импульсного излучения:

1) наименьшая измеряемая доплеровская частота определяется характеристикой фильтра высоких частот, используемого для подавления мощных сигналов от медленно движущихся стенок сосудов;

2) максимальная измеряемая скорость определяется частотой повторения импульсов излучения.

Если скорость движения элемента крови превысит некоторое граничное значение, определяемое частотой повторения зондирующих импульсов, то за счет эффекта наложения частот соответствующее доплеровское смещение будет переноситься в область низких частот, что соответствует малой скорости движения. Иными словами, возникает неоднозначность при измерении скорости кровотока.

Также возможно неоднозначное определение глубины локализации. Глубина исследуемого сосуда определяется только в режиме импульсного излучения по величине временной задержки между моментом излучения и моментом приходы эхо-сигнала. В действительности имеет место неоднозначность измерения дальности, обусловленная приходом в заданное время одновременно с эхо-сигналом последнего излученного импульса от исследуемого элемента ткани эхо-сигналом предыдущих излученных импульсов от более глубоких слоев ткани. Однако вследствие затухания от более глубоких слоев значительно ослаблены, и при малой частоте повторения импульсов их влиянием можно пренебречь. Если же частота повторения достаточно высока, то доплеровская система будет воспринимать эхо-сигналы одновременно от двух и более участков ткани по глубине. В пределе, при увеличении частоты повторения импульсов, импульсный режим по характеристикам приближается к непрерывному режиму излучения; при этом теряется понятие глубины, но нет ограничений на максимальную скорость кровотока.

Основное преимущество импульсной доплеровской системы по сравнению с системой непрерывного излучения - это точная локализация измерительного объема по глубине. При этом, чем более короткий импульс излучения используют, тем большую точность определения глубины достигают. При этом возможность локализации измерительного объема увеличивается, возможность точного измерения скорости уменьшается. Таким образом, становится понятным, что каждый из используемых в доплеровской системе режимов излучения имеет свои преимущества и недостатки, которые необходимо учитывать для выбора оптимального режима работы с системой.

Устранить отмеченные принципиальные ограничения возможно только при совмещении режимов двухмерного сканирования (В-режим) с одновременным получением доплеровской информации (D-режим). Эти системы рассмотрим в следующем пункте дипломного проекта.

1.5 Доплеровские системы с двухмерной визуализацией

Существует два подхода к комбинированию доплеровской информации и информации двухмерного сканирования. Первый состоит в получении полутонового двухмерного изображения (В-режим) в реальном времени, определении зоны интереса и направлении в эту область одномерного доплеровского излучения. Такой подход известен как дуплексный режим.

Второй метод предусматривает формирование изображения потоков на основе оценки доплеровской информации в каждом из элементов выбранной двухмерной зоны интереса с одновременным цветным кодированием получаемой информации в зависимости от направления потока. Данный поток получил название «метод цветового доплеровского картирования» - ЦДК. Доплеровская информация, получаемая при этом методе, как правило, воспроизводится на экране прибора совместно с двухмерным полутоновым изображением для совместной оценки морфологии исследуемого сосуда, геометрии потоков и их функциональных характеристик. Одновременное формирование в режиме реального времени полутонового двухмерного изображения, информации ЦДК в выбранной двухмерной области и спектограммы потока в зоне установленного строба получило название триплексного режима.

1.5.1 Дуплексные системы

Простейшая техническая реализация дуплексного режима состоит в механическом креплении под фиксированным углом доплеровского датчика к корпусу двухмерного сканирующего датчика. При этом обеспечивается синхронное, независимое функционирование каждого из датчиков. Доплеровский датчик обеспечивает как непрерывный, так и импульсный режим работы. При этом направление излучения обозначается на экране выделенной линией, а зона интереса в импульсном режиме - двумя маркерами или стробом. Дуплексный режим может быть реализован за счет использования в разнесенные временные интервалы одного и того же пьезокерамического преобразователя двухмерного датчика, как в сканирующем, так и в доплеровском режиме.

При конструировании дуплексных датчиков необходимо учитывать и геометрические требования. Как известно, для получения двухмерного изображения сосуда, оптимальным углом между ультразвуковым лучом и сосудом является 90°.

Решение проблемы устранения наложения частот при работе в импульсном режиме с высокоскоростными потоками достигают за счет применения нескольких элементов в доплеровском излучателе. Конструктивно данную задачу реализуют путем использования матричных излучателей.

Рис. 4 - Варианты конструктивного исполнения дуплексных датчиков: а - секторный датчик с механическим креплением доплеровского канала; б - линейный датчик с механическим креплением доплеровского канала; в - электронный датчик со встроенным доплеровским каналом; г - электронный датчик с фазированной решеткой; д - совмещенный датчик с механическим сканированием; е - дуплексный датчик с водной задержкой. Штрихпунктиром показано направленное доплеровское излучение, пунктиром обозначена область сканирования

Различные варианты конструктивного исполнения дуплексных датчиков приведены на рис. 4.

На рис. 4а приведен простейший вариант крепления на корпусе двухмерного механического датчика независимого доплеровского излучателя. Данная конструкция является оптимальной с точки зрения развязки электроакустических параметров датчиков, но имеет меньшие возможности по изменению геометрии доплеровского излучения и временной синхронизации работы излучателей, а также создает некоторые конструктивные неудобства для пользователя. Аналогичные преимущества и недостатки характерны для дуплексного датчика с электронным линейным сканированием.

Наиболее универсальной по областям применения является конструкция электронного датчика с фазированной решеткой. Каждый из элементов решетки может работать как в непрерывном, так и в импульсном режиме доплеровского излучения и в зависимости от временной последовательности управляющих импульсов изменять произвольно направление излучения.

Приборы с режимом дуплексного сканирования позволяют успешно решать задачи пространственной локализации исследуемого сосуда и получать результаты спектрального анализа доплеровских частот в объективно определенной зоне интереса. Определение размеров исследуемого сосуда по двухмерной эхограмме позволяет получить оценку объемных показателей кровотока.

Для решения задачи получения «реальных» доплеровских изображений - получения двухмерной картины распределения значений скоростей кровотока в выбранном сечении - используют методы ЦДК.

1.5.2 Системы с цветовым картированием потоков

Для реализации данного метода возможно использование всех типов датчиков, которые обеспечивают требуемую частоту излучений, - секторных, механических, электронных линейных и фазированных. Также были разработаны специализированные полостные датчики, в которых также реализован режим ЦДК.

При формировании изображений (рис.5) принимаемые эхо-сигналы обрабатываются параллельно по двум каналам: 1 - для формирования двухмерного полутонового изображения (В-режим); 2 - для обработки доплеровских сигналов. В канале 2 устанавливается пороговый детектор эхо-сигналов, который отделяет полезный доплеровский сигнал малой амплитуды от высокоамплитудных эхо-сигналов В-изображения. Полученный после выделения полезный сигнал обрабатывается параллельно по каналам 2.1 и 2.2 для определения значений скоростей и направления потоков. Сформированные независимо изображения В-режима и ЦДК поступают на смеситель телевизионных сигналов для получения результирующего двухмерного изображения с зоной ЦДК.

Рис. 5 - Блок-схема формирования изображения с режимом ЦДК

1.6. Сравнительный анализ основных режимов получения доплеровской информации

Для более эффективного применения каждого из режимов при определении тактики ультразвукового обследования можно использовать сравнительную таблицу возможностей этих методов (табл.2).

Таблица 2 - Характеристики основных режимов получения доплеровской информации

Показатели

Режим

непрерывный

импульсный

ЦДК

Зона исследования

Один протяженный участок

Один или несколько коротких участков

Двухмерный массив коротких участков

Ультразвуковой преобразователь

Двухэлементный

Одно- или многоэлементный

Одно- или многоэлементный

Дуплексная визуализация

Есть

Есть

Есть

Режим отображения

Доплерограмма

Доплерограмма

Двухмерное цветовое изображение и доплерограмма

Количество излучений, необходимый для расчета скорости кровотока

-

50

Минимум 3, как правило 10

Ограничения по эффекту наложения частот

Нет

Есть

Есть

Максимальная точность определения скорости

2%

2%

10%

Разрешающая способность по времени

10 мс

10мс

100 мс

Выходная излучаемая интенсивность

50мВт/см2

500мВт/см2

100мВт/см2

Количественное измерение потока

Возможно

Возможно

Возможно

Зависимость от угла излучения

Есть

Есть

Есть

1.7 Виды ультразвуковых датчиков для проведения доплерографии

Датчик является одним из основных компонентов диагностических систем, который конвертирует электрические сигналы в ультразвуковые колебания и производит электрические сигналы, получая отраженное эхо от внутренних тканей пациента. Идеальный датчик должен быть эффективен как излучатель и чувствителен как приемник, иметь хорошие характеристики излучаемых им импульсов со строго определенными показателями, а также принимать широкий диапазон частот, отраженных от исследуемых тканей.

Широкий спектр ультразвуковых исследований сосудов современным допплеровским прибором обеспечивается за счет применения датчиков различного назначения, отличающихся между собой характеристиками излучаемого ультразвука, а также конструктивными параметрами.

Все ультразвуковые датчики делятся на механические и электронные. В механических сканирование осуществляется за счет движения излучателя (он или вращается или качается). В электронных развертка производится электронным путем. Недостатками механических датчиков являются шум, вибрация, производимые при движении излучателя, а также низкое разрешение. Механические датчики морально устарели и в современных сканерах не используются.

1.7.1 Классификация датчиков по конструктивным параметрам

По конструктивным параметрам выделяют три типа ультразвуковых датчиков: линейные, конвексные и секторные. Выбор датчика для каждого исследования проводится с учетом глубины и характера положения органа.

Линейные датчики используют частоту 5-15 МГц. Преимуществом линейного датчика является полное соответствие исследуемого органа положению самого датчика на поверхности тела. Недостатком линейных датчиков является сложность обеспечения во всех случаях равномерного прилегания поверхности датчика к коже пациента, что приводит к искажениям получаемого изображения по краям. Также линейные датчики за счет большей частоты позволяют получать изображение исследуемой зоны с высокой разрешающей способностью, однако глубина сканирования достаточно мала (не более 10 см). Используются в основном для исследования поверхностно расположенных структур - щитовидной железы, молочных желез, небольших суставов и мышц, а также для исследования сосудов.

Конвексные датчики.

Конвексный датчик использует частоту 2,5-7,5 МГц. Имеет меньшую длину, поэтому добиться равномерности его прилегания к коже пациента более просто. Однако при использовании конвексных датчиков получаемое изображение по ширине на несколько сантиметров больше размеров самого датчика. Для уточнения анатомических ориентиров врач обязан учитывать это несоответствие. За счет меньшей частоты глубина сканирования достигает 20-25 см. Обычно используется для исследования глубоко расположенных органов - органы брюшной полости и забрюшинного пространства, мочеполовой системы, тазобедренные суставы.

Секторные датчики.

Секторный датчик работает на частоте 1,5-5 МГц. Имеет еще большее несоответствие между размерами датчика и получаемым изображением, поэтому используется преимущественно в тех случаях, когда необходимо с маленького участка тела получить большой обзор на глубине. Наиболее целесообразно использование секторного сканирования при исследовании, например, через межреберные промежутки. Типичным применением секторного датчика является эхокардиоскопия - исследование сердца.

1.7.2 Классификация датчиков по характеру излучаемого ультразвука

В зависимости от характера излучаемого ультразвука выделяют постоянноволновые и импульсные датчики.

У постоянноволнового датчика имеется два пьезокристалла, один из которых постоянно излучает, второй - принимает излучение.

Рис. 6 - Схема непрерывноволнового датчика

В импульсных датчиках один и тот же кристалл является принимающим и излучающим. Режим импульсного датчика позволяет осуществлять локацию на различных, произвольно выбираемых глубинах.

Рис. 7 - Схема импульсного датчика

2. ВЫБОР ФУНКЦИОНАЛЬНОЙ СХЕМЫ ПРИБОРА

Особенность ультрарзвукового доплеровского прибора состоит в использовании в качестве зондирующего сигнала механических вибраций, передаваемых в тело человека. В процессе работы прибора производятся механические колебания элементов тканей на поверхности тела. Распространение ультразвука зависит от плотности, структуры, однородности, вязкости и сжимаемости тканей. Интегративным отражением этих свойств является акустический импеданс (АИ) ткани. АИ характеризует степень сопротивления среды распространению ультразвука.

,

где d - плотность среды (кг\м3), с - скорость распространения ультразвука в среде.

Циклическое движение элементов тканей на поверхности, производимое пьезоэлектрической пластиной, вызывает в свою очередь, силовые воздействия на элементы тканей с более глубоких слоев, и, соответственно, их циклическое перемещение и т.д. Таким образом, за счет передачи силовых воздействий сжатия-растяжения между соседними элементами тканей возникает передача механических вибраций в тело человека, называемое ультразвуковой волной.

В настоящее время в ультразвуковых приборах применяется ультразвук с частотами до 20 МГц. Так, например, при УЗ обследований головы используют самые низкие частоты порядка 0.5 - 2 МГц, при обследовании периферических сосудов - до 10 МГц, в офтальмологии - до 15 МГц. А чем выше частота, тем ниже минимальная регистрируемая скорость, поэтому, применяемые в настоящее время ультразвуковые доплеровские приборы для измерения кровотока, как отмечалось ранее, имеют ограничения на минимальную регистрируемую скорость.

Указанное ограничение возникает по двум причинам:

- из-за зависимости доплеровского сдвига от частоты излучения;

- из-за необходимости фильтрации принимаемого сигнала.

Допплеровский сдвиг (разность частот излучаемого и принимаемого сигнала) прямо пропорционален частоте ультразвукового сигнала, на которой проводится исследование кровотока - т.е. чем ниже частота ультразвука, тем меньше допплеровский сдвиг, получаемый при обследовании одного и того же кровотока на различных частотах.

Ограничения, налагаемые на частотный диапазон существующих допплеровских измерителей скорости кровотока, обусловлены, в основном, двумя причинами:

- сложностью получения приемлемых параметров ультразвукового преобразователя, выполненного на основе пьезокерамики, для работы на частотах свыше 10 МГц. Толщина пьезокерамической пластины, используемой в качестве активного элемента, составляет половину длины волны, и на частотах свыше 10 МГц становится меньше 0.2 мм. Из-за существования пор в объеме керамики, напыляемые на противоположные поверхности пьезокерамической пластины электрические контакты образуют электрические соединения друг с другом через эти поры, и такой преобразователь становится непригодным для работы;

- существующие в настоящее время схемы построения блоков обработки сигналов ультразвуковых преобразователей (в диапазоне до 16 МГц) предполагают производить эту обработку непосредственно в высокочастотной области, что приводит к усложнению схемы, и как следствие, к заметному удорожанию всего допплеровского комплекса.

Основываясь на всем выше сказанном, функциональную схему прибора можно выполнить следующим образом (см. приложение 1).

Рассмотрим работу данной схемы. Сигнал U1, вырабатываемый генератором представляет собой последовательность прямоугольных импульсов f =4МГц. Затем он посылается на буфер, который повторяет сигнал по напряжению и усиливает его по току. На микросхемах DD1, DD1.4 и DD1.5 реализован формирователь импульсов U2 и U3, сдвинутых на , необходимых для раскачки транзисторов VT1 и VT2.

На вторичной обмотке трансформатора формируется двухполярный сигнал U4, который поступает на излучающий пьезоэлемент измерительного преобразователя. Отраженный U6 улавливается приемным пьезоэлементом преобразователя.

Затем сигнал пропускается через повторитель и поступает на усилитель и избирательный фильтр, на выходе которого имеем U7. Полученный сигнал проходит через блок автоматической регулировки усиления, основной задачей которого является изменение коэффициента передачи приемного тракта локатора таким образом, чтобы уровень эхосигнала на выходе приемного блока зависел только от размера цели и не зависел от расстояния от преобразователя.

Для детектирования доплеровского смещения полученный сигнал необходимо подать на смеситель, на выходе которого имеем U8. Частотный спектр этого сигнала широк, поэтому для выделения нужной нам полосы ставим последовательно два фильтра: фильтр низких частот (ФНЧ) и фильтр высоких частот (ФВЧ). После этого сигнал усиливается и в итоге получаем полезный сигнал U9, который поступает на входы блока оптической и акустической индикации.

Блок оптической индикации содержит компаратор (преобразующий изменяющийся во времени сигнал в прямоугольные импульсы), фильтр, повторитель и светодиод.

Блок звуковой индикации состоит из двух последовательно стоящих фильтров нижних и верхних частот и акустического низкочастотного излучателя.

3. РАЗРАБОТКА ЭЛЕКТРИЧЕСКОЙ ПРИНЦИПИАЛЬНОЙ СХЕМЫ ПРИБОРА

3.1 Описание работы прибора на основании электрической принципиальной схемы

Схема электрическая функциональная приведена в приложении 2.

Для формирования прямоугольных импульсов частотой 4 МГц используем генератор типа К555ЛА3 на логических элементах DD1.1 и DD1.2 с кварцевой стабилизацией. Резистор R1 переводит элементы в активный режим. Для подстройки частоты резонанса используется переменный конденсатор С1. На выходе генератора получаем сигнал U1 (рис. 8).

Рис. 8 - Эпюры напряжений

Сигнал U1 поступает на синхронизирующий вход триггера типа К555ТМ2 DD2, на выходах которого формируются противофазные импульсы напряжения U2 и U3 с частотой 2 МГц. Эти напряжения через элементы DD1.4 и DD1.5 и резисторы R3 и R4 поступают на транзисторы (КТ316А) VT1 и VT2, работающие в ключевом режиме и нагруженные на трансформатор Т1. Ко вторичной обмотке трансформатора Т1 подключен излучающий преобразователь BQ1. Приемный преобразователь BQ2 подключен ко входу приемного тракта через разделительный трансформатор Т2. Трансформаторы Т1 и Т2 обеспечивают дополнительную гальваническую развязку акустических преобразователей от электронных блоков прибора.

В качестве приемного блока DA1 используем микросхему К174ХА2.

3.2 Расчет основных параметов схемы

Частота генератора - 4 МГц. Зададим =10пФ. Зная соотношение для времени периода (время от начала одного импульса до начала следующего), можно найти сопротивление .

Произведем расчет транзисторов и (рис. 9).

Рабочая частота равна МГц. Тогда:

Найдем длительность импульса, зная период (рис. 10).

Рис. 9 - Трансформатор Т1 и транзисторы VT1 и VT2

Рис. 10 - Период и время импульса

Транзисторы должны удовлетворять условию .

Для нашего случая выберем транзистор типа КТ316А и проведем расчет величины времени нарастания (по этому параметру можно будет судить о правильности выбора типа транзистора).

Время нарастания можно найти, используя формулы:

,

где - коэффициент трансформации;

- напряжение возбуждения транзистора;

- пороговое напряжение перехода база - эмиттер кремниевого транзистора;

собственные параметры транзистора.

Транзистор типа КТ316А имеет следующие параметры:

.

Учитывая, что получим:

Таким образом, видно, что рассчитанная величина времени нарастания меньше требуемой величины ; следовательно, тип транзистора нами выбран правильно.

Произведем расчет трансформатора.

Индуктивность первичной обмотки определим из условия:

где - приведенное к первичной обмотке сопротивление нагрузки.

.

Далее проведем расчет типоразмера магнитопровода и его начальной магнитной проницаемости .

где -средняя эффективная линия (см);

-площадь поперечного сечения (см2);

-число витков.

Найдем магнитопроницаемость:

Выбираем типоразмер К .

Таким образом, трансформатор представляет собой магнитопровод типоразмера К , тип феррита никелево - цинковый, с магнитной проницаемостью , числом витков , .

3.3 Расчет надежности электрической схемы

Проблема обеспечения надежности связана со всеми этапами создания изделия и всем периодом его практического использования. Надежность изделия закладывается в процессе его конструирования и расчета и обеспечивается в процессе его изготовления путем правильного выбора технологии производства, контроля качества исходных материалов, полуфабрикатов и готовой продукции, контроля режимов и условий изготовления.


Подобные документы

  • Разработка электрической принципиальной схемы прибора. Описание ее элементов. Расчет усилителя, конденсатора для сглаживания пульсаций, напряжения на вторичной обмотке трансформатора. Выбор микросхемы стабилизатора напряжения и диодного выпрямителя.

    курсовая работа [1,9 M], добавлен 28.12.2014

  • Анализ существующих методов измерения вязкости нефтепродуктов. Принцип построения структурной схемы вибрационного вискозиметра. Температурный датчик с цифровым выходом. Разработка структурной схемы датчика для измерения вязкости, алгоритм работы.

    курсовая работа [2,0 M], добавлен 27.12.2011

  • Разработка технологического процесса изготовления печатного узла прибора для измерения частоты пульса. Обеспечение технологичности конструкции изделия. Проектирование технологических процессов, средств технологического оснащения. Организация процесса ТПП.

    курсовая работа [88,7 K], добавлен 09.10.2011

  • Проблемы измерения скорости ветра и ее преобразование в силу. Приборы для измерения силы. Структурная схема измерителя скорости. Назначение отдельных функциональных блоков. Внешний и внутренний режимы тактового генератора. Прием сигнала с датчика Холла.

    курсовая работа [948,8 K], добавлен 09.06.2013

  • Разработка функциональной схемы измерительного устройства для измерения температуры раскаленного металла. Определение оптимальной конструкции датчика и устройства. Выбор основных элементов: микроконтроллера, фотодиодов, оптической системы и блока питания.

    курсовая работа [13,1 M], добавлен 15.04.2015

  • Физическая сущность эффекта Доплера как изменения воспринимаемой частоты колебаний. Методы измерения физических величин с использованием данного физического эффекта. Источники погрешностей, ограничивающих точность измерений на основе этого явления.

    курсовая работа [1,1 M], добавлен 01.05.2016

  • Способы и методы измерения частоты, их характеристика. Типы индикаторов и проектирование принципиальной электрической схемы блока индикации. Разработка предварительного делителя частоты. Алгоритм работы микропроцессора и конструктивное решение прибора.

    дипломная работа [1,0 M], добавлен 09.07.2013

  • Значение анемометра как метеорологического устройства, применение его для измерения и определения скорости ветра. Разработка функциональной схемы устройства. Выбор элементов и их статический расчет. Разработка принципиальной схемы. Описание конструкции.

    контрольная работа [670,6 K], добавлен 16.09.2017

  • Анализ методов и средств измерения технологического параметра плотности пульпы слива классификатора. Выбор датчика и вторичного прибора, его обоснование. Анализ функциональных возможностей регулирующего устройства в заданной структуре системы управления.

    курсовая работа [199,3 K], добавлен 08.03.2016

  • Частотный метод измерения высоты и составляющих скорости. Канал оценки составляющих скорости. Вычислительные требования к блоку измерителя и модуляции. Разработка схемы электрической принципиальной. Математическое моделирование усилителя ограничителя.

    дипломная работа [861,7 K], добавлен 24.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.