Типы сигналов

Устройство первичной обработки сигналов как неотъемлемая часть системы, ее значение в процессе сопряжения датчиков с последующими электронными устройствами. Понятие и классификация сигналов, их функциональные особенности и основные критерии измерения.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид контрольная работа
Язык русский
Дата добавления 13.02.2015
Размер файла 39,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Контрольная работа

Типы сигналов

Введение

сигнал электронный датчик

Электроника - наука, занимающаяся изучением взаимодействия электронов или других заряженных частиц с электромагнитными полями и разработкой методов создания электронных приборов и устройств, в которых это взаимодействие используется для передачи, хранения и передачи информации.

Результаты изучения электронных процессов и явлений, а также исследование и разработка методов создания электронных приборов и устройств обуславливают развитие электронной техники по двум направлениям. Первое из них связано с созданием технологий производства и промышленным выпуском электронных приборов различного назначения. Второе направление связано с созданием на основе этих приборов аппаратуры для решения различного рода задач, связанных с передачей, приемом и преобразованием информации в области информатики, вычислительной техники, систем автоматизации технологических процессов и т.д.

Электроника имеет короткую, но богатую событиями историю. Первый ее период связан с простейшими передатчиками и способными воспринимать их сигналы приемниками. Затем наступила эпоха вакуумных ламп. С середины 50-х годов начался новый период в развитии электроники, связанный с появлением полупроводниковых элементов, а затем малых и больших интегральных схем.

Современный этап развития электроники характеризуется появлением микропроцессорных сверхбольших интегральных схем, цифровых сигнальных процессоров, программируемых логических интегральных схем, позволяющих решать задачи обработки сигналов при высоких технико-экономических показателях. Цифровая электроника, преобразившая системы сбора, обработки и передачи информации, немыслима без аналоговых технологий. Именно аналоговые устройства во многом определяют характеристики этих систем.

Электроника исследует вопросы передачи, приема и преобразования информации на основе электромагнитных явлений. Применительно к электронике наряду с передачей сообщений от человека к человеку целесообразно также рассматривать обмен сведениями между человеком и автоматом и между автоматами.

Имеется множество определений понятия информации от наиболее общего философского (информация есть отражение реального мира) до практического (информация есть все сведения, являющиеся объектом хранения, передачи, преобразования).

Передается информация в виде сигналов. Сигнал есть физический процесс, несущий в себе информацию. Сигнал может быть звуковым, световым, в виде почтового отправления и др. Наиболее распространен сигнал в электрической форме в виде зависимости напряжения от времени U(t).

Практически любая электронная система имеет целью своего функционирования то или иное преобразование энергии или преобразование информации. Задачей любой электронной системы управления в самом общем смысле является обработка информации о текущем режиме работы управляемого объекта и выработка на основе этого управляющих сигналов с целью приближения текущего режима работы объекта к заданному режиму. Под обработкой информации в данном случае подразумевается решение тем или иным способом уравнений состояния системы.

Представленный на рис 1.1 объект - это реальный физический объект, многочисленные свойства которого характеризуются различными физическими величинами (ФВ). Он находится в многосторонних и сложных связях с другими объектами. Из всего многообразия этих связей на рис. 1.1 показаны подлежащие измерению входные ФВ Х и выходными ФВ Y, характеризующие состояние объекта. Датчики (первичные преобразователи) обеспечивают преобразование ФВ Х и Y, имеющих в большинстве случаев неэлектрическую природу, в электрические сигналы с сохранением необходимой информации о возмущающих воздействиях и состоянии объекта.

Устройство первичной обработки (УПО) сигналов является неотъемлемой частью системы. Оно обеспечивает сопряжение датчиков с последующими электронными устройствами, осуществляющими предварительную обработку измеряемых физических величин. Как правило, на него возлагаются следующие функции:

· усиление выходных сигналов первичных преобразователей;

· нормализация аналоговых сигналов, т.е. приведение границ шкалы первичного непрерывного сигнала к одному из стандартных диапазонов входного сигнала аналого-цифрового преобразователя измерительного канала (наиболее распространены диапазоны от 0 до 5 В, от -5 В до 5 В и от 0 до 10 В;

· предварительная низкочастотная фильтрация, т.е. ограничение полосы частот первичного непрерывного сигнала с целью снижения влияния на результат измерения помех различного происхождения;

· обеспечение гальванической изоляции между источником аналогового или дискретного сигнала и измерительным и / или статусным каналами системы. В равной степени это относится к изоляции между каналами дискретного вывода системы и управляемым силовым оборудованием. Помимо собственно защиты выходных и входных цепей гальваническая изоляция позволяет снизить влияние на систему помех по цепям заземления за счет полного разделения земли вычислительной системы и земли контролируемого оборудования. Отсутствие гальванической изоляции допускается только в технически обоснованных случаях.

Выходные сигналы устройства первичной обработки преобразуется в цифровую форму устройством, которое называется аналого-цифровым преобразователем (АЦП). На выходе АЦП получается двоичное представление аналогового сигнала, которое затем обрабатывается цифровым сигнальным процессором. После обработки содержащаяся в сигнале информация может быть преобразована обратно в аналоговую форму с использованием цифро-аналогового преобразователя (ЦАП).

Процессор обрабатывает исходные данные, характеризующие возмущающие воздействия и состояние объекта. Алгоритм обработки определяется объектом измерения, задачей измерения, заключающейся в определении значений выбранных (измеряемых) физических величин (ФВ) с требуемой точностью в заданных условиях, и основными характеристиками измерений.

1. Сигналы

сигнал электронный датчик

Понятие сигнала является одним из основных понятий электроники. Сигнал есть существующий в системе физический процесс, имеющий множество состояний, которые он принимает в соответствии с внешними воздействиями на эту систему. Основным свойством сигнала является то, что он несет информацию о воздействии на эту систему.

Поскольку реальные физические процессы протекают во времени, то в качестве математической модели сигнала, представляющего эти процессы, используют функции времени, отражающие изменения физических процессов.

Сигнал может быть звуковым, световым, в виде почтового отправления и др. Наиболее распространен сигнал в электрической форме в виде зависимости напряжения от времени U(t).

2. Классификация сигналов

По роли в передачи конкретной информации сигналы могут быть разделены на полезные и мешающие (помехи). Полезные сигналы переносят заданную информацию, а помехи искажают её, хотя, может быть, и переносят другую информацию.

По степени определенности ожидаемых значений сигнала все сигналы можно разделить на детерминированные сигналы и случайные сигналы. Детерминированным называется сигнал, значение которого в любой момент времени может быть точно определено. Детерминированные сигналы могут быть периодическими и непериодическими.

Периодическим называется сигнал, для которого выполняется условие
s(t) = s (t + kT), где k - любое целое число, Т - период, являющийся конечным отрезком времени. Пример периодического сигнала - гармоническое колебание.

.

Здесь Um, T, f0, 0, и 0 - соответственно амплитуда, период, частота, угловая частота и начальная фаза колебания.

К сложным периодическим сигналам можно отнести импульсные сигналы различной формы (электрические импульсы)

Электрический импульс - это кратковременное скачкообразное изменение электрического напряжения или силы тока.

Электрические импульсы тока или напряжения (однополярные) не содержащие высокочастотных колебаний называются видеоимпульсами (рис. 2.2). Электрические импульсы, представляющие собой ограниченные во времени высокочастотные или сверхвысокочастотные электромагнитные колебания, огибающая которых имеет форму видеоимпульса, называются радиоимпульсами.

По характеру изменения во времени различают электрические импульсы прямоугольной, пилообразной, экспоненциальной, колоколобразной и других форм. Реальный видеоимпульс может иметь достаточно сложную форму, которая характеризуется амплитудой А, длительностью импульса и, длительностью фронта ф и длительностью спада с, величиной скола вершины А.

Любой сложный периодический сигнал может быть представлен в виде суммы гармонически колебаний с частотами, кратными основной частоте.

Непериодический сигнал, как правило, ограничен во времени.

Случайным сигналом называют функцию времени, значения которой заранее неизвестны и могут быть предсказаны лишь с некоторой вероятностью. В качестве основных характеристик случайных сигналов принимают:

а) закон распределения вероятности (относительное время пребывания величины сигнала в определенном интервале);

б) спектральное распределение мощности сигнала.

Выходные сигналы датчиков являются отражением некоторых физических процессов. Они, как правило, непрерывны, поскольку большинство физических процессов непрерывны по своей природе. Такие сигналы называются аналоговыми.

Аналоговый сигнал описывается непрерывной (или кусочно-непрерывной) функцией xA(t), причем сама функция, как и ее аргумент, может принимать в заданных пределах любые значения. Аналоговые сигналы достаточно просто генерировать и обрабатывать, однако они позволяют решать относительно простые технические задачи. Работа современных электронных систем основана на использовании дискретных и цифровых сигналов.

Дискретный во времени сигнал получается в результате дискретизации непрерывной функции, представляющей замену непрерывной функции ее мгновенными значениями в дискретные моменты времени. Такой сигнал описывается решетчатой функцией (последовательным временным рядом) S (п?t). Она может принимать любые значения в некотором интервале, в то время как независимая переменная n принимает дискретные значения п = 0, ±1, ±2,…, а ?t представляет собой интервал дискретизации.

Квантованный по уровню сигнал получается в результате операции квантование. Суть операции квантования по уровню состоит в том, что в непрерывном динамическом диапазоне аналогового сигнала фиксируется ряд дискретных уровней, называемых уровнями квантования. Текущие значения аналогового сигнала отождествляются с ближайшими уровнями квантования.

Квантование по уровню дискретного во времени сигнала позволяет получить дискретно-квантованный сигнал. Цифровой сигнал получается в результате нумерации уровней квантования дискретно-квантованного сигнала двоичными числами (числами в двоичной системе счисления) и, следовательно, представления отсчетных значений дискретно-квантованного сигнала в форме чисел.

Среди детерминированных сигналов особое место занимают испытательные сигналы, необходимость в существовании которых обусловлена потребностями испытания характеристик разрабатываемых электронных устройств.

Гармоническое колебание. Самым распространенным испытательным сигналом является гармоническое колебание, которое используется в измерительной практике для оценки частотных свойств устройств различного назначения.

Единичный скачок представляет собой безразмерную величину, поэтому умножение сигнала s(t) на функцию единичного скачка равносильно включению этого сигнала в момент t=0:

s (t) при t 0;

s(t) 1 (t) =

0 при t t0.

Дельта-функция. По определению д-функция удовлетворяет следующим условиям:

0 при t t0;

(t - t0) =

? при t = t0;

Таким образом, д-функция равна нулю при всех отличных от нуля значениях аргумента и принимает в точке t = 0 бесконечно большое значение. Площадь под кривой, ограниченной д-функцией, равна единице.

3. Формы представления детерминированных сигналов

Модели сигналов в виде функции времени предназначены, в первую очередь, для анализа формы сигналов. При решении задач прохождения сигналов сложной формы через какие-либо устройства такая модель сигнала часто не совсем удобна и не позволяет понять суть происходящих в устройствах физических процессов.

Поэтому сигналы представляют набором элементарных (базисных) функций, в качестве которых наиболее часто используют ортогональные гармонические (синусоидальные и косинусоидальные) функции. Выбор именно таких функций обусловлен тем, что они являются, с математической точки зрения, собственными функциями инвариантных во времени линейных систем (систем, параметры которых не зависят от времени), т.е. не изменяют своей формы после прохождения через эти системы. В результате сигнал может быть представлен множеством амплитуд, фаз и частот гармонических функций, совокупность которых называется спектром сигнала.

Таким образом, существуют две формы представления произвольного детерминированного сигнала: временное и частотное (спектральное).

Первая форма представления основана на математической модели сигнала в виде функции времени t:

S = S(t),

вторая - на математической модели сигнала в виде функции частоты f, причем, что весьма важно, эта модель существует только в области комплексных функций:

S = (f) = S(jf).

Обе формы представления сигнала связаны между собой парой преобразований Фурье:

При использовании угловой (циклической) частоты = 2f преобразования Фурье имеют следующий вид:

Временное представление гармонического колебания имеет следующий вид:

где Um, T, f0, 0, и 0 - соответственно амплитуда, период, частота, угловая частота и начальная фаза колебания.

Для представления такого колебания в частотной области достаточно задать две функции частоты, показывающие, что на частоте 0 амплитуда сигнала равна Um, а начальная фаза равна 0:

Графики временного и частотного представлений гармонического колебания приведены на рис. 2.7, где амплитуда Um и фаза 0 отложены в виде отрезков прямых.

Значения Um =U(0) и 0 =(0) называются соответственно амплитудным и фазовым спектром гармонического колебания, а их совокупность - просто спектром.

Вместо использования в частотной области двух действительных функций можно использовать одну, но комплексную функцию. Для этого запишем временное представление гармонического колебания в комплексной форме:

.

Если исключить из рассмотрения область отрицательных частот (они физического смысла не имеют), то можно записать:

,

Где - комплексная амплитуда гармонического колебания, модуль которой равен Um, а аргумент - 0.

4. Цели обработки физических сигналов

Главная цель обработки физических сигналов заключается в необходимости получения содержащейся в них информации. Эта информация обычно присутствует в амплитуде сигнала (абсолютной или относительной), в частоте или в спектральном составе, в фазе или в относительных временных зависимостях нескольких сигналов. Как только желаемая информация будет извлечена из сигнала, она может быть использована различными способами.

В некоторых случаях желательно переформатировать информацию, содержащуюся в сигнале. В частности, смена формата имеет место при передаче звукового сигнала в телефонной системе с многоканальным доступом и частотным разделением (FDMA). В этом случае аналоговые методы используются, чтобы разместить несколько голосовых каналов в частотном спектре для передачи через радиорелейную станцию микроволнового диапазона, коаксиальный или оптоволоконный кабель. В случае цифровой связи аналоговая звуковая информация сначала преобразуется аналого-цифровым преобразователем в цифровую. Цифровая информация, представляющая индивидуальные звуковые каналы, мультиплексируется во времени (многоканальный доступ с временным разделением, TDMA) и передается по последовательной цифровой линии связи.

Еще одна причина обработки сигналов заключается в сжатии полосы частот сигнала (без существенной потери информации) с последующим форматированием и передачей информации на пониженных скоростях, что позволяет сузить требуемую полосу пропускания канала. В высокоскоростных модемах и системах адаптивной импульсно-кодовой модуляции широко используются алгоритмы устранения избыточности данных (сжатия), так же как и в цифровых системах мобильной связи, системах записи звука, в телевидении высокой четкости.

Программно-аппаратные комплексы для автоматизации измерений во многих случаях используют информацию, полученную от датчиков, для выработки соответствующих сигналов обратной связи, которые, в свою очередь, непосредственно управляют измерительным процессом. Эти системы требуют наличия как АЦП и ЦАП, так и датчиков, устройств нормализации сигнала и цифровых процессоров

В некоторых случаях в сигнале, содержащем информацию, присутствует шум, и основной целью является восстановление сигнала. Такие методы, как фильтрация, синхронное детектирование и т.д., часто используются для выполнения этой задачи как в аналоговой, так и в цифровой областях.

Таким образом, цели преобразования сигналов:

· извлечение информации о сигнале (амплитуда, фаза, частота, спектральные составляющие, временные соотношения);

· преобразование формата сигнала;

· сжатие данных;

· формирование сигналов обратной связи;

· аналого-цифровое преобразование;

· цифро-аналоговое преобразование;

· выделение сигнала из шума.

5. Методы обработки физических сигналов

Сигналы могут быть обработаны с использованием:

· аналоговых методов (аналоговой обработки сигналов);

· цифровых методов (цифровой обработки сигналов);

· или комбинации аналоговых и цифровых методов (комбинированной обработки сигналов).

Устройства, в которых производится обработка аналоговых сигналов (аналоговая обработка), называются аналоговыми (аналоговыми процессорами).

Устройства, в которых производится обработка цифровых сигналов (цифровая обработка), называются цифровыми (цифровыми процессорами).

В некоторых случаях выбор метода обработки ясен, в других случаях нет ясности в выборе и, следовательно, принятие окончательного решения основывается на определенных соображениях, основанных на преимуществах и недостатках указанных методов.

К основным преимуществам цифровых методов обработки сигналов можно отнести:

· возможность реализации сложных алгоритмов обработки сигналов, которые трудно, а зачастую даже невозможно реализовать c помощью аналоговой техники;

· возможность реализации принципа «адаптации» или самонастройки, то есть возможности изменения алгоритма обработки сигнала без физической перестройки устройства (например, зависимости от вида сигнала, поступающего на вход фильтра);

· возможность одновременной обработки нескольких сигналов;

· принципиально достижимая более высокая точность обработки сигнала;

· отсутствие существенного влияния нестабильности параметров цифровых процессоров, вызванной колебаниями температуры, старением, дрейфом нуля, изменением питающих напряжений и другими причинами, на «качество» обработки сигналов;

· большая помехоустойчивость цифровых устройств и меньшие энергетические, временные и частотные «затраты» на передачу цифровых сигналов (по сравнению с передачей аналоговых сигналов);

· более высокий уровень развития цифровых устройств.

К недостаткам цифровых процессоров можно отнести:

· большую сложность по сравнению с аналоговыми устройствами и пока еще более высокую стоимость;

· не столь высокое, как хотелось бы, быстродействие;

· невозможность устранения специфических погрешностей, вызванных дискретизацией, квантованием сигнала и округлениями в процессе вычислений.

Сегодняшний специалист стоит перед выбором надлежащей комбинации аналоговых и цифровых методов для решения задачи обработки сигналов. Невозможно обработать физические аналоговые сигналы, используя только цифровые методы, так как все датчики (микрофоны, термопары, тензорезисторы, пьезоэлектрические кристаллы, головки накопителя на магнитных дисках и т.д.) являются аналоговыми устройствами. Поэтому, некоторые виды сигналов требуют наличия цепей нормализации для дальнейшей обработки сигналов аналоговым или цифровым методом. В действительности, цепи нормализации сигнала - это аналоговые процессоры, выполняющие:

· усиление сигналов в измерительных и предварительных (буферных) усилителях);

· обнаружение сигнала на фоне шума высокоточными усилителями синфазного сигнала;

· динамическое сжатие диапазона (логарифмическими усилителями, логарифмическими ЦАП и усилителями с программируемым коэффициентом усиления);

· фильтрация (пассивная и активная).

Литература

1. Волынский В.А. и др. Электротехника /Б.А. Волынский, Е.Н. Зейн, В.Е. Шатерников: Учеб. пособие для вузов. - М.: Энергоатомиздат, 2011. - 528 с., ил.

2. Касаткин А.С., Немцов М.В. Электротехника: Учеб. пособие для вузов. - 4-е изд., перераб. - М.: Энергоатомиздат, 2003. - 440 с., ил.

3. Основы промышленной электроники: Учебник для неэлектротехн. спец. вузов /В.Г. Герасимов, О М. Князьков, А Е. Краснопольский, В.В. Сухоруков; под ред. В.Г. Герасимова. - 3-е изд., перераб. и доп. - М.: Высш. шк., 2006. - 336 с., ил.

4. Электротехника и электроника в 3-х кн. Под ред. В.Г. Герасимова Кн.1. Электрические и магнитные цепи. - М.: Высшая шк. - 2006 г.

5. Электротехника и электроника в 3-х кн. Под ред. В.Г. Герасимова Кн.2. Электромагнитные устройства и электрические машины. - М.: Высшая шк. - 2007 г.

Размещено на Allbest.ru


Подобные документы

  • Анализ методов обнаружения и определения сигналов. Оценка периода следования сигналов с использованием методов полных достаточных статистик. Оценка формы импульса сигналов для различения абонентов в системе связи без учета передаваемой информации.

    дипломная работа [3,0 M], добавлен 24.01.2018

  • Сигнал - материальный носитель информации и физический процесс в природе. Уровень, значение и время как основные параметры сигналов. Связь между сигналом и их спектром посредством преобразования Фурье. Радиочастотные и цифровые анализаторы сигналов.

    реферат [118,9 K], добавлен 24.04.2011

  • Понятие, сущность, размерность, виды, классификация, особенности преобразования и спектральное представление сигналов, их математическое описание и модели. Общая характеристика и графическое изображение аналогового, дискретного и цифрового сигналов.

    реферат [605,8 K], добавлен 29.04.2010

  • Понятие и принцип работы датчиков, их назначение и функции. Классификация и разновидности датчиков, сферы и возможности их применения. Сущность и основные свойства регуляторов. Особенности использования и параметры усилителей, исполнительных устройств.

    реферат [17,8 K], добавлен 28.03.2010

  • Назначение и устройство телевизионного приемника цветного изображения LG. Узлы коммутации сигналов, управления режимами работы телевизора, обработки сигналов. Настройка и регулировка телевизора LG, основные неисправности и методы их устранения.

    курсовая работа [984,6 K], добавлен 18.05.2013

  • Классификация цифровых приборов. Модели цифровых сигналов. Методы амплитудной, фазовой и частотной модуляции. Методика измерения характеристики преобразования АЦП. Синтез структурной, функциональной и принципиальной схемы генератора тестовых сигналов.

    дипломная работа [2,2 M], добавлен 19.01.2013

  • Сигналы и их характеристики. Линейная дискретная обработка, ее сущность. Построение графиков для периодических сигналов. Расчет энергии и средней мощности сигналов. Определение корреляционных функций сигналов и построение соответствующих диаграмм.

    курсовая работа [731,0 K], добавлен 16.01.2015

  • Исследование принципов разработки генератора аналоговых сигналов. Анализ способов перебора адресов памяти генератора аналоговых сигналов. Цифровая генерация аналоговых сигналов. Проектирование накапливающего сумматора для генератора аналоговых сигналов.

    курсовая работа [513,0 K], добавлен 18.06.2013

  • Устройство коммутаторов аналоговых сигналов. Сущность коммутации сигналов - метода, с помощью которого сигналы, поступающие от нескольких источников, объединяются в определенном порядке в одной линии. Многоканальные, матричные коммутаторы, мультиплексоры.

    реферат [556,8 K], добавлен 20.12.2010

  • Разработка микропроцессорного устройства измерения параметров аналоговых сигналов и передачи измеренных величин по беспроводному каналу связи на ЭВМ. Выбор микроконтроллера, микросхемы, интерфейса связи. Разработка программного обеспечения для управления.

    курсовая работа [1,3 M], добавлен 24.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.