Автоматизация работы теплового насоса

Проектирование системы управления тепловым насосом с дистанционным доступом: разработка технической структуры периферийного устройства (датчиков, модема, нейрочипа), структурной схемы контроллера и его программного обеспечения, рекомендации по отладке.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 30.06.2012
Размер файла 2,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

  • Введение
  • 1.Обзор существующих аналогов проектируемой системы
  • 1.1 Обзор существующих программно-аппаратных комплексов
  • 1.1.1 Комплексная система исследования работы тепловых насосов "Анализатор"
  • 1.1.2 Комплекс СТК РНК
  • 1.1.3 Устройство для диагностирования состояния теплового насоса
  • 1.1.3 Системы контроля “Cидосс”
  • 1.2 Обзор тепловых насосов
  • 2.Анализ технического задания
  • 3.Структурные решения
  • 3.1 Разработка функциональной схемы системы
  • 3.2 Разработка технической структуры периферийного устройства
  • 3.2.1 Датчики
  • 3.2.1.1Датчик измерения температуры
  • 3.2.1.2 Датчик для измерения давления
  • 3.2.1.3 Датчик пожарной сигнализации
  • 3.2.1.4 Датчик охранной сигнализации
  • 3.2.1.5 Датчик наличия напряжения в сети
  • 3.2.2 Линии связи
  • 3.2.3  Модем
  • 3.3 Выбор и расчет нейрочипа
  • 3.4 Выбор и обоснование модема и периферийных устройств
  • 3.5 Разработка приемопередатчика
  • 3.6 Структурные решения по программному обеспечению контроллера
  • 4.Разработка контроллера
  • 4.1 Разработка структурной схемы контроллера
  • 4.2Выбор элементной базы
  • 4.3Разработка принципиальной схемы контроллера
  • 4.4 Проектирование печатной платы контроллера
  • 4.4.1 Определение общих требований к печатной плате
  • 4.4.2 Методы изготовления печатных плат
  • 4.4.3 Описание конструкции печатной платы
  • 4.5 Расчет надежности контроллера
  • 4.5.1 Причины отказов средств вычислительной техники
  • 4.5.2 Классификация неисправностей
  • 4.5.3 Основные подходы к оценке надежности ЭВМ
  • 4.5.4 Статическое резервирование
  • 4.5.5 Динамическое резервирование
  • 4.5.6 Гибридное резервирование
  • 4.5.7 Расчет времени наработки на отказ
  • 5. Программное обеспечение контроллера
  • 5.1 Разработка алгоритмов обработки данных контроллером
  • 5.2 Разработка программного обеспечения
  • 5.3 Рекомендации по отладке
  • 6. Программное обеспечение пользователя
  • 6.1 Разработка алгоритмов обработки данных поступающих от контроллера
  • 6.2 Разработка программного обеспечения
  • 6.3 Рекомендации по отладке
  • Заключение
  • Список использованной литературы
  • Приложения

Введение

В настоящее время при автоматизации процессов в промышленности все более широкое распространение получают различные системы автоматического управления.

Автоматическое управление в технике, совокупность действий, направленных на поддержание или улучшение функционирования управляемого объекта без непосредственного участия человека в соответствии с заданной целью управления широко применяется во многих технических системах для выполнения операций, не осуществимых человеком в связи с необходимостью переработки большого количества информации в ограниченное время, для повышения качества и точности регулирования, освобождения человека от управления системами, функционирующими в условиях относительной недоступности или опасных для здоровья. Цель управления тем или иным образом связывается с изменением во времени регулируемой величины - выходной величины управляемого объекта. Для осуществления цели управления, с учетом особенностей управляемых объектов различной природы и специфики отдельных классов систем, организуется воздействие на управляющие органы объекта - управляющее воздействие. Оно предназначено также для компенсации эффекта внешних возмущающих воздействий, стремящихся нарушить требуемое поведение регулируемой величины. Управляющее воздействие вырабатывается устройством управления. Совокупность взаимодействующих управляющего устройства и управляемого объекта образует систему автоматического управления.

Дипломная работа состоит из введения ,шести глав ,заключения ,списка использованной литературы и приложений.

В первой главе рассматривается автоматика для управления тепловыми насосами.

Во второй главе проводится анализ технического задания и требований к устройству.

В третье главе производится обсонование структурных решений производится выбор устройств управления.

В четвертой главе производится проектирование контролера , выбирается печатная плата , реализуется ПО удаленного пользователя и ПО контролера.

В пятой главе разрабатывается ПО контролера.

В шестой главе разрабатывается ПО пользователя.

Таким образом, целью данной дипломной работы является проектирование системы управления тепловым насосом с дистанционным доступом.

1.Обзор существующих аналогов проектируемой системы

Автоматикой называется отрасль науки и техники, которая рассматривает теорию автоматического управления, а также принципы построения автоматических систем и образующих их технических средств.

Введение автоматизации управления тепловыми насосами является одним из важнейших направлений технического прогресса в области подачи и отвода тепла в населенных пунктах и на промышленных предприятиях.

Применение автоматизированного управления дает значительные преимущества:

повышает бесперебойность, четкость и надежность работы, поскольку автоматическая аппаратура быстро реагирует на изменение режима работы;

снижает эксплуатационные расходы вследствие уменьшения числа обслуживающего персонала, а также расходов на отопление и освещение помещений;

снижает строительную стоимость, так как оборудование концентрируется на меньшей площади машинного зала и отпадает необходимость в устройстве бытовых и вспомогательных помещений;

увеличивает срок службы оборудования и приборов благодаря своевременному выключению из работы агрегатов при возникновении неполадок в их работе;

дает возможность сосредоточить управление несколькими автоматизированными насосами в одном пункте, что делает систему более гибкой и надежной;

исключает участие персонала в технологических операциях, протекающих в антисанитарных условиях.

На тепловых насосах автоматизируются: пуск и остановка агрегатов и вспомогательных установок; контроль и поддержание заданных параметров (например, уровня воды, подачи, напора и т. д.); прием импульсов параметров и. передача сигналов в диспетчерский пункт. Для наблюдения за параметрами работы служат различные датчики, которые преобразуют контролируемую величину в электрический сигнал, поступающий в исполнительный механизм.

Датчиком называется элемент автоматического устройства, контролирующий колебания той или иной физической величины и преобразующий эти колебания в изменения другой величины, удобной для передачи на расстояние и воздействия на последующие элементы автоматических устройств.

Реле называют устройства, которые состоят из трех основных органов: воспринимающего, промежуточного и исполнительного. Воспринимающий орган принимает управляющий импульс и преобразует его в физическую величину, воздействующую на промежуточный орган. Промежуточный орган, принимая сигнал, воздействует на исполнительный орган, который скачкообразно изменяет выходной сигнал и передает его электрическим цепям управления.

В автоматизированных системах управления насосными агрегатами применяют следующие типы датчиков и реле:

датчики уровня -- для подачи импульсов на включение и остановку насосов при изменении уровня воды в баках и резервуарах;

датчики, или электроконтактные манометры, -- для управления цепями автоматики при изменении давления в трубопроводе;

струйные реле -- для управления цепями автоматики в зависимости от направления движения воды в контролируемом трубопроводе;

реле времени -- для отсчета времени, необходимого для протекания определенных процессов при работе агрегатов;

термические реле -- для контроля за температурой подшипников и сальников, а в некоторых случаях за выдержкой времени;

вакуум-реле -- для поддержания определенного разрежения в насосе или во всасывающем трубопроводе;

промежуточные реле -- для переключения отдельных цепей в установленной последовательности;

реле напряжения -- для обеспечения работы агрегатов на определенном напряжении;

аварийные реле -- для отключения агрегатов при нарушении установленного режима работы.

Электродный датчик уровня. Основными элементами электродного датчика уровня являются блок сигнализации и электроды, устанавливаемые на высоте контролируемого уровня. При достижении уровнем воды того или иного электрода вследствие электрической проводимости воды замыкаются соответствующие цепи в электрической схеме сигнализации и управления насосными агрегатами.

Датчик давления. В качестве датчика давления используются электроконтактные манометры, для которых так же, как и для обычных манометров, применяют трубчатую пружину. Электроконтактные манометры имеют два подвижных контакта -- левый, замыкающийся при давлении ниже величины, на которую он установлен, и правый, замыкающийся при давлении, превышающем установленную для него величину. Кроме подвижных контактов манометр имеет один контакт, жестко укрепленный на стрелке. Контактная система и изоляция манометров позволяет включать их в цепи управления напряжением до 360 В переменного тока или 220 В постоянного тока.

Датчик контроля за заливкой насоса. Датчик мембранного типа для контроля за заливкой насоса с помощью вакуум-насоса. При заполнении насоса водой мембрана датчика прогибается, поднимает шток и замыкает контакты. После снижения давления мембрана возвращается в исходное положение пружиной.

Особенностями датчика мембранного типа являются их большая чувствительность и способность выдерживать высокие давления.

Струйное реле. Принцип действия струйного реле основан на использовании кинетической энергии жидкости. Движущаяся жидкость отклоняет вращающийся на шарнире маятник, выполненный в виде тонкой пластинки, подвешенной к оси. Маятник поворачивается в направлении движения воды и включает контакты реле.

Реле времени. Для обеспечения выдержки времени между отдельными операциями при автоматическом управлении служат реле времени. Для получения значительных выдержек времени (от нескольких секунд до нескольких минут) применяют термические реле времени (термогруппы). Реле состоит из двух неподвижных контактных пружин и двух биметаллических пластинок, на одной из которых намотана нагревательная обмотка. Биметаллические пластинки состоят из двух частей, выполненных из различных металлов с разным коэффициентом расширения. Обе части пластинки наложены одна на другую и плотно соединены. От тока, проходящего через обмотку, пластинка нагревается и, изгибаясь, замыкает или размыкает контакты в цепи управления. Подобные реле, но несколько измененной конструкции применяют в  качестве  реле  тепловой  защиты.

Электромагнитные реле. Наиболее широко используются в схемах автоматизированного управления работой насосных агрегатов и в системах телемеханики электромагнитные реле. По своему устройству и принципу действия электромагнитные реле очень похожи на магнитный пускатель, только значительно меньше его по размерам и рассчитаны на более слабый ток.

На небольшом стальном стержне круглого сечения (сердечнике) надета катушка с обмоткой из медного изолированного провода. От тока, проходящего через обмотку катушки, сердечник намагничивается и притягивает якорь, укрепленный на корпусе реле и поворачивающийся на ребре. Притягиваясь к сердечнику, якорь поднимает и замыкает электрические контакты, вклепанные в эластичные (контактные) металлические пластинки, которые соединены с внешней (исполнительной) электрической цепью. Если ток из обмотки реле выключить, сердечник размагнитится, якорь под действием пружинящих контактных пластинок возвратится в исходное положение, и контакты разомкнутся.

Электромагнитное реле срабатывает от сравнительно слабого тока, но включает электрические цепи, по которым проходит ток значительно большей силы. Таким образом, реле выполняет роль усилителя, являясь промежуточным звеном между цепью слабого тока и исполнительной (высшей) цепью значительно большей мощности.

1.1 Обзор существующих программно-аппаратных комплексов

В последние годы созданы вполне работоспособные приборы и целые комплексы, позволяющие регистрировать результаты динамометрирования в электронной памяти этих устройств с последующей (или одновременной) обработкой их на электронно-вычислительных машинах. Программно-математическое обеспечение (ПМО) каждого комплекса имеет свое оформление, требования к исходным данным и используемые методики их обработки.

1.1.1 Комплексная система исследования работы тепловых насосов

"Анализатор"

Данная система разработана американской компанией "Есhоmеtег". Она представляет собой комплекс измерительных датчиков. Управление их работой и обработка получаемой информации производятся компьютером совместно с аналого-цифровым преобразователем. Такая система осуществляет обработку данных акустических микрофонов, датчиков давления и нагрузки, акселерометров, датчиков тока двигателя, тахометров и других измерительных устройств.

Для измерения уровня жидкости в кольцевом пространстве акустическим методом эта система используется совместно с генератором импульсов, микрофоном и датчиком давления. Эти измерения используются для определения давления работающего теплового насоса. А знание давления и использование модели притока жидкости, с учетом определенного анализа, позволяют определять эффективный дебит насоса.

На тепловых глубинных насосов данная система применима для динамометрических исследований с измерением нагрузок на полированном штоке, ускорения движения полированного штока и потребляемого двигателем электрического тока.

1. Для количественного динамометрического анализа необходимы данные высокой степени точности, которые можно получить с помощью подковообразного калиброванного датчика, измеряющего механическое напряжение.

2. Для получения качественной информации, позволяющей судить об эффективности работы насоса и выявлять (диагностировать) некоторые неисправности оборудования, используется С-образный облегченный датчик, прикрепляемый. Если коэффициент Пуассона для стали равен примерно 0,3, то радиальное напряжение составит около ЗОУ0 от осевой нагрузки.

В обоих случаях для определения перемещения используется очень компактный акселерометр на интегральной схеме, который встроен в датчик измерения нагрузки. Таким образом, необходим только один кабель для соединения компьютера и датчика нагрузки. Скорость движения является результатом интегрирова-ния сигнала ускорения акселерометра, а повторное интегрирование дает значение положения полированного штока как функции времени. Благодаря высокой скорости обработки информации компьютером, применяемым в комплексе систем "Анализатор", данные динамометрии появляются на экране сразу по мере измерения. В отдельном окне представляется график потребления электрического тока двигателем станка-качалки: анализ потребления электрического тока дает представление об уравновешенности станка-качалки.

Примеры графиков, получаемых при исследовании насосов с помощью комплексной системы "Анализатор", приведены на рисунке 1.1

1 -- зависимость нагрузки на полированном штоке от положения балансира СКН (несколько циклов);

2 -- зависимость нагрузки на полированном штоке от времени;

3 -- зависимость нагрузки на полированном штоке от положения балансира СКН;

4 -- зависимость тока электродвигателя привода СКН от времени;

5 -- зависимость нагрузки на плунжере насоса от положения балансира СКН.

Рисунок 1.1 Примеры графиков, получаемых при исследовании с помощью комплексной системы "Анализатор"

1.2.2 Комплекс СТК РНК

Система предназначена для телеуправления, телеизмерений и телесигнализации тепловых насосов. Система в своем составе имеет:

- диспетчерский пункт (ДП);

- станции управления центральные (СУЦ);

- станции управления контролируемых пунктов (СУ КП).

На рисунке 1.2 показано размещение элементов СТК РНК на объектах и их взаимодействие с объектами управления.

Рисунок 1.2 Схема СТК РНК-ЛЭП

ДП - диспетчерский пункт, СУЦ - станция управления центральная, УПЦ, УПКП - устройства присоединения, КТП, Т-Р - комплектная трансформаторная подстанция, трансформатор, СУКП - станция управления контролируемого пункта, СУ СК - станция управления и защиты СКН при работе без РЭП СКН.

Конструктивно станции управления СТК РНК представляют собой шкафы, в которых размещены кассеты с блоками. Диспетчерский пункт СТК РНК оборудован ИЗМ-совместимым компьютером. Станции управления контролируемых пунктов устанавливаются на объектах телеуправления. СУ КП, имеющие проводные линии связи с диспетчерским пунктом НГДУ (СУ РП, КНС и др.), подключаются к ДП непосредственно, удаленные СУ КП подключаются к ЛЭП с помощью конденсаторного устройства присоединения и используют их в качестве физических линий связи с распределительной подстанцией 6(10) кВ (РП) и затем через СУЦ связываются с ДП. Принципиально возможно использование радиоканала для организации связи ДП-СУ КП.

Технические возможности станций управления СТК РНК позволяют осуществлять телесигнализацию и телеуправление (ТС и ТУ):

- тепловыми насосами (СКН);

- групповыми замерными установками (ГЗУ).

1.1.3 Устройство для диагностирования состояния теплового

насоса

Устройство используется в области теплоэнергетики . Предназначено для автоматического сбора, анализа и хранения информации о работе теплового насоса компрессионного типа , , а также электроцентробежными насосами (ЭЦН).

Схема устройства для диагностирования состояния насоса представлена на рисунке 1.3

Рисунок 1.3 Схема устройства для диагностирования состояния

Для проведения диагностирования технического состояния компрессионного теплового насоса все датчики устанавливают в соответствующем месте, выходы датчиков подключают к входу вторичного прибора, на соответствующие тракты измерения блока регистрации 2.

Режим работы устройства выбирают с помощью клавиатуры 18. Запись информации о техническом состоянии производят в течение одного или кратного количества циклов работы насоса . Рабочий цикл определяют по интервалу времени между двумя "мертвыми" точками положения.

При снятии динамограммы, характеризующей работу насоса, в блоке регистрации 2 в оперативно-запоминающем устройстве 20 задается область, в которую будет заноситься информация о работе насоса, а также заносятся данные. Затем запускают отсчет времени в блоке временной задержки 13, после чего запускают насос на несколько периодов, шток при этом совершает возвратно-поступательное движение, как следствие - датчики усилия 3 и хода 4 штока начинают формировать сигналы. По истечении времени задержки, после того, как насос вошел в установившийся режим работы, автоматически или с дистанционного пульта оператора запускается режим измерения, и сигнал с датчика усилий 3 поступает на усилитель 8 и далее через мультиплексор 11, который осуществляет коммутацию имеющихся аналоговых сигналов, - на вход аналого-цифрового преобразователя 12, а с него - на порт микропроцессорного контроллера 17. В это же время сигнал с датчика положения 4 также поступает на вход микропроцессорного контроллера 17 и на вход блока запуска измерений 14. При этом датчик положения 4 установлен на штоке таким образом, чтобы синхронизирующий сигнал запуска измерения микропроцессорного контроллера 17 вырабатывался в блоке запуска измерений 14 только тогда, когда канатная подвеска находится в крайнем нижнем положении. По этому сигналу контроллер 17 начинает измерять время. Обработка постоянно поступающей в цикле измерения информации о времени и усилии осуществляется в контроллере 17 в соответствии с заданной программой, поступающей из программного блока управления 19. После прихода с датчика положения второго синхронизирующего сигнала по цепи датчик положения 4 - блок запуска измерений 14 - контроллер 17 - генератор 16 синусоидальных колебаний информация автоматически выводится на графический индикатор 22, заносятся в память оперативно-запоминающего устройства 20 все необходимые уровни нагрузок и единичная динамограмма. При этом развертка динамограммы по оси X осуществляется по сигналу с генератора синусоидальных колебаний 16, период колебаний которого соответствует периоду одного качания. На экране графического индикатора 22 отображается одиночная динамограмма (фиг. 2). Значения нагрузок в цифровом виде заносятся в протокол испытаний с фактическими нагрузками за период одного цикла. По полученной одиночной динамограмме в соответствии с программой, заданной программным блоком управления 19, автоматически прямо на скважине рассчитываются величина среднего дебита, утечки в клапанах насоса, производительность насоса.

1.2.3 Системы контроля “Cидосс”

Программно-аппаратный комплекс, разработанный Томским НПО "СИАМ", предназначен для контроля и измерения рабочих характеристик промышленных тепловых насосов «грунт-воздух» : силовых нагрузок в различных положениях штока, длины хода, наличия утечек в оборудовании, динамограммы работы насоса. Данные измерений записываются в энергонезависимую память электронного блока и далее могут быть:

-- выведены на термопечатающее устройство в виде динамограммы и цифрового отчета;

-- переданы в компьютерную базу данных по проведенным исследованиям.

1.3 Обзор тепловых насосов

Тепловой насос - устройство для переноса тепловой энергии от источника низкопотенциальной тепловой энергии (с низкой температурой) к потребителю (теплоносителю) с более высокой температурой. Термодинамически тепловой насос аналогичен холодильной машине. Однако если в холодильной машине основной целью является производство холода путём отбора теплоты из какого-либо объёма испарителем, а конденсатор осуществляет сброс теплоты в окружающую среду, то в тепловом насосе картина обратная. Конденсатор является теплообменным аппаратом, выделяющим теплоту для потребителя, а испаритель -- теплообменным аппаратом, утилизирующим низкопотенциальную теплоту: вторичные энергетические ресурсы и (или) нетрадиционные возобновляемые источники энергии.

Концепция тепловых насосов была разработана ещё в 1852 году выдающимся британским физиком и инженером Уильямом Томсоном (Лордом Кельвином) и в дальнейшем усовершенствована и детализирована австрийским инженером Петером Риттер фон Риттингером (. Петера Риттера фон Риттингера считают изобретателем теплового насоса, ведь именно он спроектировал и установил первый известный тепловой насос в 1855 году. Но практическое применение тепловой насос приобрел значительно позже, а точнее в 40-х годах ХХ столетия, когда изобретатель-энтузиаст Роберт Вебер экспериментировал с морозильной камерой. Однажды Вебер случайно прикоснулся к горячей трубе на выходе камеры и понял, что тепло просто выбрасывается наружу. Изобретатель задумался над тем, как использовать это тепло, и решил поместить трубу в бойлер для нагрева воды. В результате Вебер обеспечил свою семью таким количеством горячей воды, которое они физически не могли использовать, при этом часть тепла от нагретой воды попадала в воздух. Это подтолкнуло его к мысли, что от одного источника тепла можно нагревать и воду, и воздух одновременно, поэтому Вебер усовершенствовал свое изобретение и начал прогонять горячую воду по спирали (через змеевик) и с помощью небольшого вентилятора распространять тепло по дому с целью его отопления. Со временем именно у Вебера появилась идея «выкачивать» тепло из земли, где температура не слишком изменялась в течение года. Он поместил в грунт медные трубы, по которым циркулировал фреон, который «собирал» тепло земли. Газ конденсировался, отдавал свое тепло в доме, и снова проходил через змеевик, чтобы подобрать следующую порцию тепла. Воздух приводился в движение с помощью вентилятора и распространялся по дому. В следующем году Вебер продал свою старую угольную печь.

В 40-х годах тепловой насос был известен благодаря своей чрезвычайной эффективности, но реальная потребность в нём возникла в период Арабского нефтяного эмбарго в 70-х годах, когда, несмотря на низкие цены на энергоносители, появился интерес к энергосбережению.

В зависимости от принципа работы тепловые насосы подразделяются на компрессионные и абсорбционные. Компрессионные тепловые насосы всегда приводятся в действие с помощью механической энергии (электроэнергии), в то время как абсорбционные тепловые насосы могут также использовать тепло в качестве источника энергии (с помощью электроэнергии или топлива).

В зависимости от источника отбора тепла тепловые насосы подразделяются на:

1) Геотермальные (используют тепло земли, наземных либо подземных грунтовых вод) а) замкнутого типа

Коллектор размещается кольцами или извилисто в горизонтальных траншеях ниже глубины промерзания грунта (обычно от 1,20 м и более)[8]. Такой способ является наиболее экономически эффективным для жилых объектов при условии отсутствия дефицита земельной площади под контур.

2)Вертикальные

Коллектор размещается вертикально в скважины глубиной до 200 м[9]. Этот способ применятся в случаях, когда площадь земельного участка не позволяет разместить контур горизонтально или существует угроза повреждения ландшафта.

3) Водные

Коллектор размещается извилисто либо кольцами в водоеме (озере, пруду, реке) ниже глубины промерзания. Это наиболее дешевый вариант, но есть требования по минимальной глубине и объёму воды в водоеме для конкретного региона.

4) Открытого типа

Подобная система использует в качестве теплообменной жидкости воду, циркулирующую непосредственно через систему геотермального теплового насоса в рамках открытого цикла, то есть вода после прохождения по системе возвращается в землю. Этот вариант возможно реализовать на практике лишь при наличии достаточного количества относительно чистой воды и при условии, что такой способ использования грунтовых вод не запрещен законодательством.

5)Воздушные

Использующие производное тепло (например, тепло трубопровода центрального отопления). Подобный вариант является наиболее целесообразным для промышленных объектов, где есть источники паразитного тепла, которое требует утилизации.

По виду теплоносителя во входном и выходном контурах насосы делят на шесть типов: «грунт--вода», «вода--вода», «воздух--вода», «грунт--воздух», «вода--воздух», «воздух--воздух».

По виду теплоносителя во входном и выходном контурах насосы делят на шесть типов: «грунт--вода», «вода--вода», «воздух--вода», «грунт--воздух», «вода--воздух», «воздух--воздух». Почти все вновь выходящие на рынок устройства используют тепло выпускаемого из помещения воздуха. Также фильтруют и увлажняют при необходимости всасываемый извне воздух. насос дистанционный датчик нейрочип контроллер

Эффективность и выбор определённого источника тепловой энергии сильно зависит от климатических условий, особенно, если источником отбора тепла является атмосферный воздух. По сути этот тип более известен в виде кондиционера. В жарких странах таких устройств десятки миллионов. Для северных стран наиболее актуален именно обогрев зимой. Системы «воздух-воздух» используются и зимой при температурах до минус 25 градусов, некоторые модели продолжают работать до ?40 градусов. Но их эффективность резко падает. При более сильных морозах нужно дополнительное отопление.

Скальная порода требует бурения скважины на достаточную глубину (100 ?200 метров) или нескольких таких скважин. В скважину опускается U-образный груз с двумя пластиковыми трубками, составляющими контур. Трубки заполняются антифризом. По экологическим соображениям это 30 % раствор этилового спирта. Скважина заполняется грунтовыми водами естественным путём, и вода проводит тепло от камня к теплоносителю. При недостаточной длине скважины или попытке получить от грунта сверхрасчётную мощность, эта вода и даже антифриз могут замёрзнуть что и ограничивает максимальную тепловую мощность таких систем. Именно температура возвращаемого антифриза и служит одним из показателей для схемы автоматики. Ориентировочно на 1 погонный метр скважины приходится 50-60 Вт тепловой мощности. Таким образом, для установки теплового насоса производительностью 10 кВт необходима скважина глубиной около 170 м. Нецелесообразно бурить глубже 200 метров, дешевле сделать несколько скважин меньшей глубины через 10 -- 20 метров друг от друга. Даже для маленького дома в 110--120 кв.м. при небольшом энергопотреблении срок окупаемости 10 -- 15 лет. Почти все имеющиеся на рынке установки работают и летом, при этом тепло (по сути солнечная энергия) отбирается из помещения и рассеивается в породе или грунтовых водах. В скандинавских странах со скальным грунтом гранит выполняет роль массивного радиатора, получающего тепло летом/днём и рассеивающего его обратно зимой/ночью. Также тепло постоянно приходит из недр Земли и от грунтовых вод.

Самые эффективные но и самые дорогие схемы предусматривают отбор тепла от грунта, чья температура не меняется в течение года уже на глубине нескольких метров, что делает установку практически независимой от погоды. По данным 2006 года в Швеции полмиллиона установок, в Финляндии 50 000, в Норвегии устанавливалось в год 70 000. При использовании в качестве источника тепла энергии грунта трубопровод, в котором циркулирует антифриз, зарывают в землю на 30-50 см ниже уровня промерзания грунта в данном регионе. На практике 0,7 -- 1,2 метра. Минимальное рекомендуемое производителями расстояние между трубами коллектора -- 1,5 метра, минимум -- 1,2. Здесь Не требуется бурение, но требуются более обширные земельные работы на большой площади, и трубопровод более подвержен риску повреждения. Эффективность такая же, как при отборе тепла из скважины. Специальной подготовки почвы не требуется. Но желательно использовать участок с влажным грунтом, если же он сухой, контур надо сделать длиннее. Ориентировочное значение тепловой мощности, приходящейся на 1 м трубопровода: в глине -- 50-60 Вт, в песке -- 30-40 Вт для умеренных широт, на севере значения меньше. Таким образом, для установки теплового насоса производительностью 10 кВт необходим земляной контур длиной 350--450 м, для укладки которого потребуется участок земли площадью около 400 м? (20х20 м). При правильном расчёте контур мало влияет на зелёные насаждения.

Если хладагент подаётся непосредственно к источнику земного тепла -- это обеспечивает высокую эффективность геотермальной отопительной системы. Но делает схему чрезвычайно опасной -- давление в контуре высоко, вещество ядовито. Испаритель устанавливают в грунт горизонтально ниже глубины промерзания или в скважины диаметром 40-60 мм пробуренные вертикально либо под уклоном до глубины 15-30 м. Благодаря такому инженерному решению устройство теплообменного контура производится на площади всего несколько квадратных метров, не требует установки промежуточного теплообменника и дополнительных затрат на работу циркуляционного насоса.

В скважинах диаметром 218-324 мм можно существенно снизить необходимую глубину скважины до 50-70 м, увеличить отбор тепловой энергии минимум до 700 Вт на на 1 пог. м. скважины и обеспечить стабильность круглогодичной эксплуатации(в отличие от схемы Васильева) позволяет применение активного контура первичного преобразователя теплового насоса, размещенного в стволе водозаборной скважины(применяется в скважинах имеющих погружной насос, с устройством беструбного водоподъема, который создает проточность жидкости в стволе скважины, продувая током перекачиваемой жидкости теплообменный контур с хладагентом первичного преобразователя теплового насоса, увеличивая отбор тепла не только от прилегающего массива грунта, но и от перекачиваемой жидкости).

При использовании в качестве источника тепла близлежащего водоёма контур укладывается на дно. Глубина не менее 2 метров. Коэффициент преобразования энергии тепловым насосом такой же как при отборе тепла от грунта. Ориентировочное значение тепловой мощности на 1 м трубопровода -- 30 Вт. Таким образом, для установки теплового насоса производительностью 10 кВт необходимо уложить в озеро контур длиной 300 м. Чтобы трубопровод не всплывал, на 1 пог. м устанавливается около 5 кг груза. Промышленные образцы: 70 -- 80 кВт*ч/м в год.

Если тепла из внешнего контура всё же недостаточно для отопления в сильные морозы, практикуется эксплуатация насоса в паре с дополнительным генератором тепла (в таких случаях говорят об использовании бивалентной схемы отопления). Когда уличная температура опускается ниже расчётного уровня (температуры бивалентности), в работу включается второй генератор тепла -- чаще всего небольшой электронагреватель.

2.Анализ технического задания

На основе вышесказанного в настоящей работе ставится задача спроектировать программно-аппаратный комплекс для диагностики и управления тепловым насосом с дистанционным доступом. С необходимыми для изготовления чертежами схемами по единому российскому стандарту.

Создание и внедрение автоматизированных систем различных классов и назначений ведется во многих отраслях промышленности по нормативно-технической документации, устанавливающей разнообразные организационно-методические и технические нормы, правила и положения, затрудняющие интеграцию систем и эффективное их совместное функционирование.

· 1) единая система стандартов автоматизированных систем управления (24-я система), распространяющаяся на АСУ, АСУП, АСУ ТП и другие организационно-экономические системы;

· 2) комплекс стандартов (система 23501); распространяющихся на системы автоматизированного проектирования;

· 3) четвертая группа 14-й системы стандартов, распространяющаяся на автоматизированные системы технологической подготовки производства.

Практика применения стандартов на АСУ, САПР, АСУ ТП, АСТПП показала, что в них применяется одинаковый понятийный аппарат, имеется много общих объектов стандартизации, однако требования стандартов не согласованы между собой, имеются различия по составу и содержанию работ, различия по обозначению, составу, содержанию и оформлению документов и пр.

На фоне отсутствия единой технической политики в области создания АС многообразие стандартов не обеспечивало широкой совместимости АС при их взаимодействии, не позволяло тиражировать системы, тормозило развитие перспективных направлений использования средств вычислительной техники.

В настоящее время осуществляется переход к созданию сложных АС (за рубежом системы CAD - САМ), включающих в свой состав АСУ технологическими процессами и производствами, САПР - конструктора, САПР - технолога, АСНИ и др. системы. Использование противоречивых правил при создании таких систем приводит к снижению качества, увеличению стоимости работ, затягиванию сроков ввода АС в действие.

Единый комплекс стандартов и руководящих документов должен распространяться на автоматизированные системы различного назначения: АСНИ, САПР, ОАСУ, АСУП, АСУТП, АСУГПС, АСК, АСТПП, включая их интеграцию.

При разработке межотраслевых документов следует учитывать следующие особенности АС как объектов стандартизации:

1) техническое задание является основным документом, в соответствии с которым проводят создание АС и приемку его заказчиком;

2) АС, как правило, создают проектным путем с комплектацией изделиями серийного и единичного производства и проведением строительных, монтажных, наладочных и пусковых работ, необходимых для ввода в действие АС;

3) в общем случае АС (подсистема АС) состоит из программно-технических (ПТК), программно-методических комплексов (ПМК) и компонентов технического, программного и информационного обеспечений. 
Компоненты этих видов обеспечения, а также ПМК и ПТК должны изготовляться и поставляется как продукция производственно-технического назначения. 

Компоненты могут входить в АС в качестве самостоятельных частей или могут быть объединены в комплексы;

4) создание АС в организациях (предприятиях) требует специальной подготовки пользователей и обслуживающего персонала системы;

5) функционирование АС и комплексов обеспечивается совокупностью организационно-методических документов, рассматриваемых в процессе создания как компоненты правового, методического, лингвистического, математического, организационного и др. видов обеспечений. Отдельные решения, получаемые в процессе разработки этих обеспечений, могут реализовываться в виде компонентов технического, программного или информационного обеспечений;

На основе широкого анализа технического задания проводятся конструкторские расчеты с целью построения устройства с помощью предприятия-изготовителя электронных устройств. Особое внимание уделено конструкторским расчетам на механические, температурные воздействия, воздействия ускорения при вибрации.

Из ГОСТА известно, что ТЗ представляет собой документ, устанавливающий основное назначение и показатели качества изделия, технико-экономические и специальные требования, предъявляемые к разрабатываемому изделию, объему, стадиям разработки и составу конструкторской документации (КД).

Очевидно, что началом действий проектирования в любом случае должен стать этап подготовки исходных (априорной информации) о проекте. Подготовка включает в себя сбор и систематизацию информации в виде технического задания (ТЗ) на разработку. ТЗ по сути является документом, который должен учесть все факторы, влияющие на результат - конструкцию РЭС.

Содержание ТЗ представляет собой объединение следующих исходных данных:

- совокупность требований к изделию (технических, экономических, производственных и др.);

- необходимые стадии разработки и строки прохождения стадий;

- состав КД (ГОСТ 15.001-73).

Технические требования

a) Радиотехническое назначение объекта: прием, передача, обработка информации;

b) Класс объекта установки - наземный стационарный, работающий в отапливаемых наземных и подземных помещениях (1 группа);

c) Климатическое исполнение - У (умеренный климат со среднегодовыми изменениями температуры + 40?С и -45?С);

d) Категория размещения на объекте - 3 (в закрытых помещениях с естественной вентиляцией без кондиционирования).

Конструктивные требования

a) Масса m ? 2,5 кг.;

b) Электромагнитная присутвует;

c) Необходима сеть питания.

Требования по надежности

a) Группа безотказности по последствиям отказов III (утрата изделия или расходы на ремонт);

b) Класс восстанавливаемости II (восстанавливаемые изделия, которые после капитального ремонта должны рассматриваться как новые, а в течение срока службы подвергаются операциями технического обслуживания, текущего и среднего ремонта: вещательные РЭС);

c) Режим эксплуатации IV (общий - случайные периоды ожидания и действия).

Производственные и экономические требования

a) Производство мелкосерийное, крупносерийное;

b) Группа по стоимости разработки и производства - 2 (промежуточная).

Преемственность

Для данной работы в качестве прототипа был заимствован НЧ усилитель.

Условия эксплуатации

a) Группа по условиям эксплуатации - I (Стационарная РЭА, работающая в отапливаемых помещениях);

b) Условия работоспособности: температура от -40?С до +40?С, влажность 45-80% при t=25?С, давление 630 -800 мм.рт.ст.;

c) Механические воздействия: вибрация f=10…30 Гц, ускорение вибрации A=2g.

Требования к патентной чистоте изделия

В данной работе не использовались решения, запатентованные в России или других странах

1) Конструкторские требования (габариты, установочные, присоединительные размеры и др.);

РЭС должно удовлетворять: габариты устройства в собранном виде ? 310х187х76 мм;

Крепление на плоскости площадью ? 310х187х76 мм; электромагнитная защита отсутствует.

Требования по охране окружающей среды;

Условия эксплуатации соответствуют европейским стандартам охраны окружающей среды и человека. В конце срока службы радиоэлектронного средства необходима утилизация согласно мировым стандартом и ГОСТ.

Требования взаимозаменяемости;

Ремонт устройства и замена вышедших из строя частей производится исключительно техническими специалистами с высшим образованием в области электронной техники.

Требования устойчивости к моющим средствам;

Уход за поверхность корпуса устройства осуществляется влажными моющими средствами без полного погружения во влажную среду и обязательно в выключенном состоянии.

Требования помехозащищенности и предотвращения выделяемых помех;

В схеме предусмотрен принцип изолирования объекта от воздействующего поля посредством вариаций материала корпуса. Таким образом, можно использовать либо принцип отражения, либо поглощения, либо комплексации воздействующего поля. Конечно, возможно повысить помехоустойчивость самого защищаемого РЭС конструкторским методом, а именно применение экранов (электромагнитное экранирование).

Требования к ЗИП по виду (одиночный или групповой) и составу.

К устройству прилагаются инструкции по установке, эксплуатации и настройке. Монтаж и демонтаж устройства в домашних условиях с использованием подручных инструментов производится в соответствии с указанными руководствами. Также вместе с устройством поставляется крепежное оборудование: провода, кабели, крепления, схема крепежа, крепеж, болты и гайки.

Требования технологичности

Допускается мелкосерийное и крупносерийное производство с группой по стоимости разработки и производства - 2 (промежуточная).

Работоспособность прибора характеризуется: температурой от -40 до +40 ?С, влажностью 45 - 80% при t=25 ?С, давлением 630 -800 мм.рт.ст. и механическими воздействиями: вибрация частотой f=10…30 Гц, ускорением A=2g.

Требования к уровню унификации и стандартизации

Создаваемое РЭА разрабатывается согласно существующих нормативов, правил, стандартов и норм. Устройство не содержит нестандартных частей и элементов, что дает возможность создания аналогов без каких-либо дополнительных разработок и проектов. В собранном и настроенном виде прибор готов к использованию по прямому назначению

Требования безопасности, эстетические и эргономические, требования к патентной частоте

В данной работе не используется решения, запатентованные в России или других странах. Нормы технической безопасности при использовании и эргономично спроектированный корпус основного устройства создают конкурентно способный товарный вид РЭА.

Условия эксплуатации

1) Условия, в которых конструкция должна быть работоспособной;

Конструкция остается работоспособной при соблюдении следующих параметров:

1) Работа в наземных и подземных закрытых и отрытых помещениях;

2) Температура от -40 до +40 ?С, влажностью 45 - 80% при t=25 ?С, давлением 630 -800 мм.рт.ст;

2) Допустимые кратковременные воздействия климатических факторов;

Температура от -45 до +45 ?С ; влажность 30 - 85% при t=25 ?С не более 30 минут; давление 450 - 900 мм.рт.ст. не более часа.

3) Механические воздействия

Вибрация с частотой f=10…30 Гц и ускорение A=2g.

4) Виды обслуживания (постоянное или периодическое, необслуживаемое исполнение), необходимое количество и квалификация персонала.

Исполнение конструкции - периодически обслуживаемое (по мере появления отказов в работе). Ремонт производится одним специалистом с наличием высшего технического профессионального образования.

Указание к упаковке, транспортированию и хранению

При соблюдении условии эксплуатации период хранения не ограничен. Подвергается транспортировке любыми транспортными средствами при обязательной индивидуальной упаковке в плотный негнущийся материал (одно устройство - одна упаковка).

Требования к унификации и стандартизации

Создается согласно имеющихся европейских и российских стандартов, норм и ГОСТов.

3.Структурные решения

3.1 Разработка функциональной схемы системы

Структурная схема, разрабатываемой системы представлена на рисунке 3.1

Рисунок 3.1 Структурная схема, разрабатываемой системы

Генератор тактовых импульсов состоит из генератора, выполненного по схеме автогенератора на логических элементах с резонансной частотой 80000 кГц и счетчика-делителя частоты на 3, устраняющий фазовую нестабильность. Генератор тактовых импульсов тактирует импульсы для работы датчика и чипа. Перед началом работы система производит самодиагностику, выполняя проверку блока обработки информации датчика с помощью таких блоков, как цифро-аналоговый преобразователь, усилитель напряжений и фильтр нижних частот. Самодиагностика заключается в следующем : чип выдает кодовую комбинацию на цифро-аналоговый преобразователь, далее цифровой сигнал преобразуется в аналоговый сигнал. Выходное напряжение цифро-аналогового преобразователя равно 5 В, а входное напряжение аналого-цифрового преобразователя, расположенный в датчике равно 5 В, поэтому на выходе цифро-аналогового преобразователя расположен усилитель напряжений. Далее усиленный до необходимого уровня напряжения аналоговый сигнал поступает на фильтр нижних частот, где сигнал фильтруется от помех. И если кодовая комбинация с выхода нейрочипа совпадет с кодовой комбинацией на выходе аналого-цифрового преобразователя, то значит блок обработки информации в нейросетевом датчике исправен и система начинает работу. Цифровой сигнал с датчика поступает на нейрочип, где происходит обработка и сравнение полученных данных с эталонными значениями, записанных в постоянном запоминающем устройстве.Если данные совпадают, то результат записывается в оперативное запоминающее устройство. Если результаты не совпадают, то нейрочип выдает логический `0' на вход устройства отключения электродвигателя, который выполнен на оптроне АОУ103. Его работа заключается в следующем, если тепловой насос находится в нормальном режиме работы, то на входе оптрона логическая `1' светодиод и тиристор работают и в магнитном пускателе реле замкнуто, то есть электродвигатель работает. Если возникает какая-либо неисправность, то нейрочип выдает логический `0' на вход оптрона и светодиод и тиристор отключаются, и реле размыкается, электродвигатель останавливается. Параллельно информация поступает через универсальный последовательный интерфейс на пульт оператора, где по полученным значениям выстраивается динамограмма, характеризующая работу теплового насоса. И по полученной динамограмме оператор анализирует какой вид неисправности произошел. Оператор также может вносить изменения в работу системы через универсальный последовательный интерфейс или через устройство беспроводной передачи данных.

3.2 Разработка технической структуры периферийного устройства

Устройство выполненно на микросхеме AD9397 фирмы “Analog Devices”.Схема представлена на рисунке 3.2.

Рисунок 3.2 Периферийное устройство

3.2.1 Датчики

3.2.1.1Датчик измерения температуры

Тепловые движения носителей заряда создают в резисторе флуктуации напряжения или тока, которые зависят от температуры Т и имеют мгновенные значения, соответственно, ЕbR и IbR эффективное значение шумового напряжения, равное корню квадратному из среднеквадратического значения ЕbR, выражается формулой

,

где k= 1,38-10-23 Дж-К-1 -- постоянная Больцмана, Т -- абсолютная температура в кельвинах и В -- полоса пропускания измерительной аппаратуры.

По схеме Тевенина этот источник напряжения включен последовательно с резистором R (рис. 3.3, а). По концепции Нортона источник тока включается параллельно резистору R (рис. 3.3,б), и эффективное значение тока выражается формулой

Рис. 3.3. Эквивалентная электрическая схема резистора с источником теплового шума, а-- схема Тевенина; б--схема Нортона.

Мощность шума в резисторе не зависит от величины сопротивления R:

Рb= Е2bR/R= I2bRR= 4kTB= Е2bR I2bR

Измерение с помощью вольтметра, регистрирующего эффективное значение напряжения, позволяет при известных R и В определить Т; измерение Рb дает дополнительное удобство, поскольку в этом случае не требуется знать R.

3.2.1.2 Датчик для измерения давления

Для непрерывного измерения давления и передачи его значения в системы учета и контроля применяются датчики давления со стандартными выходными сигналами тока или (существенно реже) напряжения. Датчики могут измерять избыточное или абсолютное давление, а также разряжение. Это зависит от конструкции датчика. Абсолютное давление это сумма избыточного и атмосферного давлений.

Датчик давления состоит из сенсора, модуля преобразования сигнала сенсора, дисплея и корпуса. В настоящее время наиболее распространены тензометрические сенсоры с металлической мембраной. Все более широкое применение находят емкостные сенсоры с мембраной из сверхчистой керамики (99,9% Al2O3), например, фирмы Endress+Hauser и пьезорезистивные сенсоры, например, фирмы Honeywell.

Принцип действия тензосенсоров с металлической мембраной основан на измерении деформации тензорезисторов, сформированных в тонкой пленке кремния на сапфировой подложке (КНС), припаянной твердым припоем к титановой мембране. Иногда вместо кремниевых тензорезисторов используют металлические: медные, никелевые и др. Принцип действия тензорезисторов основан на явлении тензоэффекта в материалах, который выражается в том, что при линейном удлинении проводника его электрическое сопротивление увеличивается. Тензорезисторы соединены в мост Уитсона. Под действием давления измеряемой среды мембрана прогибается, тензорезисторы деформируются. Их сопротивление меняется, что приводит к разбалансу моста. Разбаланс имеет линейную зависимость от степени деформации резисторов и, следовательно, от приложенного к мембране давления.  Разбаланс моста преобразуется электроникой датчика в выходной аналоговый сигнал и в цифровой код для вывода данных на  дисплей. Мембрана и корпус сенсора образуют герметичную конструкцию, заполненную внутри кремнийорганической жидкостью.

Несмотря на множество достоинств, таких как: высокая степень защиты от воздействия агрессивных сред, высокая предельная  температуры измеряемой среды, низкая стоимость, отлаженное серийное производство датчики давления с тензосенсорами и металлической мембраной имеют ряд недостатков. В частности, неустранимую временную нестабильность передаточной характеристики (давление-ток) и существенные гистерезисные эффекты от воздействия давления и температуры. Это обусловлено неоднородностью конструкции и жесткой связью мембраны с корпусом сенсора. При эксплуатации датчиков с сенсорами данного типа практически всегда наблюдается эффект прямого и обратного хода. Например, если на датчик со шкалой 0-10 Bar и выходным сигналом 4-20 mA подать давление 5 Bar, плавно увеличивая его с 0 значения то установиться, допустим, выходной ток 11,5 mA. Если же, на тот же датчик подать давление 5 Bar, но теперь  плавно уменьшая с 10 Bar, то выходной сигнал будет уже 12,5 mA. Этот эффект связан с упругими свойствами металлической мембраны.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.