Цифровой фотоаппарат и цифровая фотография

Изучение основных элементов цифровых фотоаппаратов, устройство и назначение линзы и объектива. Понятие фокусного расстояния и его вычисление в камерах, определение цифрового зума. Основные параметры ПЗС-матриц, их применение в современных видеокамерах.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 17.04.2012
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Точность цветопередачи телевизионных приемников приносится в жертву коммерческим интересам -- продать как можно больше телевизоров по минимальным ценам. Производители считают, что потребители не захотят платить лишние тысячи долларов за системы с более точной системой воспроизведения.

Поэтому эту проблему придется решать разработчикам видеокамер и самым находчивым операторам. ПЗС-матрицы, смонтированные внутри видеокамер, способны к прямолинейному отклику, но в сегодняшнем мире это их свойство еще не востребовано. Если обычные телевизионные приемники стандарта NTSC имеют искаженную цветопередачу, то видеокамера должна идеально ее компенсировать. Этот процесс называется «гамма-коррекцией», но эта функция успешно реализована не во всех цифровых видеокамерах. В качестве примеров камер с очень хорошей гамма-коррекцией могут служить модели Sony DSR-PD150 и JVC GY-DV300. Гамма-коррекция применяется в отношении каналов цветности, чем отличается от описанной выше функции смещения черного, которая реализуется на канале яркости.

При существующем изобилии различных моделей бытовых телевизоров оператор не в состоянии контролировать точное воспроизведение изображения. Тем не менее, каждый оператор, стремящийся снимать высокопрофессиональные фильмы в формате DV, должен понимать, как работает функция гамма-коррекции. За счет нее черные цвета должны быть достаточно широко растянуты, чтобы компенсировать как компрессию в видеокамере, так и недостаток контрастности на экране телевизора. Телевизоры без ЭЛТ, особенно с плоскими экранами, должны искусственным образом быть скорректированы для того, чтобы изображение выглядело максимально похожим на то, что дают телевизоры с ЭЛТ. В будущем, в связи с неизбежным отмиранием экранов с электронно-лучевой трубкой необходимость проводить в камере гамма-коррекцию отпадет.

Для видеокамер с недостаточной гамма-коррекцией характерны излишняя затемненность, повышенная общая контрастность и изменение цветового фона. Такие искажения особенно заметны при передаче телесных тонов (например, цвет кожи людей приобретает красноватый оттенок), так как в темных областях изображения зеленый цвет сжимается существенно сильнее, чем красный.

Большая часть изображения, в котором присутствует много мелких деталей в зеленых тонах, остается несбалансированной, что увеличивает вероятность появления в таких изображениях эффекта чересстрочности (сглаживания).

Функция смягчения мелких деталей

Аналоговому миру не присущи резкие границы, все предметы в нем имеют плавные тени. Такие непрерывные плавные переходы смогли бы отра- зить только бесконечно малые пиксели, поэтому для их воспро- изведения разработчикам видео- камер пришлось придумывать специальные функции. Для смягчения резких границ был внедрен механизм коррекции за счет обрезания пиков синусоидальной волны, но в резуль- тате такого обрезания изображение становится слишком жестким. Предусмотренная в некоторых моделях функция смягчения деталей, добавляет небольшую размытость (блюр) по границе перехода, которая повышает избыточность пикселей в важных зонах, что позволяет цифровому алгоритму сжатия работать более эффективно.

Но при этом происходит некоторая потеря разрешения, поэтому режим смяг- чения деталей следует приме- нять очень осторожно и ограниченно, только для предотвращения появления черного канта вокруг предметов. Подобная функция (Unsharp Mask) есть в программе Photoshop, она предназначена для работы с циф- ровыми фотографиями.

Еще совсем недавно функция смягчения деталей предлагалась только в дорогих профессиональных студийных камерах, но сегодня она появилась и в цифровых видео- камерах, которые стоят менее 4000 долларов.

Частотные характеристики

Разработчики цифровых процессоров сигналов для видеокамеры могут очень точно настраивать их частотные характеристики (отк- лики), усилить высокие или низкие частоты, и даже смешивать их. В результате коррекции на высоких частотах пики видеосигнала могут проявляться в виде тонких линий вокруг объекта съемки и приводить к тому, что DV-изображение станет раздражающе жестким.

Избыточная регулировка на низких частотах может проявиться в виде толстого черного контура вокруг предметов. Бездумное применение корректировки по высоким частотам и по низким не прибавят славы оператору, поэтому меню установок гамма-коррекции и/или корректировок деталей следует изучать очень внимательно.

Различные модели камер значительно отличаются по характеристикам на низких частотах. В видеокамере Canon XL1S сильная зарегулированность низких частот приведет к тому, что изображение будет выглядеть жестким. А для моделей производства Sony или JVC присущ подъем на низких частотах, что позволяет не прибегать к существенным регулировкам.

Частотные отклики камеры JVC GY-DV300 до 200 МГц соответствуют таковым модели Sony PD150, а модель производства JVC, благодаря встроенному 12-битному процессору, имеет преимущество в диапазоне 200-540 МГц, который характерен для формата DV.

Конечно, оператора больше интересует то, что происходит в той полосе частот, которая может быть практически записана на пленку, т. е. ниже 540 МГц. В этом отношении модели видеокамер с 12-битным процессором обеспечивают лучшее (почти на 70%) разрешение, чем с 8-битным.

Сжатие в области белого

Функция сжатия сигнала в области белого отвечает за сохранение максимального количества ярко освещенных деталей, так как без серьезного сжатия данные с яркостью выше 100% могут быть полностью потеряны.

В отдельных RGB-каналах процесс сжатия различных цветов проходит неравномерно -- так, например, для некоторых моделях Sony характерно наиболее заметное сжатие красного канала. А модель PD150 превращает ярко-оранжевый цвет в нечто, напоминающее лимонный, так как красный канал подвергается более глубокой компрессии, чем каналы зеленого и синего. Искажение цветопередачи, обусловленное сжатием сигнала в области белого -- одна из очень веских причин, из-за которой не рекомендуется применять цифровые видеокамеры для съемок сцен с насыщенными красками при ослепительном полуденном Солнце.

Особенности цветовосприятия человека

Разработчики видеокамер все-таки очень умные люди. Иногда перед ними ставятся такие проблемы, для решения которых приходиться обманывать зрение человека, которому кажется, что он видит тысячи цветов, а на самом деле их всего только три. Специалисты добиваются этого эффекта за счет смешения в определенных пропорциях трех основных цвета видео -- красного, зеленого и синего. На техническом сленге это называется «трехцветной системой», суть которой сводится к тому, что цифровая видеокамера с тремя ПЗС-матрицами должна разделять входящий композитный сигнал на составные части -- RGB-компоненты.

Еще несколько десятилетий в результате экспериментов по оценке цветовосприятия человека был выявлен ряд закономерностей. Чтобы испытуемые правильно воспринимали синий цвет, его нужно было смешивать с красным. После добавления красного, синий цвет соответствовал тому значению, которые воспринимали тестируемые. Все это достаточно сложно, но специалисты, разрабатывающие видеокамеры, обязаны каким-то образом учитывать эти особенности зрения человека к восприятию цветов. Хотя в результате других тестов было установлено, что большинство людей не в состоянии правильно определить соотношение красного, зеленого и синего в образце, поэтому один и тот же цвет мы можем воспринимать по-разному.

Матрица

Цветовая модуляция матрицы большинства дешевых бытовых камер устанавливается специалистами на заводе с учетом особенностей восприятия цветов человеком, а в видеокамерах среднего и верхнего сегмента рынка, оператор может выбирать настройки для цветовой модуляции матрицы.

Так, в модели Panasonic AG-DVX100 предлагается три цветовых настройки: «Нормальная» (Normal) -- для съемок вне помещений или с лампами накаливания; «Флуоресцентная» (Fluorescent) -- для съемок в помещениях, освещаемых флуоресцентными лампами; «Как в кино» (Cine-Like) -- для воспроизведения цветов, присущих кинопленки. Даже в относительно недорогой модели GY-DV300 производства JVC оператору предлагается возможность выбрать цветовую модуляцию матрицы. Цветовые настойки матриц разных производителей несколько отличаются, поэтому при выборе видеокамеры вам все же придется полагаться на собственное восприятие цветов.

4. Камеры с одной и тремя ПЗС-матрицами

Компания JVC недавно выпустила новые модели недорогих камер GR-HD1 и JY-HD10 с одной ПЗС-матрицей. Автор статьи подробно рассматривает новые технологии, реализованные в этих камерах, и проводит детальный анализ качества получаемых изображений, сравнивая его с тем, что дают камеры с тремя ПЗС.

После появления новых портативных цифровых видеокамер компании JVC GR-HD1 и JY-HD10 вновь разгорелась дискуссия о том, какие технологические решения - на основе одной или трех ПЗС-матриц, лучше подходят для захвата и записи высококачественного изображения.

Видеокамерами на одной ПЗС-матрице сейчас снимают очень многие, и, с моей точки зрения, они дают изображение превосходного качества. Компании Foveon удалось разработать такую технологию, которая позволяет с помощью одной ПЗС-матрицы захватывать изображение, по качеству сопоставимое с тем, что обеспечивает кинокамера для 35-ти миллиметровой пленки. Для этого используется трехслойный светочувствительный датчик, который внедрен в силиконовую подложку: верхний слой записывает синий, средний - зеленый, а нижний - красный свет. Таким образом, в разработанной специалистами Foveon матрице на месте расположения каждого пикселя находится стек из трех светодетекторов.

В видеокамерах с одной ПЗС-матрицей применяется одна из трех схем фильтрации: Bayer Mosaic Filter, Complementary-Primary Mosaic Filter или Hybrid Complementary-Primary Mosaic Filter. Но во всех этих схемах для считывания информации о яркости и цветонасыщенности используются ПЗС-матрицы с минимальными элементами кластера 2х2 (рис. 1).

цифровой фотоаппарат видеокамера объектив

Рис. 1.

Так как нас интересует модель JVC JY-HD10, для сравнения камер с одной и тремя ПЗС-матрицами я буду использовать ее характеристики. В этой модели для достижения максимального вертикального разрешения, присущего видеокамерам с прогрессивным сканированием (480p или 720p), применяются нейтральные зеленые, голубые и желтые светофильтры.

Рис. 2

В матрице фильтров предусмотрены два дополнительных цветофильтра (желтый или голубой) и один основной (зеленый) фильтр. Какое воздействие на белый цвет оказывает введение любых двух дополнительных цветов (Mg, Ye или Cy), показано на рис. 2, а то, как генерируются люма- (Ln) и хрома-составляющие (RGBn) элементами ПЗС-матрицы (En), - на рис. 3.

Рис. 3

Люма-составляющая определяется по следующей формуле: Y = 0,29R + 0,59G + 0,11B или Y = R + 2G + B, а нечетные люма-ряды рассчитываются по уравнению Yнечет. = W + G. При этом белый, конечно, равен R + G + B. Таким образом, сочетание элементов белого и зеленого фильтров дает Yнечет. = R + 2G + B. Четные ряды люма-составляющих определяются как Yчетн. = Cy + Ye, где Cy = G + B, а Ye = R + G. Таким образом, при сочетании элементов голубого фильтра с элементами желтого фильтра Yчетн. = R + 2G + B.

На рис. 3 показано как из 16 (H?V) элементов генерируются 12 люма-составляющих (H-1?V). В соответствии с приведенной формулой чип JVC в режиме 720p способен сгенерировать 842,861 люма-составляющих из 659 рядов ПЗС-матрицы. (Максимальное количество линий, на которое цифровой процессор сигналов раскладывает изображение, равно 720).

Как работает ПЗС-матрица в новых видеокамерах JVC

В процессе хрома-генерации для верхнего ряда ПЗС-матрицы из каждой пары рядов ПЗС должна быть задержана одна видеолиния. В последствии эта линия может быть скомбинирована с текущей строкой. Красный цвет образуется следующим образом: R = W - (G + B), где (G + B) = Cy. Для достижения лучшей чувствительности и равномерного распределения цветовых составляющих по матрице используются все четыре фильтра: R = (W + Ye) - (G + Cy).

Голубой цвет образуется следующим образом: B = W - (R + G), где (R + G) = Ye. При использовании всех четырех фильтров B = (W + Cy) - (G + Ye). Зеленый цвет получается так: G = W - (B + R), где (B + R) = Mg. Фильтр Mg отсутствует, но можно одновременно применять B- и R-составляющие. А при использовании всех четырех фильтров для достижения лучшей чувствительности и равномерного распределения цветовых составляющих по матрице G = (G + Cy + Ye) - W.

Чтобы сравнить количество генерируемых люма- и хрома-составляющих камерами с одной и тремя ПЗС, посмотрим на данные, приведенные в табл. 1. Девять хромасоставляющих (H-1 ? V-1) генерируются из 16 (H ? V) элементов, а одна ПЗС в режиме 720p генерирует 841,582 RGB хрома-элементов. Обратите внимание на очень малое различие между видеокамерами с одной или тремя ПЗС-матрицами в режиме 720р.

Таблица 1. Количество люма- и хрома-составляющих, генерируемых камерами с одной и тремя ПЗС

ПЗС 1280х659

Элементы ПЗС

Люма-составляющие

Хрома-составляющие

Камеры с тремя ПЗС

843,520

843,520

843,520

Камеры с одной ПЗС

843,520

841,861

841,582

Но, чтобы разобраться с характеристиками видеокамеры, следует не просто сравнивать количество элементов, генерируемых ПЗС-матрицей, а проанализировать пространственное расположение элементов, которые участвуют в создание изображения. В результате такого сравнения можно определить то количество генерируемых пикселей, которое определяет разрешение видеокамеры по горизонтали и по вертикали.

Давайте начнем с обычной ПЗС-матрицы для NTSC, которая захватывает 481 ряд информации в течение временного промежутка, определяемого установками обтюратора, выставленными на видеокамере. За 1/60 секунды ПЗС-матрица выводит данные, начиная с верхнего ряда и заканчивая нижним. Из верхних 480 рядов формируется один полукадр чересстрочной разверстки. Для захвата второго полукадра, дополняющего первый до полного кадра, ПЗС-матрица вновь проводит захват изображения в течение времени экспозиции, которая задается обтюратором, а затем в течение следующей 1/60 секунды с ПЗС-матрицы считываются нижние 480 рядов.

Каждый элемент ряда задерживается на период строчной разверстки и затем добавляется к эквивалентному элементу следующей линии. В процессе добавления информации с двух последовательных рядов создается фильтр, который смягчает горизонтальные границы, снижая межстрочный шум мерцания. После завершения суммирования сигналов с двух элементов ПЗС-матрицы происходит усиление полученного сигнала, а затем такая его фильтрации, чтобы на выходе видео получалось 240 линий - именно такое количество линий требуется для формирования полукадра в формате NTSC.

Фильтр, обеспечивающий совмещение рядов уменьшает разрешение по вертикали почти на 25% - до 180 линий на полукадр. Таким образом, эффективное разрешение по вертикали для кадра чересстрочной разверстки в формате NTSC снижается до 360 линий. Но цифровая видеокамера производства JVC в режиме формата DV, тоже выдает разрешение по вертикали 360 линий.

При записи изображения в формате чересстрочной разверстки, фильтр, обеспечивающий совмещение рядов, используется в камерах и с одной, и тремя ПЗС-матрицами. А вот при записи прогрессивного изображения не зависимо от количества ПЗС-матриц для получения информации о яркости этот фильтр не используется. (Хотя, например, в камере Panasonic AG-DVX100 его можно включить.) Поэтому, если видеокамера JVC переключена в режим 480p, то ее разрешение по вертикали составит 480 линий.

Все видеокамеры с одной ПЗС-матрицей генерируют люма-элементы фильтра, обеспечивающего совмещение рядов, который двигается поперек пар колонок ПЗС-матрицы. Этот фильтр снижает разрешение по горизонтали более чем на 25%. Таким образом, 720 элементов, задействованных в режиме DV, формируют видеоряд с 540 пикселями, 941 элемент в режиме SD образуют видеоряд с 706 пикселями, а 1280 элементов в режиме HD дают видеоряд с 960 пикселями. Но конечное разрешение будет меньше, чем было получено в результате подсчетов пикселей. Дело в том, что для сглаживания зубцов (алиасинга), которые возникают в процессе отбора разовых проб изображения массой элементов, составляющих ПЗС-матрицу, используются оптические и электронные низкочастотные фильтры. Такая фильтрация не затрагивает разрешение по вертикали, так как частота отсечки задается для значительно большего количества горизонтальных элементов ПЗМ-матрицы.

Мозаично размещенные элементы на передней части единственного кристалла ПЗС обусловливают необходимость сильного сглаживания с более низкой частотой отсечки, что приводит к падению разрешения. В камере JVC предусмотрен сглаживающий фильтр, который снижает разрешение для мелких деталей (но только для мелких) на величину порядка 25% как для режима 480p, так и для режима 720p. В табл. 2 приведены значения измеренных разрешений по вертикали и горизонтали для компактной цифровой видеокамеры JVC. Данные о горизонтальных разрешениях для режимов SD и HD отражают два последовательных 25%-х снижения в мелких деталях.

Таблица 2. Значения измеренных разрешений для различных режимов

Режим

Ряды ПЗС

Вертикальные пиксели

Вертикальные пиксели (измеренное количество)

Столбцы ПЗС

Горизонтальные пиксели

Горизонтальные пиксели (измеренное количество)

480i

480

360

360

720

540

540

480p

480

480

480

940

706

525

720p

659

659

650

1280

960

700

А какого максимального разрешения можно было бы достичь, если использовать видеокамеру с тремя, а не с одной ПЗС, если не принимать во внимание воздействие сглаживающего фильтра? В отсутствие фильтра, сглаживающего движение (слайдинг-фильтра), возможное значение горизонтального разрешения должно возрасти в режиме 720р с 960 до 1280 пикселей. Но это значение характеризует яркость изображения, а большинство претензий, выдвигаемых в отношении видеокамер с одной ПЗС-матрицей, относятся к плохой цветонасыщенности.

Поэтому, давайте, сравним видеокамеры с тремя и одной ПЗС-матрицами. Соотношение пикселей цветности и яркости характерно для видеокамеры с тремя ПЗС-матрицами равно 1:1 или 1. Одна ПЗС-матрица в камере JVC позволяет получать 632400 пикселей (960?659 пикселей). Каждый элемент RGB формируется из информации, полученной с двух столбцов ПЗС с применением фильтра, сглаживающего движение. Таким образом, разрешение по горизонтали уменьшается на 25% - с 1280 до 960 пикселей. Слайдинг-фильтр применяется и в вертикальном направлении. Разрешение хрома по вертикали уменьшается на величину порядка 25% - с 659 до 494 RGB пикселей. В результате, суммарное разрешение RGB-хрома составит 474240 пикселей. Соотношение хрома- и люма-пикселей равно 0,75 (474240 : 632640). Таким образом, получается, что коэффициент хрома/люма у камеры JVC ниже, чем у видеокамер с тремя ПЗС-матрицами.

Детали цветонасыщенности должны быть еще один раз уменьшены до того, как они будут записаны в виде данных о цветовой контрастности. Требуемое уменьшение одинаково для форматов DV (4:1:1) и MPEG-2 (4:2:0). Это уменьшение необходимо как для видеокамер с одной ПЗС-матрицей, так и для видеокамер с тремя ПЗС-матрицами.

Перед записью RGB хрома-информация подвергается еще двум процессам. Красная, зеленая и голубая составляющие комбинируются (0,29R + 0,59G + 0,11B) для генерирования чередующихся люма-элементов - Y'. Затем эти люма-элементы комбинируются с красной и голубой составляющей для создания двух компонентов цветовой контрастности R-Y' и B-Y'.

Для обоих режимов компрессий - DV и MPEG-2, детали, отвечающие за цветонасыщенность, подвергаются еще одному уменьшению на 25%. Следовательно, в структуре сэмплирования DV 4:1:1 цветовые элементы R-Y' и B-Y' записываются для каждого четвертого пикселя яркости в каждой строке. В формате MPEG-2 Main Profile со структурой сэмплирования 4:2:0 запись цветовых элементов R-Y' и B-Y' производится для каждого второгоо пикселя яркости в каждой строке. В обоих методах сэмплирования уменьшение хрома-разрешения происходит по схеме дискретизации 4:2:0.

Итак, так ли необходимо использовать три ПЗС-матрицы для получения высококачественного видео? Видеокамеры с тремя ПЗС-матрицами на самом деле обеспечивают более высокое качество цветопередачи, а также снижают цветовые искажения, которые могут возникать при съемке быстро движущихся объектов. Но при достаточном запасе разрешения и видеокамеры с одной ПЗС-матрицей будут поддерживать выборку с запасом по частоте дискретизации, которая обеспечит устранение нежелательных эффектов фильтрации, проводимых до сжатия и перекодирования. (Например, Sony уже сейчас предлагает портативные цифровые видеокамеры с ПЗС-матрицей на 2,11 мегапикселей.)

К сожалению, стремление к уменьшению размера и использованию многомегапиксельных ПЗС-матриц приводит к понижению светочувствительности и сужению световых угловых характеристик камер. Недостаток светового потока, попадающего на матрицу, увеличивает вероятность потери затемненных деталей или засвечивания ярко освещенных, а недостаток чувствительности в условиях плохой освещенности может привести к появлению большого количества шумов на изображении.

Я не сомневаюсь в том, что технологический прогресс может привести к тому, что одна ПЗС-матрица будет использоваться не только в недорогих портативных цифровых видеокамерах. Три матрицы и оптическая призма увеличивают объем и стоимость камеры. Призма также ограничивает количество значений диафрагмы объектива. Помимо этого, если снимается в основном видео, а не фильмы, то работать с неглубокой фокусировкой, характерной для современных видеокамер с тремя ПЗС-матрицами, нежелательно. Одна 35-миллиметровая матрица на 4000х2000 пикселей (8 мегапикселей), опытный образец которой был представлен компанией Dalsa, в состоянии разрешить все эти проблемы. Я не знаю, маленьким или большим ПЗС-матриц будет отдано предпочтение в будущем, но в том, что качество изображения будет определять не их количество, я уверен.

Список использованных материалов

http://www.vsesovety.info/

Steve Mullen/ CCD Counting, Still Needed?/VideoSystems

http://www.64bita.ru

http://www.3dnews.ru/

http://www.delta-studio.ru/

Размещено на Allbest.ru


Подобные документы

  • Понятие и виды цифровых камер, отличительные особенности устройства: фотосенсор и объектив. Параметры цифрового фотоаппарата: количество пикселей матрицы. Достоинства цифровой фотографии по сравнению с пленочной. Форматы файлов и носители данных.

    презентация [7,3 M], добавлен 12.05.2011

  • Системы счисления в цифровых устройствах. Теоремы, логические константы и переменные операции булевой алгебры. Назначение, параметры и классификация полупроводниковых запоминающих устройств, их структурная схема. Процесс аналого-цифрового преобразования.

    курсовая работа [1,8 M], добавлен 21.02.2012

  • Устройство фотоаппарата, структура, основные компоненты и их взаимодействие. Принцип работы данного устройства, правила его эксплуатации и возможности. Типы съемок: портретная, пейзажа, архитектуры. Негативный и позитивный процесс. Цифровая фотография.

    контрольная работа [94,6 K], добавлен 10.02.2013

  • Основные узлы и механизмы цифрового фотоаппарата. Виды видоискателей, их преимущества. Типы фотовспышек по признакам автоматизации. Обращаемая и позитивная плёнки, их назначение. Сравнение видов объективов и фотоаппаратов. Несъёмные и сменные объективы.

    курсовая работа [5,9 M], добавлен 03.11.2013

  • История видеосъемки на цифровой фотоаппарат. Magic Lantern - альтернативное микропрограммное обеспечение для камер Canon EOS. Подбор оптимальных цифровых фотокамер для регулярной видеосъёмки в образовательных учреждениях, вспомогательное оборудование.

    дипломная работа [3,8 M], добавлен 29.04.2014

  • Обзор современных схем построения цифровых радиоприемных устройств (РПУ). Представление сигналов в цифровой форме. Элементы цифровых радиоприемных устройств: цифровые фильтры, детекторы, устройства цифровой индикации и устройства контроля и управления.

    курсовая работа [1,3 M], добавлен 15.12.2009

  • Математическое моделирование станков и станочных комплексов. Виды цифровых устройств. Принцип действия металлорежущего станка и его управление. Параллельные, сдвигающие регистры, сумматоры и вычитатели. Основные параметры счетчика и их классификация.

    курсовая работа [620,3 K], добавлен 28.06.2011

  • Проектирование цифровых и логических схем, как основных узлов судовых управляющих и контролирующих систем. Основные компоненты структурной схемы и алгоритм функционирования цифрового регистрирующего устройства. Синтез и минимизация логических схем.

    курсовая работа [31,0 K], добавлен 13.05.2009

  • Изучение сущности цифровой фильтрации - выделения в определенном частотном диапазоне с помощью цифровых методов полезного сигнала на фоне мешающих помех. Особенности КИХ-фильтров. Расчет цифрового фильтра. Моделирование работы цифрового фильтра в MatLab.

    курсовая работа [2,0 M], добавлен 21.09.2010

  • Понятие и обзор современных систем передачи информации, исследование основ преобразования сигналов и характеристик цифровых фильтров. Общая характеристика и специфические признаки процесса построения цифрового фильтра на основе полиномов Бернштейна.

    дипломная работа [740,3 K], добавлен 23.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.