Навигационные системы в современном мире

Изучение принципов работы навигационных приемников, рассмотрение структуры их программного обеспечения. Описание структуры программного обеспечения пользователя. Предложение рекомендаций об использовании различных средств работы с электронными картами.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 30.03.2015
Размер файла 5,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Оглавление

  • навигационный приемник электронный карта
  • Введение
  • 1. Теоретические основы построения навигационных систем
    • 1.1 Общие сведения о навигационных системах
    • 1.2 Сетевая радионавигационная спутниковая система GPS
    • 1.3 Навигационная система Глонасс
    • 1.4 Алгоритм определения координат
    • 1.5 Электронные карты
    • 1.6 Геодезическая основа отсчета координат ЭК
  • 2. Анализ электронных средств отображения картографической информации
    • 2.1 Общие принципы работы навигационных приёмников
    • 2.2 Стандартные гражданские навигационные приемники
    • 2.3 Военные навигаторы
    • 2.4 Портативные туристические GPS-навигаторы
    • 2.5 Системы на основе внешнего приемника и ноутбука или нетбука
  • 2.6 Навигационные системы на основе коммуникаторов и смартфонов
  • Заключение
  • Глоссарий
  • Список используемых источников
  • Приложения
  • Введение
  • Определение местоположения на Земле было одной из важнейших задач человечества. Древние мореплаватели ориентировались по звёздам, указывающим направление движения. С появлением компаса задача существенно упростилась. Изобретение морского компаса дало мореплавателям надежное средство для ориентировки в море в любой момент дня и ночи и независимо от погоды и было необходимым шагом к эпохе великих географических открытий. Одновременно шло развитие картографии. Развитие цивилизации в XX веке потребовало более точных методов определения координат. Решение данной задачи стало результатом технического прогресса второй половины XX века.
  • В 1957 году в СССР группа учёных под руководством В.А. Котельникова экспериментально подтвердила возможность определения параметров движения искусственного спутника Земли по результатам измерений доплеровского сдвига частоты сигнала, излучаемого этим спутником. Была установлена возможность нахождения координат приёмника по измеренному доплеровскому сдвигу сигнала, излучаемого с ИСЗ, если параметры движения и координаты этого спутника известны. Положение ИСЗ в каждый момент можно вычислить на основании информации, заложенной в сигнале спутника. Пользователь, измеряя частоту пришедшего к нему сигнала, сравнивает её с эталонной и вычисляет доплеровский сдвиг частоты, обусловленный движением спутника, а затем и координаты потребителя.
  • В конце 50-х годов XX века в Советском Союзе проводились исследования ставшие основой для построения первой отечественной низкоорбитальной навигационной спутниковой системы "Цикада". В 1963 году начались работы по построению этой системы. В 1967 году на орбиту был выведен первый отечественный навигационный спутник "Космос-192".
  • Одновременно подобные работы начали проводиться и в США. В результате в 1964 году в США создаётся доплеровская спутниковая радионавигационная система первого поколения "Transit" предназначенная для навигационного обеспечение пуска с подводных лодок баллистических ракет. Для коммерческого использования система становится доступной в 1967 г.
  • Основной недостаток данных систем был связан с их низкоорбитальностью, и соответственно малым временем доступности системы. Поэтому в 1967 году ВМС США была разработана программа по созданию навигационной системы нового поколения. Аналогичную программу вили и ВВС США. В 1973 году две программы были объединены в одну. Результатом этих работ стало создание навигационнй системы "Navstar-GPS" или просто GPS которая была полностью развернута к 1996 году.

В Советском Союзе работы над аналогичной системой начались в 1976 году. В декабре 1976 года правительство СССР приняло указ о разработке второго поколения навигационных спутниковых систем - ГЛОНАСС, хотя это было лишь формальной датой появления так как первые технические предложения были выведены уже в начале 1976 года.

Эскизное проектирование длилось до 1979 года, после чего начались первые испытания. В 1982 году был запущен первый спутник системы "Космос-1413".

Развал Союза сильно затормозил этот процесс - прекратилось финансирование.

Испытания закончились в 1991 году, после чего, в 1993-м, по указу главы государства система была введена в эксплуатацию. Однако реально действующей система стала лишь с 2008 года, когда число действующих спутников ГЛОНАСС составило двадцать единиц. В это время Правительством увеличило финансирование программы, после чего на орбиту были запущены еще 9 спутников. Дальнейшие разработки направились на улучшение параметров, увеличение точности сигналов и модернизацию потребительских устройств. В 2011 году был запущен спутник "ГЛОНАСС-К" - третье поколение системы. В настоящее время это полноценно функционирующая навигационная система. Наряду с орбитальным сегментом важнейшими компонентами системы являются навигационные приемники и соответствующее программное, в том числе картографическое обеспечение.

Актуальность темы определяется значением, которое имеют навигационные системы в современном мире.

Объектом исследования в квалификационной работе являются навигационные системы.

Предметом исследования является электронные средства отображения картографической информации.

Цель данной работы - изучение общих принципов функционирования навигационных систем и навигационных приемников, вопросы организации программного обеспечения приемников, их эксплуатации и перспективы развития и модернизации.

Для решения этой цели были поставлены следующие задачи:

· изучить принцип работы навигационных систем NAVSTAR и ГЛОНАСС;

· проанализировать основные принципы работы навигационных приемников;

· рассмотреть структуру программного обеспечения приемников;

· изучение структуры программного обеспечения пользователя;

· оценить перспективы развития навигационных систем.

· сделать рекомендации об использовании различных средств работы с электронными картами.

В теоретической части работы рассматриваются принципы функционирования навигационных систем GPS NAVSTAR и ГЛОНАСС, анализируются основные типы навигационных карт и решаемые на них задачи, рассматривается структура программного обеспечения.

В практической части данной работы проводится анализ принципов функционирования различных электронных средств отображения картографической информации.

1. Теоретические основы построения навигационных систем

1.1 Общие сведения о навигационных системах

В 1958-1959 гг. в Ленинградской военно-воздушной инженерной академии им. А.Ф. Можайского, Институте теоретической астрономии АН СССР, Институте электромеханики АН СССР, двух морских НИИ и Горьковском НИРФИ проводились исследования по теме "Спутник", ставшие впоследствии основой для построения первой отечественной низкоорбитальной навигационной спутниковой системы "Цикада". В 1963 году начались работы по построению этой системы. В 1967 году на орбиту был выведен первый отечественный навигационный спутник "Космос-192".

Параллельно с этим, после успешного запуска СССР первого искусственного спутника земли, в США в Лаборатории прикладной физики Университета Джона Гопкинса проводились работы по вычислением параметров движения спутника относительно наземного пункта наблюдения. На основе этих исследований в 1964 году в США создаётся доплеровская спутниковая радионавигационная система первого поколения "Transit". Основное её назначение - навигационное обеспечение пуска с подводных лодок баллистических ракет Поларис. Для коммерческого использования система становится доступной в 1967 г. Так же, как и в системе "Цикада", в системе "Transit" координаты источника вычисляются по доплеровскому сдвигу частоты сигнала одного из 7 видимых спутников.

В первых системах невозможен непрерывный режим работы. Ввиду того, что системы низкоорбитны, время, в течение которого спутник находится в поле видимости потребителя, не превышает одного часа.

Одной из основных проблем, возникающих при создании спутниковых систем, обеспечивающих навигационные определения по нескольким спутникам, является взаимная синхронизация сигналов спутников с необходимой точностью. Для этих целей в 1967 году ВМС США была разработана программа, по которой был осуществлён запуск спутника TIMATION-I, а в 1969 году - спутника TIMATION-II. В то же время, ВВС США параллельно вели свою программу по использовании широкополосных сигналов, модулированных псевдошумовым кодом (PRN). Корреляционные свойства такого кода позволяют использовать одну частоту сигнала для всех спутников, с кодовым разделением сигналов от различных. В 1973 году в США была инициирована программа создания навигационной системы DNSS, позже переименованная в Navstar-GPS, а, затем, в GPS. Первый тестовый спутник выведен на орбиту 14 июля 1974 г. США, а последний из всех 24 спутников, необходимых для полного покрытия земной поверхности, был выведен на орбиту в 1993 г., таким образом, GPS встала на вооружение. Стало возможным использовать GPS для точного наведения ракет на неподвижные, а затем и на подвижные объекты в воздухе и на земле.

Первоначально глобальная система позиционирования GPS разрабатывалась как чисто военный проект. В 1983 году президент США Рональд Рейган разрешил частичное использование системы навигации для гражданских целей [2]. Во избежание применения системы для военных нужд точность была уменьшена специальным алгоритмом.

В СССР лётные испытания высокоорбитальной спутниковой навигационной системы Глонасс начались в 1982 году запуском спутника "Космос-1413". Основным разработчиком и создателем по системе в целом и по космическому сегменту является НПО прикладной механики (г. Красноярск), а по навигационным космическим аппаратам - ПО "Полёт" (г. Омск). Головным разработчиком радиотехнических комплексов является РНИИКП; ответственным за создание временного комплекса, системы синхронизации и навигационной аппаратуры потребителей определён Российский институт радионавигации и времени.

Системы NAVSTAR и ГЛОНАСС концептуально аналогичны и отличаются некоторыми аспектами технической реализации. В их основе - орбитальные группировки спутников на круговых орбитах. Высота орбит такова, что спутники совершают примерно два оборота вокруг Земли в сутки. Номинально в каждый момент системы имеют 24 работающих спутника и 3 резервных.

Спутники распределены по нескольким орбитальным плоскостям - в ГЛОНАСС их 3, в NAVSTAR - 6. На каждой орбите, таким образом, находится 8 и 4 спутника, соответственно.

Для NAVSTAR плоскости орбит разнесены по прямому восхождению на 60 градусов. Наклон плоскости орбиты к плоскости экватора составляет 54°.

У NAVSTAR - высота орбиты 20150 км и период обращения 11 часов 57 минут, у ГЛОНАСС - 19100 км и 11 часов 16 минут соответственно (т.е. периоды обращения равны почти половине звездных суток).

На борту каждого спутника имеется 4 стандарта частоты (два цезиевых и два рубидиевых - для целей резервирования, их погрешность составляет 1 секунду за 160 000 лет), солнечные батареи, двигатели корректировки орбит, приемо-передающая аппаратура, компьютер.

1.2 Сетевая радионавигационная спутниковая система GPS

Американская система GPS предназначена для высокоточного определения координат потребителя, составляющих вектора скорости, и привязка к системной шкале времени. Она разработана для Министерства Обороны США и находится под его управлением. GPS состоит из космического сегмента, наземного командно-измерительного комплекса и сегмента потребителей.

Согласно интерфейсному контрольному документу, основными разработчиками системы являются [2]:

· по космическому сегменту - Rockwell International Space Division, Martin Marietta Astro Space Division;

· по сегменту управления - IBM, Federal System Company;

· по сегменту потребителей - Rockwell International, Collins Avio-nics & Communication Division.

Космический сегмент GPS на 1 мая 2012 года состоял из 31 навигационных космических аппаратов. Все они находятся на круговых орбитах с периодом обращения вокруг Земли, равным 12 часам. Высота орбиты каждого спутника равна ~ 20000 км. Функционирование на такой большой высоте позволяет сигналам покрывать большую территорию. Спутники расположены на орбитах так, что GPS навигатор на земле всегда может получать сигналы по меньшей мере от четырех из них в любое заданное время. НКА системы GPS проходили ряд усовершенствований, которые сказывались на их характеристиках в целом. В табл. 1 Приложения А приведены краткие характеристики космических аппаратов, используемых в системе.

Спутники вращаются со скоростью 7 000 миль в час, что позволяет им обходить вокруг земли каждые 12 часов. Они питаются солнечной энергией и рассчитаны приблизительно на 10 лет работы. На случай пропадания солнечной энергии у спутников есть резервные батареи. Спутники оснащены малыми реактивными двигателями, которые корректируют траекторию вращения.

Каждый спутник передает сигналы малой мощности на нескольких частотах (выделенные L1, L2 и др.). Гражданские GPS навигаторы используют частоту L1. Сигналы проходят "линию видимости", что значит, что они пройдут через облака, стекло и пластик, но не пройдут сквозь большинство твердых объектов, таких как здания и горы.

L1 содержит два "псевдослучайных" сигнала, Защищенный (Р) код и код гражданского доступа (С/А). Каждый спутник передает уникальный код, позволяющий GPS приемнику идентифицировать сигналы. Р-код также называют "Р(Y)" или "Y" код.

Основной целью этих закодированных сигналов является возможность вычисления времени прохождения (или времени прибытия сигнала) от спутника до GPS навигатора на земле. Время прохождения, умноженное на скорость света, равно дальности спутника. Навигационное сообщение содержит данные об орбите спутника, системном времени, общем состоянии системы, а также модель задержки сигналов в ионосфере. Спутниковые сигналы рассчитываются с использованием сверхточных атомных часов. Структура навигационных радиосигналов системы GPS показана на рисунке.

Рисунок 1 - Структура навигационных радиосигналов системы GPS

В системе GPS используется кодовое разделение сигналов (СDMA), поэтому все спутники излучают сигналы с одинаковой частотой. Каждый спутник системы GPS излучает два фазоманипулированных сигнала. Частота первого сигнала L1 составляет 1575,42 МГц, а второго - L2 - 1227,6 МГц. Сигнал несущей частоты L1 модулируется двумя двоичными последовательностями, каждая из которых образована путём суммирования по модулю 2 дальномерного кода и передаваемых системных и навигационных данных, формируемых со скоростью 50 бит/с. На частоте L1 передаются две квадратурные компоненты, бифазно манипулированные двоичными последовательностями. Первая последовательность является суммой по модулю 2 точного дальномерного кода Р или засекреченного кода Y и навигационных данных. Вторая последовательность также является суммой по модулю 2 грубого С/A (открытого) кода и той же последовательности навигационных данных.

Каждый спутник использует свойственные только ему дальномерные коды С/A и Р(Y), что и позволяет разделять спутниковые сигналы. В процессе формирования точного дальномерного Р(Y) кода одновременно формируются метки времени спутникового сигнала. Структурное деление навигационной информации спутников системы GPS осуществляется на суперкадры, кадры, подкадры и слова. Суперкадр образуется из 25 кадров и занимает 750 с (12,5 мин). Один кадр передаётся в течение 30 с и имеет размер 1500 бит. Кадр разделён на 5 подкадров по 300 бит и передаётся в течение интервала 6 с. Начало каждого подкадра обозначает метку времени, соответствующую началу/окончанию очередного 6-с интервала системного времени GPS. Подкадр состоит из 10 30-бит слов. В каждом слове 6 младших разрядов являются проверочными битами.

В 1-, 2- и 3-м подкадрах передаются данные о параметрах коррекции часов и данные эфемерид КА, с которым установлена связь. Содержание и структура этих подкадров остаются неизменными на всех страницах суперкадра. В 4- и 5-м подкадрах содержится информация о конфигурации и состоянии всех КА системы, альманахи КА, специальные сообщения, параметры, описывающие связь времени GPS с UTC, и прочее.

1.3 Навигационная система Глонасс

Система ГЛОНАСС предназначена для глобальной оперативной навигации приземных подвижных объектов. СРНСС разработана по заказу Министерства Обороны. По своей структуре ГЛОНАСС так же, как и GPS, считается системой двойного действия, то есть может использоваться как в военных, так и в гражданских целях. Разработкой аппаратов занимается ОАО "Информационные спутниковые системы" имени академика М.Ф. Решетнёва". Система также включает в себя три сегмента:

· космический сегмент, в который входит орбитальная группировка искусственных спутников Земли;

· сегмент управления, наземный комплекс управления (НКУ) орбитальной группировкой космических аппаратов;

· аппаратура пользователей системы.

В системе Глонасс в качестве радионавигационной опорной станции используются навигационные космические аппараты (НКА), вращающиеся по круговой геостационарной орбите на высоте ~ 19100 км. Период обращения спутника вокруг Земли равен, в среднем, 11 часов 45 минут.

В таблице Приложения Б приведены сведения о космических аппаратах, используемых в системе. В Приложении В приведены сведения о космических аппаратах, используемых в системе. В состав бортовой аппаратуры входят: бортовой навигационный передатчик, хронизатор (часы), бортовой управляющий комплекс, система ориентации и стабилизации и так далее.

Сегмент наземного комплекса управления системы ГЛОНАСС выполняет следующие функции:

· эфемеридное и частотно-временное обеспечение;

· мониторинг радионавигационного поля;

· радиотелеметрический мониторинг НКА;

· командное и программное радиоуправление НКА.

Для синхронизации шкал времени различных спутников с необходимой точностью на борту НКА используются цезиевые стандарты частоты с относительной нестабильностью порядка 10-13. На наземном комплексе управления используется водородный стандарт с относительной нестабильностью 1014. Кроме того, в состав НКУ входят средства коррекции шкал времени спутников относительно эталонной шкалы с погрешность 3-5 нс.

Наземный сегмент обеспечивает эфемеридное обеспечение спутников. Это означает, что на земле определяются параметры движения спутников и прогнозируются значения этих параметров на заранее определённый промежуток времени. Параметры и их прогноз закладываются в навигационное сообщение, передаваемое спутником наряду с передачей навигационного сигнала. Сюда же входят частотно-временные поправки бортовой шкалы времени спутника относительно системного времени. Измерение и прогноз параметров движения НКА производятся в Баллистическом центре системы по результатам траекторных измерений дальности до спутника и его радиальной скорости.

В системе Глонасс используется частотное разделение сигналов (FDMA), излучаемых каждым спутником - двух фазоманипулированных сигналов. Частота первого сигнала лежит в диапазоне L1 ~ 1600 МГц, а частота второго - в диапазоне L2 ~ 1250 МГц. Для каждого спутника рабочие частоты сигналов в диапазоне L1 и L2 когерентны и формируются от одного эталона частоты. Одна из несущих подвергается фазовой манипуляции на 180є. Модулирующий сигнал получают сложением по модулю 2 трёх двоичных сигналов (рис. 2):

· грубого дальномерного кода, передаваемого со скоростью 511 Кбит/с;

· последовательности навигационных данных, передаваемых со скоростью 50 бит/с;

· меандрового колебания, передаваемого со скоростью 100 бит/с.

Рисунок 2 - Структура сигнала ГЛОНАСС

Сигнал в диапазоне L1 (аналогичен C/A-коду в GPS) доступен для всех потребителей в зоне видимости КА. Сигнал в диапазоне L2 предназначен для военных нужд, и его структура не раскрывается.

Навигационное сообщение формируется в виде непрерывно следующих строк, каждая длительностью 2 с. В первой части строки (интервал 1,7 с) передаются навигационные данные, а во второй (0,3 с) - Метка Времени. Она представляет собой укороченную псевдослучайную последовательность, состоящую из 30 символов с тактовой частотой 100 бит/с.

Навигационные сообщения спутников системы Глонасс необходимы потребителям для навигационных определений и планирования сеансов связи со спутниками. По своему содержанию навигационные сообщения делятся на оперативную и неоперативную информацию. Оперативная информация относится к спутнику, из сигнала которого она была получена. К оперативной информации относят оцифровку меток времени, сдвиг шкалы времени спутника относительно шкалы системы, относительное отличие несущей частоты спутника от номинального значения, эфемеридная информация.

Неоперативная информация содержит альманах, включающий в себя данные о состоянии всех спутников системы,сдвиг шкалы времени спутника относительно шкалы системы, параметры орбит всех спутников системы, поправку к шкале времени системы Глонасс.

Выбор оптимального "созвездия" КА и прогноза доплеровского сдвига несущей частоты обеспечивается за счёт анализа альманаха системы. Навигационные сообщения спутников системы Глонасс структурированы в виде суперкадров длительностью 2,5 мин. Суперкадр состоит из пяти кадров длительностью 30 с. Каждый кадр содержит 15 строк длительностью 2 с. Из 2 с длительности строки последние 0,3 с занимает метка времени, остальная часть строки содержит символы цифровой информации, передаваемых с частотой 50 Гц.

1.4 Алгоритм определения координат

Для определения координат потребителя необходимо знать координаты спутников (не менее 4) и дальность от потребителя до каждого видимого спутника. Для того, чтобы потребитель мог определить координаты спутников, излучаемые ими навигационные сигналы моделируются сообщениями о параметрах их движения. В аппаратуре потребителя происходит выделение этих сообщений и определение координат спутников на нужный момент времени.

Координаты и составляющие вектора скорости меняются очень быстро, поэтому сообщения о параметрах движения спутников содержат сведения не об их координатах и составляющих вектора скорости, а информацию о параметрах некоторой модели, аппроксимирующей траекторию движения КА на достаточно большом интервале времени (около 30 минут). Параметры аппроксимирующей модели меняются достаточно медленно, и их можно считать постоянными на интервале аппроксимации.

Параметры аппроксимирующей модели входят в состав навигационных сообщений спутников. В системе GPS используется Кеплеровская модель движения с оскулирующими элементами. В этом случае траектория полёта КА разбивается на участки аппроксимации длительностью в один час. В центре каждого участка задаётся узловой момент времени, значение которого сообщается потребителю навигационной информации. Помимо этого, потребителю сообщают параметры модели оскулирующих элементов на узловой момент времени, а также параметры функций, аппроксимирующих изменения параметров модели оскулирующих элементов во времени как предшествующем узловому элементу, так и следующем за ним.

В аппаратуре потребителя выделяется интервал времени между моментом времени, на который нужно определить положение спутника, и узловым моментом. Затем с помощью аппроксимирующих функций и их параметров, выделенных из навигационного сообщения, вычисляются значения параметров модели оскулирующих элементов на нужный момент времени. На последнем этапе с помощью обычных формул кеплеровской модели определяют координаты и составляющие вектора скорости спутника.

В системе Глонасс для определения точного положения спутника используются дифференциальные модели движения. В этих моделях координаты и составляющие вектора скорости спутника определяются численным интегрированием дифференциальных уравнений движения КА, учитывающих конечное число сил, действующих на КА. Начальные условия интегрирования задаются на узловой момент времени, располагающийся посередине интервала аппроксимации. Для определения координат потребителя необходимо знать координаты спутников и дальность от потребителя до каждого видимого спутника, которая определяется в навигационном приёмнике [4] с точностью около 1 м. Для удобства рассмотрим простейший "плоский" случай, представленный на рис. 3.

Рисунок 3 - Определение координат потребителя

Каждый спутник можно представить в виде точечного излучателя. В этом случае фронт электромагнитной волны будет сферическим. Точкой пересечения двух сфер будет та, в которой находится потребитель. Высота орбит спутников составляет порядок 20000 км. Следовательно, вторую точку пересечения окружностей можно отбросить из-за априорных сведений, так как она находится далеко в космосе. Спутниковые навигационные системы позволяют потребителю получить координаты с точностью порядка 10-15 м. Однако для многих задач, особенно для навигации в городах, требуется большая точность. Один из основных методов повышения точности определения местонахождения объекта основан на применении известного в радионавигации принципа дифференциальных навигационных измерений.

Дифференциальный режим DGPS (Differential GPS) позволяет установить координаты с точностью до 3 м в динамической навигационной обстановке и до 1 м - в стационарных условиях. Дифференциальный режим реализуется с помощью контрольного GPS-приёмника, называемого опорной станцией. Она располагается в пункте с известными координатами, в том же районе, что и основной GPS-приёмник. Сравнивая известные координаты (полученные в результате прецизионной геодезической съёмки) с измеренными, опорная станция вычисляет поправки, которые передаются потребителям по радиоканалу в заранее оговоренном формате.

Аппаратура потребителя принимает от опорной станции дифференциальные поправки и учитывает их при определении местонахождения потребителя. Результаты, полученные с помощью дифференциального метода, в значительной степени зависят от расстояния между объектом и опорной станцией. Применение этого метода наиболее эффективно, когда преобладающими являются систематические ошибки, обусловленные внешними (по отношению к приёмнику) причинами. По экспериментальным данным, опорную станцию рекомендуется располагать не далее 500 км от объекта. В настоящее время существуют множество широкозонных, региональных и локальных дифференциальных систем.

1.5 Электронные карты

Важной частью навигационных систем являются электронные карты. В общем случае под электронной картой (ЭК) понимается изображение определенного района Земли в условном виде на экране дисплея или набор данных для построения этого изображения. При рассмотрении вопросов использования ЭК применяется их классификация по различным признакам.

В зависимости от полноты информации, представляемой на карте, ЭК разделяют на полномерные и упрощенные (стилизованные). По нагрузке полномерные навигационные ЭК равноценны официальным бумажным навигационным картам и содержат всю картографическую информацию, необходимую для безопасного и эффективного судовождения.

Нагрузка упрощенных электронных карт недостаточна для целей безопасного плавания. Для использования полномерных карт требуются обладающие широкими возможностями средства хранения и отображения информации, которыми ряд автоматизированных навигационных систем не обладает. В таких системах могут использоваться ЭК в упрощенном виде, который позволяет реализовывать имеемая аппаратура. Схематическое изображение на экране дисплея местности в определенной проекции, не эквивалентное бумажной навигационной карте обычно называется упрощенной (стилизованной) электронной картой.

В зависимости от метода цифрового представления информации карты ЭК делят на растровые и векторные.

В растровых картах используется метод цифрового представления изображения карты в виде матрицы точек (пикселей). При таком представлении карты сведений об отдельных картографических объектах в памяти нет. Исходной для получения данных растровых карт служит информация официальных бумажных карт. Растровые карты получаются сканированием основы и раздельно цветного изображения бумажных карт. За основу растровых ЭК приняты печатные платы для обычных бумажных карт. Снятая с основы карта является копией бумажной. Сканерная технология производства растровых карт обеспечила в начале 90-х годов быстрое производство мировой коллекции этих карт.

Растровое изображение не является картой, в том понимании, которое принято в геодезии. Изображение формируется из отдельных пикселей, упорядоченных в определенной последовательности. Изображение выглядит как картинка, но при близком рассмотрении, видно что, оно представляет из себя набор точек разных цветов. По сути, представление растрового изображения на экране компьютера является аналогом формы в которой растр сохраняется в файл на диске компьютера. Одной из форм этого типа является битовый образ (битмап) представляемый файлом с расширением .bmp. Файлы .bmp быстро отображаются на экране, но занимают больше количество памяти на диске.

Картографическое изображение включает большие участки одного фона, которые можно легко "ужать", уменьшив конечный размер файлов. Одним из наиболее популярных методов сжатия графических файлов является .gif формат. Данный формат наиболее эффективно сжимает файлы, особенно карты. Однако .gif формат запатентован и многие разработчики графических программ, не желающие вносить лицензионные платежи, используют другие, менее эффективные, методы сжатия. Одним из таких методов является .jpg. Этот формат хорошо подходит для фотографий людей и пейзажей, но менее удачен для карт, так как в процессе компрессии немного теряется четкость линий. Для решения этой проблемы, был разработан .png формат. Существуют еще методы .tif и .tiff. В принципе, метод .tiff не намного эффективнее .bmp формата, но разработаны версии сжатого .tiff, который позволяет значительно уменьшить размер файлов. Стоит учесть, что сжатый файл должен быть декодирован перед отображением на экране компьютера, и чтобы этот процесс не "нервировал" пользователя, требуется соответствующая мощность процессора. Другим известным форматом является .drg. По сути, этот тот же самый .tiff формат, но дополненный некоторой калибровочной информацией.

Растровые изображения могут использоваться как карты. Они могут содержать схематические или фотографические изображения карт, планы местности. Пользователь самостоятельно может нарисовать карту в графическом редакторе. Но во всех этих случаях, компьютер рассматривает эти картографические изображения, как обычные картинки. Дороги, дома, леса, водные массивы являются для компьютера обычным набором пискелов и ничем больше. И только пользователь, может идентифицировать их как отдельные объекты, а все изображения как карту определенной местности. Все это является большим и самым главным ограничением при использовании растров в качестве карт

Изменение масштаба растровой карты подразумевает приближение или увеличение изображения без изменения информации. Увеличенное изображение представляет из себя приближенную картинку. Есть программы, которые при изменении масштаба, заменяют текущую карту другой картой, более или менее детальной. Такой метод требует подготовки набора карт одного региона в различных масштабах, соответственно, значительно увеличивается количество файлов и их общий размер памяти. При достижении границ карты, программа должна самостоятельно или с вручную, с помощью пользователя, переключаться на соседний лист. Можно объединить листы соседних регионов единое изображение и использовать для перемещения по карте полосы прокрутки, но работа с объектами на карте уже будет менее удобной

Программы для работы с растровыми картами обычно поставляются без карт. Если в инсталляционном комплекте и содержатся карты, то обычно это либо базовая карта мира, либо карты какой-нибудь, не относящейся к пользователю, местности. Под свои задачи, пользователь должен создавать или находить карты самостоятельно. Можно сканировать бумажные оригиналы карт, скачивать их из Интернета, покупать на дисках. Большинство программ поддерживает карты, представленные в различных графических форматах.

Для использования с GPS приемниками, одного изображения карты недостаточно, необходимо его калибровать. Это связано с тем, что по сути, плоская карта является проекцией изогнутой земной поверхности. "Изогнутость" тем больше, чем больше площадь территории охваченной на карте. Дополнительные сдвиги могут возникнуть в процессе сканирования, либо оригинал карты сдвинут на некоторый угол относительно севера.

Минимальную калибровку карты можно произвести с помощью двух точек расположенных на противоположных краях изображения. Предполагается что изображение карты линейно и не содержит искажений. Калибровка позволяет интерпретировать положение на карте выраженное в пикселях в значения широты и долготы. И соответственно, обратный процесс - геодезические GPS координаты переводятся в пиксельные размеры и отображаются на карте.

Из наиболее популярных навигационных программных продуктов, использующихся для работы с растровыми картами, стоит выделить OziExplorer.

В состав пакета входит OziExplorer - программный продукт используемый для работы с растровыми картами и поддерживающий обмен навигационными данными с GPS навигаторами производства Magellan, Garmin, Lowrance и Eagle. OziExplorer устанавливается и работает на персональном компьютере с операционными системами Windows.

Эта программа позволяет пользователю сохранять точки, маршруты и треки из GPS на ПК, накладывать их на карту, отмечать на карте новые точки, маршруты и треки, и переносить их в GPS. OziExplorer способен работать с любой растровой картой, в том числе, отсканированной пользователем. Такую карту необходимо привязать к реальным координатам по нескольким точкам. Основные функции программы:

· сканирование и калибровка карт и схем пользователя;

· использование карт в различных форматах (BSB, Maptech, USGS DRG);

· поддержка большинства GPS приёмников;

· Поддерживается обмен событиями с GPS навигаторами Lowrance/Eagle;

· размещение на карте комментариев и специальных значков;

· поддержка более 100 датумов;

· поддержка множества форматов сетки, включая UTM, BNG, IG, Swiss, Swedish, NZG и другие;

· поддержка множества картографических проекций;

· печать карт и списка точек.

Вторая программа пакета это OziExplorer CE. Она является навигационным программным обеспечением для мобильных систем использующих ОС Windows и Андроид. Карта в OziExplorer представляет собой графический файл с изображением карты, привязанный таким образом, что пикселю на карте соответствуют реальные географические координаты. При калибровке карты в OziExplorer, создается map-файл, содержащий информацию о калибровке, проекциях карты и ссылку на графический файл.

OziExplorer CE по полученным от него данным попытается открыть ту карту, которая соответствует текущему положению пользователя. Если же на устройстве установлено несколько карт, удовлетворяющих текущим координатам, программа откроет самую детальную. На экран также выводятся данные о скорости, азимуте и высоте над уровнем моря. OziExplorer CE использует практически любые карты, которые созданы настольной версией OziExplorer. Кроме того программа работает практически с любым GPS-приемником, выдающим данные в формате NMEA. Она осуществляет автоматический переход с одной карты на другую, позволяет нарисовать желаемый маршрут прямо на экране Pocket PC стилусом, поддерживает голосовую и визуальную навигацию, пишет лог всех точек трека в файл, имеет экран положения GPS-спутников.

В сети Интернет есть большое количество ресурсов, где энтузиасты выкладывают уже отсканированные и привязанные карты для этой программы. Карты покрываются фактически все территорию России и представлены в различных масштабах.

В векторных ЭК применяется метод цифрового представления элементов карты с помощью точек, линий, контуров, заданных своими координатами и соответствующим кодом. При таком методе представления информация карты хранится в памяти в виде последовательности записей, характеризующих каждый имеемый на карте картографический объект. Картографическим объектом (КО) называется реальный объект или явление, изображаемое на карте в условном виде.

Все объекты векторной электронной карты обычно распределяются по определенным тематическим уровням, называемых слоями карты. Такими слоями, например, могут быть: навигационные средства, глубины, качество данных, характеристики и т.д. Разделение нагрузки карты на слои позволяет системе, отображающей ЭК, управлять видимостью этих слоев.

Количество информационных слоев векторной ЭК может быть различным. Требуется их иметь, по крайней мере, три: базовая информация, дополнение базовой информации до стандартной, вся другая информация. Выделение таких слоев позволяет определить три вида нагрузки карты: базовую, стандартную и полную.

Векторные карты сами по себе не являются изображением и не хранят картинки местности. Фактически, при вызове векторной карты, она генерируется "на лету" использую информацию и базы данных. Векторная карта - это база данных, в которой хранится информация о точках, линиях соединяющих эти точки и полигонах, которые являются замкнутой последовательностью линий. Каждый объект имеет дополнительные атрибуты характеризующие свойство, цвет, подписи. Объект, типа "Озеро" является замкнутым полигоном, с заполнением синего (или другого похожего) цвета. Этот объект имеет название, тип, подтип и другие дополнительные данные, которые позволяют не только отображать его на карте, но и использовать в различных алгоритмах поиска, вычисления и сортировки.

После того, как GPS координаты приемника вычислены, его местоположение отображается на карте относительно положение других географических объектов из базы данные векторной карты. При этом на экран приемника выводятся только объекты, расположенные в непосредственной близости от текущего местоположения, с учетом выбранного масштаба. Перемещение приемника, сопровождается сменой "картинки", объекты, которые выходят за границы, скрываются, и отображаются новые участки карты. Заметим, что все это происходит "на лету". Навигационная программа, использующая векторные карты, анализирует текущие координаты, выбранный масштаб, настройки приемника, и создает новое отображение. При этом, в зависимости от масштаба, один и тот же объект может быть представлен в разном виде - схематически, подробно, либо вообще не отображаться. Это сделано для ускорения работы с картой. Каждое перемещение требует новой перерисовки карты и всех ее видимых объектов. Чем больше объектов и чем детальнее они представлены, тем больше времени займет этот процесс. Соответственно, на малом масштабе нет смысла подробно вырисовывать каждый поворот дороги или изгиб реки, достаточно представить их в общем виде. На маленьких масштабах города, не имеет смысла отображать каждый дом, потому что все они сольются в одно единое черное пятно. При увеличении масштаба карты, детальность карты, а именно, составляющих ее объектов, должны увеличиваться. И тот же самый поворот дороги, которым мы пренебрегли на удаленном виде, приобретет значимый смысл и будет важен для навигации и ориентирования. Отображать или не отображать объекты на различных масштабах, решает навигационная программа используя при этом атрибуты объектов и настройки вида, устанавливаемые пользователем.

Подписи к объектам, так же хранятся в базе данных векторной карты и могут динамически подгружаться для отображения на карте. Некоторые программы позволяют изменять настройки связанные с представлением надписей на карте. Можно изменять, шрифт, цвет и расположение надписей относительно объекта. В зависимости от текущего масштаба, надписи могут быть скрыты или отображаться выборочно. По мере приближения карты, надписи проявляются, стараясь не перекрывать при этом друг друга.

В отличие от растровых изображения, имеющих единый стандартизованный формат (.jpg, .bmp, .gif и т.п), векторные карты распространяются в различных форматах. Некоторые могут быть представлены в единых картографических форматах и использоваться с большинством популярных программ, другие только в собственных, способных работать только с одной фирменной программой. "Закрытость" формата обусловлена несколькими причинам. Во-первых, производители навигационного оборудования, вместе с картами вынуждают покупать пользователей приемники и программы только своей фирмы. Во-вторых, картографические данные являются интеллектуальной собственностью, в производство которой были вложены действительно большие деньги, и компании не заинтересованы в распространении этих данных и использовании их в других навигационных продуктах.

Одной из наиболее используемых программ для работы с векторными картами является Навител Навигатор. Это мультиплатформенная и мультиязычная навигация для Android, Symbian, Windows Mobile, iPhone, iPad, Bada, Java, Windows CE. Она имеет собственные on-line сервисы "Навител.Пробки", "Навител.События", "Динамические POI", "Навител.SMS", "Навител.Погода". Существует большое количество актуальных карт России, Европы, Азии и Латинской Америки. При этом Навител предлагают пользователям интерфейсную оболочку для работы с картами, которые можно сгенерировать самостоятельно с использованием популярного картографического редактора GPSMapEdit. На рисунке 4 показан фрагмент карты Навител центральной части Воронежа.

Рисунок 4 - Карта Навител центральной части Воронежа.

Имеются и другие программы для работы с векторными картами. Это "iGo", "TomTom" "Destinator", "Автоспутник" и другие. Они используют картографическую базу известных поставщиков "TeleAtlas" и "NavTech".

1.6 Геодезическая основа отсчета координат ЭК

Объект на карте характеризуется горизонтальными координатами (широта, долгота) и вертикальной координатой (высота или глубина). В основе отсчета горизонтальных координат лежит та или иная геодезическая система, называемая также горизонтальным геодезическим вотумом. Основой для отсчета вертикальных координат служит уровень моря, принимаемый за ноль глубин. Этот уровень называют вертикальным геодезическим датумом либо приливным уровнем.

Горизонтальный геодезический датум включает в себя геодезические координаты исходного пункта опорной геодезической сети, геодезический азимут направления на один из смежных пунктов, определенные астрономическим путем, и высоту геоида в этом пункте над поверхностью принятого референц-эллипсоида. Референц-эллипсоидом называют Земной эллипсоид определенных размеров, на который проектируют все пункты опорной геодезической сети и к которой относят топографические и гидрографические съемки и составляемые по ним карты земной поверхности.

Система координат, полученная в результате уравнивания опорной геодезической сети на референц-эллипсоиде, и представляет собой ту или иную геодезическую систему координат либо горизонтальный геодезический датум. Исходными пунктами геодезических датумов часто являются определенные точки астрономических обсерваторий, геодезические координаты которых широту и долготу определяют путем астрономических наблюдений, освобожденных от влияния уклонения отвеса.

Различают локальные, региональные и всемирные геодезические системы координат. Локальные датумы являются геодезическими системами небольших участков земной поверхности. Региональные геодезические системы относятся к обширным районам Земли. В качестве примеров таких систем координат можно назвать: Советскую 1942 года (Pulkovo 1942), Европейский датум 1950 года (ED50), Британскую систему 1936 г., Токийский датум, Новый североамериканский датум 1983 г, (NAD83-- New North American Datum of 1983). Следует отметить, что если горизонтальный датум относится к территории государства, то он называется национальным. Всемирный датум - это геодезическая система координат для всего земного шара. Примерами всемирных датумов являются американские системы WGS72, WGS84 и российская система П390 (SGS90 - Soviet Geocentric Coordinate System 1990).

Создание геодезических систем координат обширных районов земной поверхности зависит от возможностей технических средств. Когда эти средства были только оптическими, опорная геодезическая сеть могла включать только пункты, три из которых в любом месте находятся в зоне прямой видимости. Появление космической техники для точного определения положения на поверхности Земли привело к возможности создания всемирной геодезической системы.

Полученные до 1930 года горизонтальные геодезические датумы были локальными. С 1930 и до 1950 года в разных странах были проведены геодезические работы по созданию региональных датумов. Начиная с пятидесятых годов, региональные геодезические системы стали не удовлетворять целям применения появившегося вооружения, которое требовало геодезическую систему отсчета мирового масштаба. Появление навигационной спутниковой системы "Транзит" позволило в I960 г. Министерству Обороны США создать путем объединения на основе спутниковых наблюдений различных региональных геодезических сетей Мировую геодезическую систему (Word Geodetic System of 1960 - WGS60). Эта система уточнялась в 1966, 1972, 1984 году. В настоящее время используется система координат WGS84, которая получила широкое распространение во всем мире. Она совпадает с NAD83. Большая а и малая b полуоси референц-эллипсоида WGS84 соответственно равны:

а=6378137.00 м; б =6356752.31 м.

WGS84 принята за стандартную при расчетах положения определяющихся объектов в GPS. В WGS84 рекомендуется составлять официальные векторные ЭК. Расчеты кинематических параметров объектов в ГЛОНАСС ведутся в советской мировой геодезической системе П390.

Координаты одного и того же объекта, отнесенные к разным геодезическим датумам отличаются. Разность между положением объектов в разных геодезических системах может превышать несколько сот метров. Разность между положением объектов в системах WGS84 и П390 не превышает 15 метров, а между положением в WGS84 и WGS72 - 17 м. Разность между положением в системе WGS84 и в системе отсчета координат карты одного из районов в Эгейском море, основанной, на съемке 1862 г, доходит до 2-5 миль. Разделение земной поверхности на отдельные карты называется разграфкой или нарезкой. Для ЭК используют два вида разграфки: разграфку гидрографических служб, и равномерную разграфку, предложенную IHO. Характерной чертой разграфки гидрографических служб является перекрывание соседними картами определенной акватории на их стыке и зависимость шага разграфки от широты, что обеспечивает приблизительное выравнивание площадей поверхности карт на разных широтах. В равномерной разграфке в качестве разделяющих карты линий используются отрезки меридианов и параллелей с шагом, одинаковым по угловой величине для широты и долготы. Соседние карты при такой разграфке стыкуются между собой без перекрытия. Параметры разграфки приняты IHO для планов - 7.5'; карт гаваней - 15'; карт побережья - 1°; генеральных карт - 5°; карты мира - 10°. Карте каждого района по определенной системе присваивается номер (идентификатор), по которому однозначно определяется место этого района на карте мира.

2. Анализ электронных средств отображения картографической информации

2.1 Общие принципы работы навигационных приёмников

Потребительский сегмент систем GPS и ГЛОНАСС составляют приёмники сигналов спутников. Навигационный приёмник можно разделить на три функциональные части:

· радиочастотную часть;

· цифровой~коррелятор;

· процессор.

С выхода антенно-фидерного приемника сигнал поступает на радиочастотную часть (рисунок 5). Основная задача этой части заключается в усилении входного сигнала, фильтрации, преобразовании частоты и аналого-цифровом преобразовании. Помимо этого, с радиочастотной части приёмника поступает тактовая частота для цифровой части приёмника. С выхода радиочастотной части цифровые отсчёты входного сигнала поступают на вход цифрового коррелятора.

Рисунок 5 - Обобщённая структура приёмника

В корреляторе спектр сигнала переносится на "нулевую" частоту. Это производится путём перемножения входного сигнала коррелятора с опорным гармоническим колебанием в синфазном и квадратурном каналах. Далее результат перемножения проходит корреляционную обработку путём перемножения с опорным дальномерным кодом и накоплением на периоде дальномерного кода. В итоге получаем корреляционные интегралы I и Q. Отсчёты корреляционных интегралов поступают в процессор для дальнейшей обработки и замыкания петель ФАП (фазовая автоподстройка) и ССЗ (схема слежения за задержкой). Измерения параметров сигнала в приёмнике производятся не непосредственно по входному сигналу, а по его точной копии, формируемой системами ФАП и ССЗ. Корреляционные интегралы I и Q позволяют оценить степень коррелированности опорного и входного сигналов. Задача коррелятора, помимо формирования интегралов I и Q, - формировать опорный сигнал, согласно с управляющими воздействиями, поступающими с процессора. Кроме того, в некоторых приёмниках коррелятор формирует необходимые измерения опорных сигналов и передаёт их в процессор для дальнейшей обработки. В то же время, так как опорные сигналы в корреляторе формируются по управляющим кодам, поступающим с процессора, то необходимые измерения опорных сигналов можно производить непосредственно в процессоре.

Дальность при радиотехнических измерениях характеризуется временем распространения сигнала от объекта измерения до измерительного пункта. В навигационных системах GPS/ГЛОНАСС излучение сигналов синхронизировано со шкалой времени системы, точнее, со шкалой времени спутника, излучающего данный сигнал. В то же время, потребитель имеет информацию о расхождении шкалы времени спутника и системы. Цифровая информация, передаваемая со спутника, позволяет установить момент излучения некоторого фрагмента сигнала (метки времени) спутником в системном времени. Момент приёма этого фрагмента определяется по шкале времени приёмника. Шкала времени приёмника формируется с помощью кварцевых стандартов частоты, поэтому наблюдается постоянный "уход" шкалы времени приёмника относительно шкалы времени системы. Разность между моментом приёма фрагмента сигнала, отсчитанным по шкале времени приёмника, и моментом излучения его спутником, отсчитанным по шкале спутника, умноженная на скорость света, называется псевдодальностью [4].

Корреляционные интегралы, формируемые в корреляторе, позволяют отследить модуляцию сигнала спутника символами информации и вычислить метку времени во входном сигнале. Метки времени следуют с периодичностью 6 с для GPS и 2 с для ГЛОНАСС. В пределах одного деления этой шкалы периоды дальномерного кода образуют 1-мс шкалу. Одна миллисекунда разделена, в свою очередь, на отдельные элементы (chips, в терминологии GPS): для GPS - 1023, для ГЛОНАСС - 511. Таким образом, элементы дальномерного кода позволяют определить дальность до спутника с погрешностью ~300 м.

Для более точного определения необходимо знать фазу генератора дальномерного кода. Схемы построения опорных генераторов коррелятора позволяют определять его фазу с точностью до 0,01 периода, что составляет точность определения дальности 3 м.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.