Розробка двохсмугової активної акустичної системи з сабвуфером

Вибір та обґрунтування функціональної схеми акустичної системи. Розрахунок фільтрів. Вибір фільтруючих ланок. Характеристика інтегральних підсилювачів. Вибір гучномовців та розрахунок корпусів.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык украинский
Дата добавления 08.08.2007
Размер файла 3,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

10

МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ

Національний університет "Львівська політехніка"

ІНСТИТУТ ТЕЛЕКОМУНІКАЦІЙ, РАДІОЕЛЕКТРОНІКИ
ТА ЕЛЕКТРОННОЇ ТЕХНІКИ

ПОЯСНЮВАЛЬНА ЗАПИСКА

до дипломного проекту на тему:

"РОЗРОБКА ДВОСМУГОВОЇ АКТИВНОЇ АКУСТИЧНОЇ СИСТЕМИ З

САБВУФЕРОМ"

Студент групи АРТ-6 МАТІЇВ ТАРАС СЕРГІЙОВИЧ

Керівник проекту Якубенко В. М.

Консультанти Якубенко В. М.

Батючок Р. М.

Батлук В.А.

Завідувач кафедри _____________ Грицьків З.Д.

" ___ " ________200_ р.

Національний університет "Львівська політехніка"

Інститут телекомунікацій, радіоелектроніки та електронної техніки

Кафедра радіоелектронних пристроїв та систем

Спеціальність 7.090703 Апаратура радіозв'язку, радіомовлення та телебачення”

"ЗАТВЕРДЖУЮ"

Зав. кафедри________ Грицьків З.Д.

"____"__________ 200_ р.

(число) (місяць)

ЗАВДАННЯ

на дипломний проект студентові

МАТВІЇВУ ТАРАСОВІ СЕРГІЙОВИЧУ

1. Тема проекту “РОЗРОБКА ДВОСМУГОВОЇ АКТИВНОЇ АКУСТИЧНОЇ СИСТЕМИ З САБВУФЕРОМ"

затверджена наказом по університету № _______.від "___ "______ 200_ р.

2. Термін здачі студентом закінченого проекту "____"_______200_ p.

(число) (місяць)

3. Вихідні дані до проекту: Вихідна паспорна потужність АС 50 Вт; вихідна паспортна потужність сабвуфера 25 Вт; діапазон відтворюваних частот сабвуфера 20...200Гц; (регулювання частоти зрізу в межах 100...200Гц); вихідна потужність двосмугової системи 25Вт; відтворюваний діапазон частот 20Гц...20кГц; частота розділу двосмугової системи 1кГц; середній час роботи пристрою до відмови > 2500 год.

4. Зміст розрахунково-пояснювальної записки (перелік питань, що їх належить розробити) Техніко-економічне обгрунтування доцільності розробки АС. Розроблення та опис структурної схеми АС. Розроблення та електричний розрахунок частотних фільтрів, підсилювача сигналів гучномовців,корпусів та блоку живлення приладу. Розроблення та опис конструкції АС. Визначення середнього часу роботи пристрою до відказу.

5. Перелік графічного матеріалу (з точним зазначенням обов'язкових креслень)

1. (ф. А1).

2. Схема електрична (ф. А1)

3. Схема електрична (ф. А1).

4. Складальне креслення (ф. А2).

6. Консультанти з проекту із зазначенням розділів проекту, що їх стосуються

Підпис, дата

Розділ

Консультант

Завдання видав

Завдання прийняв

Технічний

Якубенко В. М.

Економічний

Батючок Р. М.

Техніки безпеки та охорони праці

Батлук В. А.

КАЛЕНДАРНИЙ ПЛАН

п/п

Назва етапів дипломного проекту

Термін виконання проекту

При-мітка

1.

Огляд літератури та розроблення

структурної схеми АС.

01.03.-15.03.200_р.

2.

Вибір методу фільтрації та підсилення звукових сигналів та розроблення структурної схеми.

16.03 .-31. 03 .200_ p.

3.

Розроблення та електричний розрахунок підсилювачів сигналів , гучномовців та фільтрів.

01. 04.- 10.04.200_ p.

4.

Дослідження фільтруючих ланок.

11.04.-18.04.200_р.

5.

Виконання економічного розділу

19.04.-26.04.200_ p.

6.

Виконання розділу з охорони праці та техніки безпеки

27.04.-30.04.200_ p.

7.

Виконання графічного матеріалу

01.05.-15.05.200_p.

8.

Оформления пояснювальної записки

16.05.-30.05.200_p.

Вступ

Розробка активної акустичної системи з сабвуфером на даний час є доволі актуальною темою. Вимоги до якості звучання музичних творів та різноманітних звукових ефектів, які використовуються у фільмах та комп'ютерних іграх, зростають. Мало кого задовільняють підсилювачі звуку минулого покоління. Підсилення звуку в таких приладах в основному виконувалось на кількох транзисторних каскадах. Велика маса елементів, через яку проходить звуковий сигнал, за своєю природою вносить певний рівень шумів та своєрідні амплітудно-частотні спотворення. І це вже не кажучи про неможливість відтворення дуже низьких та дуже високих частот, які просто губляться при проходженні підсилювального тракту.

Вирішення даної задачі полягає в наступному. Звуковий сигнал необхідно розділити на діапазони і здійснювати підсилення незалежно між правим та лівим каналом та діапазонами із застосуванням аналогових мікросхем. Які, хоч і мають більшу вартість в порівнянні з транзисторами, мають перевагу в відмінній якості, чистоті звучання та малих габаритних розмірах. Для якісного відтворення найнижчих частот доцільно застосовувати сабвуфер (від англ. subwoofer), так званий підсилювач низьких частот.

Зазвичай використовують 2-5 основних колонок і один сабвуфер. Тільки один сабвуфер використовується тому, що вуха людини майже не сприймають напрямку на джерело низькочастотних хвиль, оскільки довжина хвилі є набагато більша за відстань між вухами і різниця фаз між правим та лівим вухом є мінімальною і нею можна знехтувати. Тому звукові сигнали з правого та лівого каналів можна звести в один та віддати його сабвуферу.

Як приклад, можна згадати недавньо відкритий у Львові так званий “цифровий кінотеатр”. Звичайний кінотеатр із звичайним кінопроектором, який застосовувався минулому, щоправда зроблено якісний ремонт і стоять зручні крісла. Так за що така велика платня за перегляд фільму? А вся суть у звуці. Завдяки вмілій розстановці певної кількості гучномовців певної почерговості включення їх відбувається повнота відтворення звуку. Якщо на екрані показують, як справа наближається машина, то і на слух по звуку відчутно наближення машини з правої сторони. А ще дана акустична система не може обійтись без сабвуферів, адже неможливо на звичайних гучномовцях відтворити із віповідною якістю шум машин, гул двигунів літаків та іншої техніки. Завдяки цьому всьому з'являється так званий ефект «присутності».

Проетований підсилювач призначений для використання в домашніх умовах при відтворенні звуку із звичайного магнітофону або комп'ютера. Завдяки використанню сабвуфера можна отримати найбільшу якість і повноту відтвореного звуку.

У теперішній час уже відійшли на задній план аудіопрогравачі, які відтворюють звук із магнітної плівки. Чим раз більше у квартирах появляються персональні комп'ютери, які відтворюють звук із набагато вищою якістю. А також перевагою персональної комп'ютерної системи є велика кількість музичних творів, які можна зберігати в пам'яті. Також високої якості звучання вимагають ігри та фільми, які можна проглядати із компакт-диску. В основному комп'ютерні ігри полягають у швидкій їзді на автомобілі, “перестрілках”, різноманітних взривах, які супроводжуються спеціальними звуковими ефектами. І тільки якісна акустична стерео система, яка розділена на кілька смуг, із сабвуфером може ефективно і об'ємно відтворити звук.

1. Вибір та обґрунтування функціональної схеми акустичної системи

Сучасні побутові акустичні системи, які призначені для високоякісного відтворення звуку є ,як правило, багатосмуговими. Вони складаються з декількох вузькосмугових гучномовців, наприклад: низькочастотного, середньочастотного та високочастотного. Кожен з цих гучномовців відтворює смугу частот звукового сигналу, відведену для нього. Це пов'язано з тим, що застосування одного широкосмугового гучномовця не дозволяє отримати високу якість відтворення звуку у всьому діапазоні частот.

При побудові багатосмугових АС весь діапазон звукової частоти розбивають на ділянки піддіапазонів ( рис.1.1.)

Рис. 1.1. Амплітудно-частотні характеристики передавальної функції каналів багатосмугової акустичної системи

Зокрема в системі вищої категорії (hi-fi) використовують три або чотири піддіапазони. Масові побутові АС будують, як правило, одно або двосмуговими.

Розділення всього звукового діапазону частот на піддіапазони здійснюється за допомогою пасивних або активних розділових фільтрів. В зв'язку з цим розрізняють пасивні та активні акустичні системи.

В пасивних акустичних системах використовують пасивні LC-фільтри, які ставлять на виході підсилювача потужності перед гучномовцями (рис. 2)

Для побудови активних акустичних систем використовують активні розділову RC-фільтри. В такій системі розділення звуку по частотних каналах здійснюється перед підсиленням звукового сигналу по потужності, тобто активні розділові фільтри вмикають перед підсилювачами потужності ( рис.1.3.) В зв'язку з цим для кожного виділеного піддіапазону частот необхідний свій підсилювач потужності

В порівнянні з пасивними активні фільтри характеризуються відсутністю втрат потужності звукового сигналу, малогабаритні, високодобротні, характеризуються низькими шумами та лінійними спотвореннями, дозволяють регулювати рівень АЧХ в усьому піддіапазоні та ширину піддіапазону. В зв'язку з цим активні АС знайшли сьогодні широке застосування.

Недоліком багатосмугових АС є те, що внаслідок неідеальності розділових фільтрів на частотах розділу каналів випромінення звуку здійснюється одночасно двома сусідніми гучномовцями (наприклад в смузі навколо fp1 ( рис. 1.1.) одночасно здійснюють випромінення звуку ГНЧ та ГСЧ ). При невдалих співвідношеннях між амплітудами та фазами звуку, сформованими фільтрами і випроміненими гучномовцями на АЧХ звукового тиску АС на частотах розділення сигналів можуть виникнути піки або провали, які істотно погіршать якість звуку. Для усунення цих недоліків бажано, щоб на частотах розділу фази сусідніх каналів були однаковими.

Однак, нерівномірність АЧХ при відтворенні звуку з допомогою АС можуть виникати за рахунок приміщення (відбиття від стін, стелі, підлоги, предметів що є в приміщенні). При цьому їх не завжди вдається усунути навіть з допомогою еквалайзерів. Цей факт говорить про те, що спроектована з мінімальними спотвореннями АС в іншому приміщенні може мати сильні акустичні спотворення і, як правило, в смузі низьких частот. Тому високоякісні АС потрібно проектувати під конкретне приміщення. Але це є незручним при проектуванні побутової радіоапаратури масового вжитку. Тому виникла необхідність розробки системи, яку можна було б без значних зусиль відрегулювати за мінімумом спотворень в області низьких частот під конкретне приміщення.

Такі акустичні системи називаються адаптивними.

Для високоякісного відтворення звуку проектуватимемо двосмугову акустичну систему з окремим підсилювачем низьких частот - сабвуфером.

Згідно із завданням паспортна потужність АС становить 50 Вт і половина її припадає на сабвуфер, а інша половина на двосмугову АС. Розподіл потужностей в двосмуговій активній АС проводиться наступним чином. В залежності від частоти розділу (fр = 1 кГц) із графіка (рис. 1.4) [1] визначаємо, скільки відсотків потужності повинно припадати на низькочастотний та високочастотний підсилювачі: РНЧ = 71 %, РВЧ = 29 %. Виражаючи дане співвідношення у ватах отримаємо РНЧ = 17,75 Вт, РВЧ = 7,25 Вт. Враховуючи те, що сигнал відтворюється в режимі “стерео”, тобто маємо правий та лівий канал, отримані значення потужностей необхідно розділити на 2.

Отримаємо наступні дані 2хРНЧ = 8,875 ? 9 Вт та 2хРВЧ = 3,625 ? 4 Вт.

Для формування смуг використаємо активні RC-фільтри верхніх та нижніх частот з частотою розділу 1 кГц. Така схема забезпечує ідеальне фазове і амплітудне узгодження на границі між низькочастотним та високочастотним каналами. На входах фільтруючих ланок поставимо регулятори гучності для регулювання АЧХ та регулятори балансу між правим та лівим каналами для випадку, коли рівень сигналу у правому та лівому каналі буде не збалансований.

Для формування сигналу для сабвуфера просумуємо сигнали з правого та лівого каналів. Застосуємо потенціометр для регулювання рівня АЧХ на вході НЧ системи. Для відділення НЧ сигналу використаємо активний RC-фільтр з регульованою частотою зрізу в межах 100-200 Гц. Оскільки активні фільтри спотворюють фазу сигналу, то перед підсилювачем потужності поставимо регулятор фази, так званий фазовий компенсатор.

Побудуємо функціональну схему двосмугової акутичної системи з сабвуфером, яка б забезпечувала гладку АЧХ на частотах розділу 1 кГц і регулювала частоту зрізу у сабвуфері (рис. 1.5).

93

2. Розрахунок фільтрів

2.1. Вибір фільтруючих ланок

Фільтр - це схема, розрахована на пропускання сигналів в певній смузі частот і подавлення сигналів за межами цієї смуги. Ланки фільтрації можуть бути пасивними та активними. До складу пасивних фільтрів входять лише резистори, котушки індуктивності та конденсатори. Активні фільтри включають в себе транзистори чи операційні підсилювачі.

Переваги активних фільтрів в порівнянні з пасивними:

- в них використовуються лише R і С елементи, тобто компоненти, властивості яких ближчі до ідеальних в порівнянні з властивостями котушок індуктивності;

- вони відносно дешеві;

- можуть забезпечувати підсилення в смузі пропускання ( на відміну від пасивних) і тому рідко вносять суттєві втрати;

- використання в активних фільтрах ОП забезпечує розв'язку входу від виходу (тому активні фільтри легко робити багатокаскадними і тим самим покращувати їх показники);

- активні фільтри відносно легко настроювати;

- фільтри для дуже низьких частот можуть бути побудовані на компонентах з відносно малими розмірами;

- активні фільтри малі за розмірами та масою.

Недоліки:

- необхідне одно або два джерела живлення;

- робочий діапазон частот обмежений зверху максимальною робочою частотою ОП. Це приводить до того, що активні фільтри працюють на частотах, що не перевищують декілька МГц.

Найчастіше як фільтри активних акустичних систем використовуються активні RС-фільтри Батерворта, які мають гладку амплітудно-частотну характеристику (АЧХ).

Важливим моментом є вибір порядку фільтра, адже необхідно забезпечити максимально-гладку АЧХ у всьому відтворюваному діапазоні частот. Потрібно врахувати, що в даному випадку ФВЧ та ФНЧ працюють ніби в парі, тому обидва фільтри мають мати точно однакову частоту зрізу.

При виборі порядку фільтра зважимо на те, що чим вищий порядок фільтра, тим більшою є крутизна спаду амплітудної характеристики за межою частоти зрізу. Проте збільшується кількість елементів, які необхідні для забезпечення відповідної крутизни АЧХ. І тому виникають труднощі, пов'язані із настроюванням фільтра на частоту зрізу.

Оптимальним варіантом є фільтри Батерворта другого порядку з крутістю характеристики 40 дБ/декаду (12 дБ/октаву).

Розділові фільтри всепропускаючого типу являють собою поліномальні фільтри з передавальною функцією:

Н(S)=1/Gn(S), (2.1.1)

де Gn(S) - поліном n-го порядку.

Такий спосіб формування поліномів Gn(S) дозволяє отримати амплітудно-частотну характеристику суми передавальних функцій пари фільтрів нижних та верхніх частот порядків n = 1, 3, 5, 7, ... постійну у всьому діапазоні звукових частот, тобто:

mod [HНЧ(S) + HВЧ(S)] = const. (2.1.2)

Для інших порядків, зокрема для n = 2, 4, 6, співвідношення виконується лише тоді, коли передавальна функція фільтра верхніх частот матиме знак мінус. В реальних умовах це забеспечується протифазним вмиканням гучномовців низькочастотного та високочастотного каналів.

2.2. Розрахунок фільтра нижніх частот

На рис. 2.2.1 показана схема RC фільтра Батерварта нижніх частот другого порядку.

Вона дає спад 40дБ/дек., тобто при збільшенні частоти f від частоти зрізу до 10fзр амплітуда сигналу зменшується в 100 разів.

Операційний підсилювач в даній схемі включений так, що на постійному струмі він має одиничне підсилення. Резитор R3 у зворотньому зв'язку забезпечує компенсацію зсуву на нульовій частоті.

Коефіціент передачі такого фільтра можна записати так:

. (2.2.1)

Передавальна функція

H(S)=1/Gn(S), (2.2.2)

де Gn(S) - поліном n-го порядку.

Скориставшись таблицею 1 і 2 [1] передавальну характеристику фільтра другого порядку можна записати так:

H(S)=1/(S+1)2=1/(S2+2S+1), (2.2.3)

де S - нормований оператор Лапласа по частоті зрізу щзр для НЧ фільтра.

S = Р/щзр . (2.2.4)

Підставимо S у формулу (2.2.2)

. (2.2.5)

Враховуючи те, що Кu(P) = H(P), можна прирівняти вирази (2.2.1) та (2.2.5) і отримаємо рівняння:

. (2.2.6)

Приймаємо рівними R1=R2=R. З формули випливає, що:

С1=С2=С=. (2.2.7)

Зазвичай значення R приймається в межах від 10 кОм до 100 кОм.

Приймаємо R=10 кОм, тоді за формулою (2.2.7) розрахуємо значення ємності С. Де щзр=2fзр, fзр =1 кГц - частота розділу, задана в технічному завданні

С = 1/(2?р?1?103?10?103) = 1,59?10-8 = 15,9 нФ.

Значення ємності відповідно до стандарту приймаємо рівною 15 нФ.

Опір зворотнього зв'язку рекомендується приймати рівним:

R3 = R, (2.2.8)

R3 = 2?10?103 = 20 кОм.

Щоб задовільнити критерії, які ставляться перед фільтрами Батерварта, АЧХ повинна бути на рівні 0,707 на частоті зрізу fзр = 1 кГц та на рівні 0 дБ в межах смуги пропускання.

Провівши аналіз розрахованої схеми із застосуванням комп'ютерної програми Microcap 5.0 отримаємо такі результати:

При практичній реалізації даної схеми, елементи ФНЧ необхідно брати вищого класу точності з розкидом параметрів не більше 1 %.

У ролі ємностей С1 та С2 доцільно використати елементи К10-17-1б-Н50-0,015 мкФ ОЖО.460.172.ТУ;

R1, R2: C2-23-0,125-10 кОм ±1 % А-В-В-А ОЖО.467.104.ТУ;

R3: C2-23-0,125-20 кОм ±1 % А-В-В-А ОЖО.467.104.ТУ.

Ємність С3 - частотна корекція операційного підсилювача. Виробником рекомендується приймати рівною 30 нФ. Візьмемо елемент типу К73-17-63 В - 0,03 мкФ ОЖО.461.104.ТУ.

2.3. Розрахунок фільтра верхніх частот

На рис. 2.3.1 показана схема RC фільтра Батерворта верхніх частот другого порядку.

Дана схема виконує обернену функцію ніж схема, описана в розділі 2.2. Тому розрахунок схеми є аналогічним, але із врахуванням окремих моментів.

Коефіціент передачі фільтра, зображеного на рис. 2.3.1, виражається через формулу

. (2.3.1)

Скориставшись фільтром прототипом [1] передавальну функцію запишемо так

, (2.3.2)

S - оператор Лапласа по частоті зрізу щзр для ВЧ-фільтра запишеться так:

S = щзр/р. (2.3.3)

Підставивши вираз (2.3.3) у формулу (2.3.2) отримаємо:

. (2.3.4)

Прирівнявши вирази К(р) і Н(р) отримаємо наступні рівняння:

. (2.3.5)

Приймемо рівними R1=R2=R=10 кОм. Тоді із рівняння (1.3.5) випливає:

С1=С2=С=, (2.3.6)

де = 2рfзр, fзр=1 кГц - задана частота розділу.

Розрахуємо

нФ.

Ємність С приймаємо стандартний номінал 15 нФ.

Для мінімізації по постійному струму опір зворотнього зв'язку приймемо в двічі більшим R:

R3 = 2R = 20 кОм.

Приведемо результати аналізу розрахованої схеми

Для практичної реалізації фільтра необхідно застосувати наступні типи елементів:

С1, С2 К10-17-1б-Н50-0,015 мкФ ОЖО.460.172.ТУ;

R1, R2: C2-23-0,125-10 кОм ±1 % А-В-В-А ОЖО.467.104.ТУ;

R3: C2-23-0,125-20 кОм ±1 % А-В-В-А ОЖО.467.104.ТУ.

С3 К73-17-63 В - 0,03 мкФ ОЖО.461.104.ТУ.

2.4. Розрахунок фільтра низьких частот з регульованою частотою зрізу

Для сабвуфера використаємо фільтр нижніх частот Батерворта другого порядку, який зображений на рис. 2.1 Задача полягає в тому, щоб даний фільтр мав не фіксовану частоту зрізу, а регульовану в певних межах. Вирішити це питання можна наступним чином. Враховуючи те, що частоту зрізу у фільтрі нижніх частот Батерворта задає RC-ланка, яка стоїть на вході операційного підсилювача. Отже, щоб була можливість змінювати частоту зрізу, необхідно зробити змінними R або С елемент. Оскільки змінювати ємність складно технологічно, дорого і мала надійність роботи, тому вибираємо варіант із зміною опору резистора. Така схема матиме наступний вигляд (рис. 2.4.1):

Резистори R1 та R4 необхідні для того, щоб можна було задати мінімальну частоту зрізу, коли змінний резистор буде в крайньому положенні.

Згідно з технічним завданням частота зрізу даного фільтра повинна регулюватись в межах від 100 до 200 Гц.

Проведемо методику розрахунку, описану в розділі 2, із врахуванням наведених вище вимог.

Розрахунок ємності С проведемо за формулою (2.2.3):

С = 1/(2рfзрR).

Задаємось номіналом опору R2 = R3 = R = 10 кОм. Оскільки частота у нас регульована, тому для початку візьмемо середнє значення

С = 1/ (2р?150?10?103) = 100 нФ.

Виберемо номінал ємності С рівним 75 нФ.

Маючи фіксоване значення С за формулою

R = 1/(2рfзрC) (2.4.1)

прослідкуємо, в яких межах повинен змінюватись номінал резистора для забезпечення частоти зрізу від 100 до 200 Гц.

R(fзр=100 Гц) = 1/(2р?100?68?10-9) = 15915 Ом,

R(fзр=200 Гц) = 1/(2р?200?68?10-9) = 10610 Ом.

За результатами розрахунків проведемо вибір номіналів резисторів:

R1 = R4= 10 кОм,

R2 = R3= 6,8 кОм.

Оскільки опір зворотнього зв'язку R5 рекомендується приймати в два рази більшим за R, а він складається із двох резисторів: постійного номіналом 10 кОм і змінного - 6,8 кОм, то візьмемо в два рази більший від середнього значення: R5 = 22 кОм.

Провівши комп'ютерний аналіз отримаємо наступні графіки:

Оскільки частота зрізу даного фільтра є регульованою і не має чіткого фіксованого значення, то доцільним є застосування елементів із меншою точністю, собівартість яких є нижчою за високоточні.

Застосуємо наступні типи елементів:

R1, R4 C2-23-0,125-10кОм±5% А-В-В-А ОЖО.467.107.ТУ,

R5C2-23-0,125-22кОм±5% А-В-В-А ОЖО.467.107.ТУ,

R2, R3 CП3-9а-16-68кОм±10% ОЖО.468.112.ТУ,

С1,С2 К73-17-63В-0,1мкФ±10% ОЖО.461.104.ТУ,

С3 К73-17-63В-0,03мкФ±10% ОЖО.461.104.ТУ.

2.5 Розрахунок фазоповертача

Роль фазоінвертора або регулятора фазової затримки використовується у сабвуфері з метою зменшення фазочастотних спотворень, які можуть виникати в ланках звуковідтворювального тракту, узгодження фазочастотних характеристик сабвуфера і основних каналів акустичної системи та для компенсації недоліків фонограм. Як регулятор фазової затримки, використаємо всепропускаючу ланку 1-го порядку , схема якої приведена на рис. 2.5.1.

Коефіціент перетворення напруги такої ланки, який виводиться на підставі схеми ланки при умові, що підсилення операційного підсилювача КUОП = ?, описується таким математичним виразом:

(2.5.1)

Приймемо R1=R2=R. Вибираємо R1=R2=10кОм.

Тоді або . (2.5.2)

Модуль (2.5.3)

Аргумент . (2.5.4)

На підставі формули для цКU бачимо, що змінюючи, наприклад R3, можна змінювати (регулювати) значення фази. Отже, замінивши резистор R3 на потенціонометр, отримаємо регулятор фази (регулятор фазової затримки). Для розрахунку граничних значень опору R3 задамося тим, що на частоті зрізу сабвуфера фаза регулятора повинна змінюватися в межах від 100 до 900. Частота зрізу сабвуфера змінюється від 100 до 200 Гц. Вибираємо fзр = 150 Гц. З вищезаписаного виразу для цКU визначаємо R3:

. (2.5.5)

Для розрахунку граничних значень R3 вибираємо С=0,1 мкФ.

Розраховуємо R3

а) при цКU = 100

б) при цКU = 900

Отже, опір R3 повинен змінюватися від 121338 Ом до 10616 Ом.

Для цього складемо ланку з постійного опору R3/ = 10 кОм та потенціонометра R3// = 100 кОм. Схема регулятора фази прийме вигляд (рис. 2.5.2):

Результати моделювання регулятора фази з допомогою системи схемотехнічного проектування MicroCap VI (рис. 2.5.3).

2.6. Вибір операційного підсилювача

В якості операційних підсилювачів, які застосовуються в фільтрах, виберемо LM301A [3]. LM301A - операційний підсилювач загального призначення, який має покращені в порівнянні з іншими загальнодоступними підсилювачами, характеристики. Сучасні методи виробництва дозволили на порядок зменшити вхідні струми, а нова схема подачі зміщення забезпечила зменшення температурного дрейфу вхідного струму.

Даний підсилювач має ряд особливостей, які дозволяють уникати від помилок, від перевантаження, при перевищенні синфазною напругою відсутнє “защолкування”, ОП не входить в самозбудження, а частотна корекція здійснюється всього одним конденсатором 30 пФ.

В схемах з високим вхідним опором LM301A забезпечує більш високу точність обробки сигналів і менший рівень шумів в порівнянні з іншими. Крім того, замінюючи схеми, в яких на вхід звичайного ОП ставиться буферний каскад з узгодженої пари транзисторів 2П308А може забезпечити більш низькі значення зсуву і дрейфу при меншій вартості.

Граничні експлуатаційні та електричні параметри:

Напруга живлення ±15 В;

Розсіювана потужність 500 мВт;

Диференціальна вхідна напруга ±30 В;

Вхідна напруга ±18 В;

Тривалість к.з. виходу не обмежена;

Діапазон робочих температур від 0 до 700С;

Вхідна напруга зсуву 2 мВ;

Вхідний струм зсуву 3 мА;

Вхідний опір 2 Мом;

Струм споживання 1,8 мА.

3. Характеристика інтегральних підсилювачів

Підсилювачі потужності, які іноді мають назву кінцевих підсилювачів, призначені для збільшення потужності звукових сигналів до такого рівня, щоб вони могли збуджувати електроакустичні перетворювачі - гучномовці, головні телефони та ін. Принцип роботи підсилювачі потужності полягає в тому, що вони перетворюють підведену до них від джерела живлення потужність постійного струму в змінний струм, причому форма сигналу на виході підслювача повністю повторює сигнал на вході. Підсилювач потужності повинні характеризуватись невеликими коефіціентами спотворень і високим ККД (відношення потужностей змінного струму на виході і постійного струму, підведеного від джерела живлення).

Сучасний ринок пропонує цілий набір інтегральних підсилювачів різних класів якості, спеціально призначених для касетних переносних магнітофонів, автомобільної радіоапаратури, телевізійних приймачів, проміжних аудіопідсилювачів. Потужність інтегральних підсилювачів зазвичай не перевищує 25 Вт. І тільки провідні фірми виробники, такі як Philips, SGS-Thomson, Motorola, Mitsubishi-Electric можуть запропонувати монолітні інтегральні підсилювачі потужністю до 70 Вт.

Інтегральні підсилювачі дуже компактні, не потребують зовнішніх детелей, часто мають систему захисту від коротких замикань і перевантажень по струму навантаження, термозахист і т.п., що забезпечує безвідмовну роботу при експлуатації.

3.1. Вибір і розрахунок підсилювача для сабвуфера

Вибір інтегрального підсилювача проведемо на основі даних, заданих в технічному завданні:

- амплітуда вхідного сигналу 1 В;

- вихідна потужність сабвуфера 25 Вт.

Візьмемо мікросхему TDA2050V фірми виробника SGS-Thomson. Експлуатаційні та електричні параметри такого інтегрального підсилювача наступні:

- вихідна потужність, Рвих = 25 Вт;

- опір навантаження, Rн = 4 Ом;

- коефіціент підсилення Ку = 80 дБ;

- коефіціент гармонік Кг = 0,5 %;

- напруга живлення Uж = ±25 В;

- допустиме відхилення напруги живлення Uд = ±2,5 В;

- мінімальний споживаний струм І = 55 мА;

- нижня гранична робоча частота fн = 20 Гц;

- верхня гранична робоча частота fв = 20 кГц;

- корпус ТО220 (5 виводів).

Схема включення запропонована фірмою виробником наведена на рис. 3.1.1.

Конденсатор С1 - роздільчий конденсатор. А ланка R1C1 відіграє роль диференціюючої ланки, яка застосовується для того, щоб вихідна напруга із цієї ланки була пропорційна швидкості зміни вхідного сигналу. При скачку напруги на вході зміна напруги на конденсаторі рівна 0 і опір R1 являє собою навантаження зі сторони входу мікросхеми. Елемент R1 вибирається не дуже малим, щоб сильно не навантажувати вхід. Фірма виробник дані елементи пропонує прийняти рівними С1 = 1 мкФ, R1 = 22 кОм. Візьмемо наступні типи елементів: К53-4-16-1мкФ±20% ОЖО.467.037.ТУ та С2-23-0,125-22кОм±5% А-В-В-А ОЖО.467.104.ТУ.

Конденсатори С2 та С4 відіграють роль згладжуючих конденсаторів від різних високочастотних викидів по напрузі живлення. Вони вибираються в межах від 1 нФ до 100 нФ. Приймемо рівними 10 нФ і при практичній реалізації застосуємо тип К73-17-63В-0,01мкФ±10% ОЖО.461.104.ТУ.

Ланка R2=680 Ом, С3=22мкФ, R3=22кОм, включена у зворотній зв'язок мікросхеми, задає необхідний коефіціент підсилення. Конденсатор візьмемо типу К53-4-63В-22мкФ ОЖО.647.037.ТУ, а резистори С2-23-0,125-22кОм±5% А-В-В-А ОЖО.467.104.ТУ та С2-23-0,125-680 Ом±5% А-В-В-А ОЖО.467.104.ТУ.

Діоди VD1 та VD2 - захисні діоди. Більшість конденсаторів мають достатньо невеликий опір, на якому при замиканні виникає піковий імпульс струму величиною до 20 А і при включенні діодів цей імпульс струму проходить не через мікросхему, а через них. Хоча мікросхема має захист від пікових імпульсів струму, така схема включення збільшує надійність роботи підсилювача. У ролі захисних діодів візьмемо елементи типу 1N4001.

Ємність С6 - роздільнча ємність по постійному струму, береться великою, оскільки вихідна потужність, яка заводиться на гучномовець, складає 25 Вт, а нижня робоча частота 20 Гц. В даному випадку ємність С6 можна взяти номіналом 2200 мкФ типу К53-4-35В-2200мкФ ОЖО.467.037.ТУ.

Ланка R4, С5 - ланка Бушеро, відіграє роль узгоджувальної ланки підсилювача з гучномовцем.

Повний електричний опір гучномовця [1], як відомо, сладається з суми електричного опору звукової котушки ZK(jщ) та вносимого опору ZRH(jщ), який визначається параметрами механічної та магнітної системи гучномовця, опором випромінювання, типом та параметрами акустичного оформлення гучномовця, тобто:

ZГМ(jщ) = ZK(jщ) + ZRH(jщ). (3.1.1)

Вносимий опір ZRH(jщ) матиме незначний вплив, якщо повна добротність гучномовця є малою. Для гучномовця ARN-150-02/4 Q=0,24. Тобто в нашому випадку опір гучномовця визначається комплексним опором звукової котушки:

ZГМ(jщ) = ZK(jщ) = RK + jщLК, (3.1.2)

де RK - резистивний опір звукової котушки;

LК - індуктивність звукової котушки.

Для вибраного типу гучномовця RK = 3,5 Ом, LК = 1 мГн.

В нашому випадку розрахунок ланки Бушеро [1] можна здійснити наступним чином:

R4 = RK = 3,5 Ом. (3.1.3)

Візьмемо потужний резистор С5-37-5Вт-3,9Ом ОЖО.467.540 ТУ.

Ємність С5 можна розрахувати за формулою

С5 = LК/RK2, (3.1.4)

С5 = 10-3/(3,5)2 = 8,1?10-5 мкФ

Візьмемо конденсатор типу МБГО-2-35-100мкФ ОЖО.462.023 ТУ.

3.2. Вибір і розрахунок низькочастотного підсилювача двосмугової АС

Необхідно забезпечити вихідну потужність 8 Вт на канал. Для цього виберемо підсилювач низьких частот мікросхему TDA1010A фірми виробника PHILIPS.

Експлуатаційні та електричні характеристики:

- максимальна напруга живлення Umax = 24 В;

- типова напруга живлення Uтип = 15 В;

- нормальний робочий режим при зміні напруги живлення від 6 до 24 В;

- вихідна потужність Рвих = 9 Вт;

- опір навантаження RН = 4 Ом;

- мінімальний споживаний струм Імін = 31 мА;

- робоча частота f = 20 … 20000 Гц;

- вхідний опір Rвх = 20 кОм;

- коефіціент підсилення К = 54 дБ;

- коефіціент шуму Кш = 2 мкВ;

- корпус SiL9MP.

Схема включення наведена на рис. 3.2.1.

С1 - роздільчий конденсатор візьмемо типу К52-4-16-1мкФ±20% ОЖО.467.037 ТУ.

Конденсатори С2 та С3 відіграють роль згладжуючих конденсаторів від різних високочастотних викидів по напрузі живлення. Вони вибираються в межах від 1 нФ до 100 нФ, приймемо рівними 10 нФ, при практичній реалізації застосуємо тип К73-17-63В-0,08мкФ±10% ОЖО.461.104 ТУ.

Мікросхема TDA1010А у своєму корпусі містить попередній та вихідний підсилювачі. Резистор R1 обмежує подачу струму на попередній підсилювач. Рекомендовано взяти номінал резистора 150 кОм. Візьмемо тип С5-23-0,125-150кОм А-В-В-А ОЖО.467.104 ТУ.

Конденсатори С4 та С5 служать ланкою для внутрішньої настройки та частотної корекції між попереднім та вихідним підсилювачами. Для оптичмальної роботи мікросхеми фірма виробник пропонує номінали цих елементів прийняти наступними С4 = 0,1 мкФ, С5 = 1000 мкФ. Візьмемо такі типи елементів К-73-17-63В-0,1мкФ±10% ОЖО 461.104 ТУ та К53-4-16-1000мкФ±20% ОЖО 467.037 ТУ.

Конденсатор С6, включений у зворотній зв'язок, візьмемо типу К53-4-16-100мкФ±20% ОЖО 467.037 ТУ.

Ємність С8 - роздільний конденсатор по постійному струму, потрібно взяти достатньо великою, оскільки вихідна потужність складає 9 Вт, а нижня робоча частота 20 Гц. В даному випадку ємність С8 можна взяти номіналом 1000 мкФ типу К53-4-25-1000мкФ±20% ОЖО 467.037 ТУ.

Ланка R2C7 - ланка Бушера, відіграє роль узгоджувальної ланки підсилювача з гучномовцем. Розрахунок ланки Бушера проведемо за методикою, описаною в розділі 3.2.

Для вибраного типу гучномовця 20ГДН-2 опір звуковох котушки RК = 3,5 Ом, індуктивність звукової котушки LК = 0,5 мГн.

R2 = RК = 3,5 Ом.

Візьмемо резистор С5-37-5Вт-3,9 Ом ОЖО.467.5430 ТУ.

Розрахуємо ємність

С7 = LК/RК2 = 0,1·10-3/3,52 = 4,08·10-5 Ф = 40 мкФ.

Візьмемо конденсатор типу МБГО-2-35-47мкФ ОЖО.462.023 ТУ.

3.3. Вибір і розрахунок високочастотного підсилювача двосмугової АС

Для підсилення високочастотних звукових сигналів застосуємо мікросхему TDA 1904 фірми виробника PHILIPS. Її експлуатаційні та електричні параметри наведені нижче:

- номінальна напруга живлення U = 15 В;

- допустиме відхилення напруги живлення ДU = 4 В;

- вихідна потужність Рвих = 4 Вт;

- опір навантаження RН = 4 Ом;

- мінімальний споживаний струм Імін = 10 мА;

- робоча частота f = 30 … 20000 Гц;

- вхідний опір Rвх = 150 кОм;

- коефіціент підсилення К = 40 дБ;

- коефіціент гармонік КГ = 0,1 %;

- коефіціент шумів КШ = 3 мкВ;

- корпус DIP16.

-

С1 - розділюючий конденсатор, візьмемо типу К53-4-16-1мкФ±20% ОЖО.467.037 ТУ.

Конденсатор С3 - згладжує високочастотні завади у напрузі живлення. Приймемо рівним 10 нФ і використаємо тип К73-17-63В-0,01мкФм±10% ОЖО.461.104 ТУ.

Ланка R1, R2, C2 включена у зворотній зв'язок мікросхеми. Для забезпечення потрібного коефіціента підсилення фірма виробник пропонує номінали цих елементів прийняти наступними: R1 = 10 кОм, R2 = 100 Ом, С2 = 2,2 мкФ. Застосуємо такі типи елементів: С2-23-0,125-10 кОм±5% ОЖО.467.104 ТУ, С2-23-0,125-100 ±5% ОЖО.467.104 ТУ, К53-4-16-2,2мкФ±20% ОЖО.467.037 ТУ.

Конденсатор С6 - роздільчий по постійному струму. Номінал ємності С6 приймаємо ріною 1000 мкФ типу К53-4-25В-2200мкФ±20% ОЖО.467.037 ТУ.

Враховуючи, що індуктивність звукової котушки високочастотного гучномовця незначна і в робочому діапазоні частот на електричний опір гучномовця практично не впливає, то потреба в узгоджувальній ланці для високочастотного каналу відпадає.

3.4. Вибір і розрахунок регуляторів гучності

Враховуючи той факт, що вхідний звуковий сигнал є незмінним і рівний 1 Вт згідно з ТЗ, а підсилювачі міають постійний коефіціент підсилення, то на вході акустичної системи потрібно ставити регулятори гучності. Оскільки дана акустична система фактично поділяється на дві окремі системи, то необхідно зробити регульовані входи, як у сабвуфері так і в двосмуговій активній системі.

Враховуючи різні нюанси відтворення та запису звуку, вхідний сигнал може бути не збалансований по правому та лівому каналу. Виходячи із попередніх міркувань, в даному випадку доцільним є застосування мікросхеми, яка б виконувала всі ці функції.

Візьмемо мікросхему М 51523L фірми виробника MITSUBISHI ELECTRIC. Схема включення зображена на рис. 3.4.1.

Електричні характеристики М51523L:

- напруга живлення UЖ = 6 ... 18 В;

- опір навантаження RН = 10 кОм;

- коефіціент шуму КШ = 12 мкВ;

- коефіціент гармонік КГ = 0,2 %;

- регулювання гучності в межах -50 ... 0 дБ.

Конденсатори С1, С2, С6, С7 - роздільні конденсатори по постійному струму вибираються в межах 1...10 мкФ. Виробник пропонує застосовувати дані конденсатори номіналом 1 мкФ. Візьмемо електролітичні полярні конденсатори К53-4-10-1 ОЖО.467.037 ТУ.

С3 - згладжуючий конденсатор по живленню. Щоб не було пульсацій по напрузі живлення, завод виробник пропонує поставити ємність у 100 мкФ. Візьмемо полярний електролітичний конденсатор К53-4-25-100 ОЖО.467.037 ТУ.

Для забезпечення необхідної внутрішньої корекції заводом виробником пропонується приймати рівними конденсатори С4 = 100 мкФ, С5 = 68 мкф. Візьмемо полярні електролітичні конденсатори К53-4-25-100 та К53-4-25-68 ОЖО.67.037 ТУ.

Резистори R1 та R2 необхідні для балансу між каналами та регулювання гучності. В даному випадку змінні резистори повинні мати лінійну характеристику. Щоб мікросхема оптичмально виконувала свої функції, дані резистори потрібно взяти із номіналами 10 кОм. Застосуємо резистори СП3-9а-16-10кОм±20%.

На сабвуфер звук заходить із правого та лівого каналів, який для початку необхідно просумувати, а потім регулювати.

Застосуємо наступну схему (рис. 3.4.2).

Коефіціент передачі такого регулятора складає

Кu = -z2/z1. (3.4.1)

Враховуючи, що максимальний коефіціент передачі рівний 1, ланки z1 та z2 повинні бути рівні. Номінали резисторів вибираються в межах від 4,7 до 100 кОм. Для забезпечення оптимальної лінійної регуляції звуку приймаємо R1 = R2 = R3 = 47 кОм, причому резистор R3 є змінним. Застосуємо резистори С2-23-0,125-47кОм±5% А-В-В-А ОЖО.467.104 ТУ. Враховуючи властивості слуху людини, змінний резистор застосуємо із логарифмічною характеристикою СП5-1Б-47кОм ОЖО.468.505 ТУ.

Резистор R4 включений у зворотній зв'язок для того, щоб при R3 = 0 не було короткого замикання виходу на землю. Резистор R4 візьмемо С2-23-0,125-1кОм±5% А-В-В-А ОЖО.467.104 ТУ.

Конденсатор С1 - роздільний конденсатор. Застосуємо конденсатор полярний електролітичний К52-4-10-1 ОЖО.467.037 ТУ.

В якості ОП застосуємо LM301A.

4. Вибір гучномовців та розрахунок корпусів

4.1. Основні елементи конструкції

Корпус АС являється основним конструктивним елементом, формуючи її електроакустичні характеристики в області низьких частот за рахунок регулювання навантаження на тильну поверхню дифузора і використання чи подавлення випромінювання цієї поверхні. Він здійснює суттєвий вплив на електроакустичні параметри АС як в області низьких частот (таких як АЧХ, ФЧХ, характеристика напрямленості , коефіціент нелінійних спотворень), так і в області середніх і високих частот за рахунок коливань стінок корпусу і його внутрішнього об'єму, а також за рахунок впливу форми корпусу на характер дифракційних ефектів.

Найбільш поширеними типами корпусів в сучасних АС є закритий корпус та корпус з фазоінвертором (рис. 5.1.1).

Закритий корпус служить для подавлення випромінювання тильної поверхні дифузора гучномовця. Корпус фазоінверторного типу відрізняється наявністю в ньому отвору, що збільшує рівень звукового тиску у визначеній області низьких частот завдяки випромінюванню тильної поверхні дифузора.

Традиційно в більшості АС застосовують прямокутні корпуса.

Випромінювачі, які використовуються в більшості АС, являють собою електромагнітні головки гучномовців. В ряді АС застосовуються також електростатичні, ізодинамічні та ін.

При виборі типу гучномовця ставляться наступні вимоги:

- ефективний робочий діапазон частот гучномовця повинен повністю охоплювати той діапазон частот, у якому відтворює звук підсилювач;

- нерівномірність частотної характеристики звукового тиску повинна бути найменшою;

- рівень характеристичної чутливості у всіх гучномовців АС повинен бути близьким одни до одного;

- повний коефіціент гармонічних спотворень повинен бути найменшим;

- номінальний електричний опір гучномовця повинен відповідати опору навантаження підсилювача;

- паспортна потужність гучномовця має бути в 1,5...2 рази більшою ніж максимальна вихідна потужність підсилювача.

4.2. Розрахунок конструкції сабвуфера

Виходячи із умов ТЗ та попередніх розрахунків гучномовець для сабвуфера вибираємо виробництва чеської фірми Acoustics TVM типу ARN-150-02/4.

Технічні характеристики:

1. Амплітудно частотна характеристика звукового тиску представлена на рис. 4.2.1.

2. Паспортна потужність 50 Вт.

3. Максимальна короткочасна потужність 100 Вт.

4. Електричний опір 4 Ом.

5. Резонансна частота 45 Гц.

6. Робочий діапазон частот 45...5000 Гц.

7. Рівень чутливості 85 дБ.

8. Еквівалентний об'єм 16 л.

9. Повна добротність 0,24.

10. Габаритні розміри ш 150Ч65,5 мм.

11. Маса 0,8 кг.

Перед початком розрахунку корпусу перевіримо умову встановлення труби фазоінвертора:

f0/Q > 100, (4.2.1)

f0/Q = 45/0,24 = 0,87.

Звідси бачимо, що даний гучномовець просто природжений працювати у корпусі з фазоінвертором.

Така акустична система в цілому складається так ніби з двох резонансних систем - рухомої системи гучномовця і оформлення з отвором. При правильно вибраному відношенні резонансних частот цих систем відтворення низьких частот значно покращиться в порівнянні з закритими та відкритими акустичними системами з таким же об'ємом оформлення. Це пояснюється тим, що на частотах вище резонансної частоти фазоінвертора швидкість коливань частот в отворі зсунута по фазі від швидкості коливань задньої сторони дифузора рухомої системи.

Для правильного вибору відношення параметрів фазоінвертора скористаємось методикою описаною в [4].

На рис. 4.2.2 приведені криві відношення резонансної частоти фазоінвертора fB до резонансної частоти гучномовця f0, крива добротності гучномовця на резонансній частоті Q і крива відношення частоти fЗ, на якій получається спад до низьких частот частотної характеристики в 3 дБ, до резонансної частоти гучномовця f0. Всі ці величини далі в залежності від величини відношення V0/V еквівалентного об'єму гучномовця до об'єму оформлення.

Встановлюємо перпендикуляр із точки на осі ординат (зліва) Q = 0,24, цій точці відповідає абсциса V0/V = 1,2. Звідси об'єм оформлення:

V = V0/1,2 = 1,6/1,2 = 13 л.

По кривих fЗ/f0 і fВ/f0 аналогічно відраховуємо (по правій шкалі ординат) fЗ/f0 = 0,90 і fВ/f0 = 0,95. Таким чином спад частотної характеристики на 3 дБ буде на частоті:

fЗ = 0,9f0 = 41 Гц.

Резонансна частота фазоінвертора буде рівною

fВ = 0,95f0 = 43 Гц.

Максимальне значення діаметру трубки обмежується тим, що визначена по формулі її довжина має бути не більшою 1/12 довжини хвилі на резонансній частоті. Крім того, трубка своїм другим кільцем не повинна впиратись в стінку, протилежну тій на якій вона закріплена. Цей кінець повинен бути на відстані від стінки не менше ніж на 4 см. Трубку конструктивно можна виконати із картону.

Розміри трубки визначаємо із формули:

, (4.2.2)

де d - діаметр трубки;

l - довжина трубки;

с = 343 - пружність повітря в середині об'єму.

Як видно із формули, діаметр трубки і її довжина можуть знаходитись в різних співвідношеннях, задовільняючи при цьому формулу.

Для цього спочатку обчислимо

.

Задаємось діаметром трубки 0,05 м ( 5 см).

Тоді її довжина буде

l = (356?d2 - 3,4?d)/4 = (356?64?10-4 - 3,4?8?10-2)/4 = 0,18 м.

Габаритні розміри акустичного оформлення визначаються із співвідношення:

aхbхc = 2х21/2?1. (4.2.3)

Виходячи із формули

V = a?b?c (4.2.4)

можна записати:

0,013 = 2х?21/2х?х,

звідси визначаємо х = 0,166, тоді

а = 2?0,166 ? 0,33 м,

b = 21/2?0,166 ? 0,24 м,

c = 0,17 м.

Отримуємо габаритні розміри конструкції сабвуфера: 0,33Ч0,24Ч0,17.

4.3. Розрахунок конструкції двосмугової акустичної системи

Дана двосмугова акустична система складається із пари “колонок”, тобто правого та лівого каналу. Оскільки вони ідентичні між собою, то достатньо розглянути лише один варіант розрахунку.

Виходячи із ТЗ та попередніх розрахунків в ролі низькочастотного гучномовця вибираємо 20ГДН-2 вітчизняного виробництва.

Технічні характеристики:

1. АЧХ (рис. 4.3.1).

2. Ефективний робочий діапазон частот 80...3150 Гц.

3. Нерівномірність частотної характеристики звукового тиску не більше 18 дБ.

4. Рівень характеристичної чутливості не менше 81 дБ.

5. Робоча потужність 15 Вт.

6. Повний коефіціент гармонійних спотворень на частотах:

200 Гц - 5 дБ;

400...1000 Гц - 4 дБ;

2000 Гц - 2,5 дБ.

7. Номінальний електричний опір 2,5 Ом.

8. Гранична шумова (паспортна) потужність 20 Вт.

9. Гранична довгочасна потужність 30 Вт.

10. Гранична короткочасна потужність 45 Вт.

11. Частота основного резонансу 50 Гц.

12. Габаритні розміри ш 125Ч70,7 мм.

13. Маса 1,2 кг.

В ролі високочастотного вибираємо гучномовець чеської фірми Acoustics TVM типу ARZ 6604.

Технічні характеристики:

1. АЧХ (рис. 4.3.2).

2. Паспортна потужність 8 Вт.

3. Максимальна короткочасна потужність 25 Вт.

4. Електричний опір 4 Ом.

5. Резонансна частота 55...90 Гц.

6. Робочий діапазон частот 60...20000 Гц.

7. Рівень чутливості 89 дБ.

8. Еквівалентний об'єм 12 л.

9. Повна добротність 1,15.

10. Габаритні розміри ш 200Ч80 мм.

11. Маса 0,84 кг.

При розрахунку корпусу двосмугової акустичної системи ми не враховуємо високочастотний гучномовець, оскільки він закритий спеціальним ковпаком із внутрішньої сторони: не вноситиме ніяких спотворень на АЧХ низькочастотного гучномовця.

Перевіримо чи доцільно встановлювати трубу фазоінвертора із використанням вибраного гучномовця:

f0/Q > 100, (4.3.1)

f0/Q = 50/0,5 = 100

Як бачимо, дана акустична система може працювати, як і з фазоінвертором, так і без нього. Для спрощення конструкції корпусу застосуємо закритий корпус.

Мінімально допустимий об'єм оформлення [4] визначається із формули:

, (4.3.2)

де Q1 - добротність акустичної системи,

Q - повна добротність гучномовця,

V0 - еквівалентний об'єм гучномовця.

Добротність акустичної системи не рекомендується вибирати більшою Q=1, тому що рухома система виходить “роздемпфованою”. Це означає, що при її збудженні, тобто, при подачі на неї напруги музичної або розмовної програми, вона, крім того, щоб коливатись тільки в такт з цією напругою, буде коливатись із частотою власних коливань, близьких до резонансної частоти. Для слухача це буде проявлятись в тому, що до звучання музики буде замішуватись звучання цієї частоти як свого роду “гудіння”. Таким чином, будуть мати місце своєрідні спотворення, які носять назву перехідних. Ці спотворення практично майже не чути, коли добротність не перевищує одиниці.

.

Розрахуємо резонансну частоту системи при об'ємі V = 20 л,

, (4.3.3)

де f0 = 50 Гц - резонансна частота гучномовця.

Гц.

Як бачимо, із рис. 4.3.3 спад частотної характеристики на цій частоті є мінімальний і рівний 2 дБ.

Визначимо величину стандартного звукового тиску даної акустичної системи:

, (4.3.4)

Па.

Розрахунок габаритних розмірів акустичної системи проведемо за методикою, описаною в розділі 4.2:

aхbхc = 2х21/2?1.

V = х?21/2х?х = 0,02.

визначаємо х = 0,19 м, тоді

а = 2?0,19 =0,38 м,

b = 21/2?0,19 = 0,27 м,

c = 0,19 м.

Отримуємо габаритні розміри двосмугової акустичної системи: 0,38Ч0,27Ч0,19.

Двосмугова акустична система є двоканальною (правий і лівий канал). Оскільки у правому і лівому каналі використовуються одинакові гучномовці, то даний розрахунок є ідентичним, як для корпусу лівого каналу, так і для корпусу правого каналу.

5. Блок живлення

Найважливішим моментом у роботі всіх електронних схем є живлення.

Для роботи операційних підсилювачів типу LM301A необхідно двополярне стабілізоване живлення ±15 В.

Для мікросхеми TDA 2050V, яка виконує роль підсилювача у сабвуфері, необхідно живлення +25 В.

Для оптимальної роботи решти мікросхем, застовованих у проекті, достатнім буде живлення ±15 В.

Оскільки ОП споживають мало струму, а ПНЧ багато, то необхідно зробити розділене живлення. Крім того, фірми-виробники не ставлять вимог до стабілізованої напруги живлення мікросхем, які виконують роль підсилювачів низьких частот. Враховуючи наведені вище факти, доцільним є застосування блоку живлення показаного на рис. 5.1.

Трансформатор намотаний на тороїдальному магнітопроводі ОЛ64/100-64. Первинна обмотка містить 520 витків дроту діаметром 0,8 мм. Вторинна намотка з виводами 3-5 містить по 48 витків на секцію дротом 1,8 мм. Намотка 6-8 - по 30 витків на секцію дротом 1,8 мм. Намотка 9-11 - по 40 витків на секцію дротом 1,8 мм.

Схема, зібрана на елементах С1, R1, L1, C2, відіграє роль фільтра від різних завад у зовнішню мережу живлення, які можуть виникати в середині схеми проектованої акустичної системи.

Типи елементів наступні:

С1, C2 К73-17-630 В - 0,047 мкФ ±10% ОЖО.461.104 ТУ,

R1 C2-23-0,5-200 кОм ±5% ОЖО.467.104 ТУ.

Дросель L1 - ізольований мережевий провід 2Ч0,5 мм2 намотаний на феритове кільце К45 з НМ2000 до повного намотування внутрішнього діаметру, що являє порядку 25 витків. Індуктивність такого дроселя близько 100 мкГн.

Запобіжник F1 розрахований на максимальний струм 2А призначений для захисту схеми при виході з ладу випрямляючих діодів. Запобіжник типу ВП1-1 ОЖО.480.003 ТУ.

VD1 та VD2 - сильнострумовий місток (8А, 100В) типу КВРС0801.

VD3-VD5 - діоди типу 1N4001, розраховані на струм 1А та напругу 50В.

Двохполярний стабілізатор напруги RC4195NB забезпечує стабілізовану напругу живлення ±15В при споживаному струмі до 100 мА.

Конденсатори С3-С10 - згладжуючі конденсатори, щоб не було пульсацій по живленню. Ємності С3, С4 застосуємо типу К53-4-35В-4700 мкФ ОЖО.467.037 ТУ; С5, С6 - К53-4-25В-4700 мкФ ОЖО.467.037 ТУ; С7, С8 - К53-4-25В-470 мкФ ОЖО.467.037 ТУ; С9, С10 - К53-4-25В-10 мкФ ОЖО.467.037 ТУ.

6. Конструкторсько-технологічний розділ

6.1. Рекомендації та вимоги до конструювання проектованого пристрою

Двосмугова активна акустична система з сабвуфером розробляється і конструюється з врахуванням вимог уніфікації для забезпечення серійного виробництва з максимальною механізацією і автоматизацією виробничого процесу.


Подобные документы

  • Обґрунтування й вибір функціональної схеми генератора коливань. Вибір і розрахунок принципових схем його вузлів. Моделювання роботи функціональних вузлів електронного пристрою на ЕОМ. Відповідність характеристик і параметрів пристрою технічним вимогам.

    курсовая работа [79,7 K], добавлен 15.12.2010

  • Призначення і склад акустичної системи, її електрична принципова схема, принцип дії і умови експлуатації. Розробка додаткових технічних вимог до конструкції ЕА. Конструктивно-технологічний розрахунок друкованої плати та трасування друкованого монтажу.

    дипломная работа [1,7 M], добавлен 05.07.2010

  • Вибір, обґрунтування методів автоматичного контролю технологічних параметрів. Розробка структурних схем ІВК, вибір комплексу технічних засобів. Призначення, мета і функції автоматичної системи контролю технологічних параметрів, опис функціональної схеми.

    курсовая работа [32,7 K], добавлен 08.10.2012

  • Вибір та обґрунтування супергетеродинного методу прийому. Розподіл величин частотних спотворень по трактам приймача. Вибір коливальних систем тракту проміжної частоти та визначення їх добротності. Вибір підсилювальних каскадів. Опис роботи схеми.

    курсовая работа [51,8 K], добавлен 04.04.2011

  • Розрахунок основних параметрів випрямляча в керованому режимі. Вибір захисту тиристорів від перевантажень за струмом та напругою. Вибір схеми та розрахунок параметрів джерела живлення, вхідного кола генератора пилкоподібної напруги та пускових імпульсів.

    курсовая работа [817,0 K], добавлен 30.03.2011

  • Аналіз існуючих систем регулювання тяговим електроприводом вагона метрополітену і обґрунтування до модернізації. Розрахунок системи керування імпульсним перетворювачем. Вибір силових елементів перетворювача. Розробка і розрахунок задаючого генератора.

    дипломная работа [1,3 M], добавлен 12.10.2015

  • Структурна схема системи радіозв’язку. Тракт радіочастоти радіоприймача супергетеродинного типу. Розподiл частотних спотворень мiж трактами радiоприймача. Вибір гучномовців, регулятора тембра та підсилення. Визначення загальної кількості каскадів.

    контрольная работа [1,2 M], добавлен 11.06.2015

  • Опис особливостей характеристик фільтрів різних типів на прикладі ФНЧ-прототипу. Фільтри Баттерворта з максимально плоскою характеристикою. Вибір методики розрахунку. Визначення кількості ланок і вибір їх типів. Розрахунок номіналів елементів каскаду.

    курсовая работа [228,4 K], добавлен 25.12.2013

  • Розробка функціональної схеми цифрової слідкуючої системи. Складання передаточних функцій її елементів. Вибір виконавчого двигуна і підсилювача потужності. Розрахунок, побудова та моделювання послідовної безперервної корегуючої ланки методом ЛАЧХ.

    курсовая работа [169,8 K], добавлен 21.04.2011

  • Вибір і розрахунок підсилювача потужності звукової частоти: розробка схеми, параметри мікросхеми. Вибір схеми стабілізованого джерела живлення. Розрахунок компенсаційного стабілізатора, випрямляча, силового трансформатора, радіаторів, друкованої плати.

    курсовая работа [105,9 K], добавлен 29.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.