Разработка схем приемного и передающего устройств
Обзор существующих методов передачи информации. Передача дискретных сообщений и виды манипуляции. Преобразование непрерывного сообщения в цифровую форму. Методы повышения помехоустойчивости систем передачи информации. Разработка схемных решений устройств.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 11.10.2013 |
Размер файла | 1,8 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Введение
В цифровых системах сигналы передаются в виде различных комбинаций импульсов постоянной амплитуды, отображающих числовое значение сигнала в каждый данный момент времени (кодовыми группами).
Чтобы каждое значение сигнала можно было преобразовать в соответствующую кодовую группу, количество таких значений должно быть ограничено. Поэтому в кодовые группы можно преобразовывать только дискретные во времени сигналы. Для возможности передачи непрерывных по времени сигналов в цифровой форме, т.е. в виде кодовых групп, их необходимо предварительно преобразовать в дискретные.
Передавать дискретизированный сигнал по линии нецелесообразно, т.к. он очень чувствителен к влиянию помех. Поэтому в цифровых системах передачи его преобразуют в цифровую форму. С этой целью сигнал подвергают процессам квантования и кодирования. Далее происходит преобразование цифровых символов в сигналы - модуляция.
В данной курсовой работе необходимо разработать структурную схему системы и функциональную схему приемного или передающего устройства. Определить скорость передачи информации, вид модуляции, тип избыточного кода с использованием заданного варианта и разработать схемные решения устройств, реализующие выбранные параметры.
1. Анализ существующих методов передачи информации в ИТС
1.1 Анализ сообщений различной физической природы
Информационная наука находит применение в самых разнообразных областях. В связи с этим нет всеобщего для всех наук классического определения понятия “информация”. Под информацией понимают не все получаемые сведения, а только те, которые еще не известны и являются новыми для получателя. В этом случае информация является мерой устранения неопределенности. Передача информации на расстояние осуществляется при помощи сообщения.
Сообщение - информация, выраженная в определенной форме и предназначенная для передачи ее от источника к получателю с помощью сигналов различной физической природы. Сообщением могут быть телеграмма, фототелеграмма, речь, телевизионное изображение, данные на выходе ЭВМ и т.д., передаваемые по различным каналам связи, а также сигналы различной физической природы, исходящие от объектов.
Сигнал передаёт сообщение во времени. Следовательно, он всегда является функцией времени, даже если сообщение (например, неподвижное изображение) таковым не является. Если сигнал представляет собой функцию х(t), принимающую только определенные дискретные значения х, то его называют дискретным или дискретным по уровню (амплитуде). Точно так же и сообщение, принимающее только некоторые определенные уровни, называют дискретным. Если же сигнал (или сообщение) может принимать любые уровни в некотором интервале, то они называются непрерывными или аналоговыми.
В настоящее время происходит непрерывное расширение областей применения систем передачи цифровой информации и все большее число различных видов аналоговой информации стремятся передавать в цифровой форме. Это относится к передаче телефонных сообщений, фотоизображений, данных телеметрии и т. п. Таким образом, дискретные сообщения могут быть как первичными, так и вторичными, полученными из непрерывных.
1.2 Передача непрерывных сообщений и виды модуляции
Для передачи информации на расстояние необходимо передать содержащее эту информацию сообщение. Системы передачи информации состоит из следующих основных элементов: источник, кодер, модулятор, канал, демодулятор, декодер и приемник.
Кодер осуществляет отображение генерируемого сообщения в дискретную последовательность. Модулятор и демодулятор в совокупности реализуют операции по преобразованию кодированного сообщения в сигнал и обратные преобразования.
Декодер отображает дискретную последовательность в копию исходного сообщения.
При радиопередаче низкочастотный информационный сигнал передается на несущей радиочастоте и должен ее изменять (модулировать). При модуляции могут изменяться амплитуда, частота или фаза несущей. Модуляцию применяют для того, чтобы:
передать информацию с минимумом искажений;
провести передачу и прием с минимальными потерями;
эффективно использовать частотный спектр.
Существует три основных вида аналоговой модуляции:
1. Амплитудная модуляция (АМ) - модуляция, при которой незатухающие колебания изменяются по амплитуде в соответствии с модулирующими его колебаниями более низкой частоты. AM является наиболее простым и распространенным способом изменения параметров носителя информации, частота и начальная фаза колебания поддерживаются неизменными. Вид амплитудной модуляции представлен на рисунке 1.
Рис. 1. Амплитудная модуляция
2. Частотная модуляция (ЧМ) - модуляция, при которой несущая частота сигнала изменяется в соответствии с модулирующим колебанием. Основными достоинствами частотной модуляции являются: высокая помехоустойчивость, возможность использования статистических свойств многоканального сообщения для повышения помехоустойчивости, возможность простыми средствами обеспечить постоянство остаточного затухания каналов связи. Частотная модуляция показана на рисунке 2.
Рис. 2. Частотная модуляция
3. Фазовая модуляция (ФМ) - изменение фазы несущей пропорционально мгновенным значениям модулирующего сигнала. При ФМ по закону модулирующего колебания uЩ(t) изменяется фаза колебаний:
Ф(t)= щ0t+kфм uЩ(t),
где kфм - коэффициент пропорциональности, численно равный крутизне характеристики фазового модулятора.
При ЧМ и ФМ в процессе модуляции осуществляется воздействие на фазу (фазовый угол) несущего колебания, т.е. эти два вида модуляции являются разновидностями, так называемой угловой модуляции.
1.3 Передача дискретных сообщений и виды манипуляции
Дискретное сообщение, формируемое источником, представляет собой последовательность знаков, выбираемых из определенного набора. Для преобразования последовательности знаков дискретного сообщения в первичный сигнал сначала производится их кодирование, т.е. каждый знак сообщения заменяется комбинацией из небольшого числа стандартных символов, а далее эти стандартные символы преобразуются в стандартные электрические сигналы ui (рис.3).
Знаки Т П С
Кодовые комбинации 00001 01101 10100
Рис. 3. Преобразование сообщений при кодировании
В результате кодирования каждый знак сообщения представляется в виде последовательности символов вторичного алфавита - кодовых комбинаций. Кодирование может производиться вручную или автоматически. Устройство, осуществляющее операцию кодирования автоматически, называется кодером.
Обратная операция, т.е. восстановление знаков сообщения из кодовых комбинаций, называется декодированием, а устройство, выполняющее эту операцию - декодером. Обычно кодер и декодер выполняют также операции преобразования символов в первичный сигнал и первичного сигнала в символы, их часто объединяют в единое устройство - кодек. Процесс преобразования дискретного сообщения в сигнал и обратного преобразования сигнала в сообщение показан на рисунке 4.
Рис. 4
Дискретная модуляция является частным случаем модуляции гармонической несущей, когда модулирующий сигнал u(t) дискретный. Таким дискретным модулирующим сигналом обычно является первичный сигнал, отображающий символы кодовых комбинаций дискретных сообщений. Дискретную модуляцию называют еще манипуляцией.
Управляя с помощью первичного сигнала параметрами гармонической несущей, можно получить амплитудную, частотную и фазовую манипуляцию.
На рис. 5 приведены формы сигнала при двоичном коде для различных видов дискретной модуляции. При АМ символу 1 соответствует передача несущего колебания в течение времени T (посылка), символу 0 - отсутствие колебания (пауза). При ЧМ передача несущего колебания с частотой f1 соответствует символу 1, а передача колебания с частотой f0 соответствует 0. При двоичной ФМ меняется фаза несущей на р при каждом переходе от 1 к 0 и от 0 к 1.
Рис. 5. Формы сигналов при двоичном коде для различных видов дискретной модуляции
В системах передачи дискретных сообщений решающая схема состоит их двух частей: демодулятора и декодера.
1.4 Системы передачи информации цифровыми методами
Для преобразования непрерывного сообщения в цифровую форму используются операции дискретизации и квантования. Полученная таким образом последовательность квантованных отчетов кодируется и передается по дискретному каналу как всякое дискретное сообщение. На приемной стороне непрерывное сообщение после декодирования восстанавливается (с той или иной точностью).
Основное техническое преимущество цифровых систем передачи перед непрерывными системами состоит в их высокой помехоустойчивости. Это преимущество наиболее сильно проявляется в системах передачи с многократной ретрансляцией сигналов.
При цифровой системе непрерывных сообщений можно повысить верность применением помехоустойчивого кодирования. Высокая помехоустойчивость цифровых систем передачи позволяет осуществлять практически неограниченную по дальности связь при использовании каналов сравнительно невысокого качества.
Рассмотрим структурную схему цифрового канала передачи непрерывных сообщений (рис. 6).
Рис. 6. Структурная схема системы цифровой передачи
В составе цифрового канала передачи предусмотрены устройства для преобразования непрерывного сообщения в цифровую форму - аналогово-цифровой преобразователь (АЦП) на передающей стороне и устройства преобразования цифрового сигнала в непрерывную форму - цифро-аналоговый преобразователь (ЦАП) на приемной стороне. Полученный на выходе АЦП цифровой сигнал передаётся по дискретному каналу. Дискретный канал содержит кодер, модулятор, линию связи, демодулятор, декодер. На приёмной стороне из принятого цифрового сигнала ЦАП восстанавливает с той или иной точностью непрерывный сигнал.
В устройстве преобразования сообщения в сигнал непрерывное сообщение, поступающее с выхода источника, преобразуется в цифровой сигнал.
Преобразование аналог - цифра состоит из трех операций: сначала непрерывное сообщение подвергается дискретизации по времени через интервалы; полученные отсчеты мгновенных значений квантуются; наконец полученная последовательность квантованных значений передаваемого сообщения представляется посредством кодирования в виде последовательности двоичных символов «0» и «1».
Такое преобразование называется импульсно-кодовой модуляцией (ИКМ). Чаще всего кодирование здесь сводится к записи номера уровня в двоичной форме счисления.
Полученный с выхода АЦП сигнал ИКМ поступает или непосредственно в линию связи, или на вход передатчика. На приемной стороне линии связи последовательность импульсов после демодуляции и регенерации в приемнике поступает на цифро-аналоговый преобразователь ЦАП, назначение которого состоит в обратном преобразовании (восстановлении) непрерывного сообщения по принятой последовательности кодовых комбинаций.
В состав ЦАП входят декодирующее устройство, предназначенное для преобразования кодовых комбинаций в квантовую последовательность отсчетов, и сглаживающий фильтр, восстанавливающий непрерывное сообщение по квантовым значениям.
Преобразование непрерывных сообщений в цифровую форму в системах ИКМ сопровождается округлением мгновенных значений до ближайших разрешенных уровней квантования. Возникающая при этом погрешность представления является неустранимой, но контролируемой (так как не превышает половины шага квантования). Выбрав малых шаг квантования, можно обеспечить эквивалентность по заданному критерию исходного и квантованного сообщений. Погрешность (ошибку) квантования, представляющую собой разность между исходным сообщением и сообщением, восстановленным по квантованным отсчетам, называют шумом квантования.
2. Анализ методов повышения помехоустойчивости систем передачи информации
2.1 Помехоустойчивое кодирование
Любое мешающее внешнее или внутреннее воздействие на сигнал, вызывающее случайные отклонения принятого сигнала от передаваемого, называется помехой. Классифицируют помехи по следующим признакам: по происхождению, по физическим свойствам, по характеру воздействия на сигнал.
По происхождению надо отметить внутренние шумы аппаратуры, входящей в канал связи, - так называемые тепловые шумы.
По физическим свойствам различают флуктуационные и сосредоточенные помехи. Флуктуационные помехи - случайные отклонения физических величин. К сосредоточенным по спектру помехам относятся помехи посторонних радиостанций, генераторов высоких частот различного назначения, переходные помехи от соседних каналов многоканальных систем.
По характеру воздействия на сигнал различают аддитивные и мультипликативные помехи. Аддитивной называется помеха, мгновенные значения которой складываются с мгновенными значениями сигнала. Аддитивные помехи воздействуют на приемное устройство независимо от сигнала и имеют место даже тогда, когда на входе приемника отсутствует сигнал.
В реальных каналах связи обычно имеет место не одна помеха, а их совокупность.
Применение кодов, исправляющих ошибки, или помехоустойчивое кодирование является эффективным средством повышения достоверности передачи информации при сохранении неизменными скорости передачи и энергетических параметров канала связи и снижения отношения сигнал/шум, требуемого для обеспечения заданной достоверности приема информации. Кодирование с обнаружением и исправлением ошибок, как правило, связано с понятием избыточности кода, что приводит в конечном итоге к снижению скорости передачи информационного потока по тракту связи. Избыточность заключается в том, что цифровые сообщения содержат дополнительные символы, обеспечивающие индивидуальность каждого кодового слова.
Вторым свойством, связанным с помехоустойчивым кодированием является усреднение шума. Этот эффект заключается в том, что избыточные символы зависят от нескольких информационных символов. При увеличении количества избыточных символов доля ошибочных символов в блоке стремится к средней частоте ошибок в канале. Обрабатывая символы блоками, а не одного за другим можно добиться снижения общей частоты ошибок и при фиксированной вероятности ошибки блока долю ошибок, которые нужно исправлять. Все известные в настоящее время коды могут быть разделены на две большие группы: блочные и непрерывные. Блочные коды характеризуются тем, что последовательность передаваемых символов разделена на блоки. Операции кодирования и декодирования в каждом блоке производится отдельно. Непрерывные коды характеризуются тем, что первичная последовательность символов, несущих информацию, непрерывно преобразуется по определенному закону в другую последовательность, содержащую избыточное число символов. При этом процессы кодирования и декодирования не требует деления кодовых символов на блоки.
2.2 Системы с обратной связью
Системами передачи дискретной информации с обратной связью (ОС) называют системы, в которых повторение ранее переданной происходит лишь после приема сигнала ОС. Системы с обратной связью делятся на системы с решающей ОС и информационной ОС.
2.2.1 Системы с решающей обратной связью
В приемнике системы правильно принятые комбинации накапливаются в накопителе и, если после приема блока хотя бы одна из комбинаций не будет принята, то формируется сигнал переспроса, единый на весь блок. Повторяется снова весь блок, а в приемнике системы из блока отбираются комбинации, не принятые при первой передаче. Переспросы производятся до тех пор, пока не будет приняты все комбинации блока. После приема всех комбинаций посылается сигнал подтверждения. Получив его, передатчик передает следующий блок комбинаций (системы с адресным переспросом - РОС-АП). Эти системы во многом аналогичны системам с накоплением, но в отличие от последних приемник их формирует и передает сложный сигнал переспроса, в котором указываются условные номера (адреса) не принятых приемником комбинаций блока. В соответствии с этим сигналом, передатчик повторяет не весь блок, как в системе с накоплением, а лишь не принятые комбинации (системы с последовательной передачей кодовых комбинаций - РОС-ПП).
Известны различные варианты построения систем РОС-ПП, основными из которых являются:
Системы с изменением порядка следования комбинаций (РОС-ПП). В этих системах приемник стирает лишь комбинации, по которым решающим устройством принято решение на стирание, и только по этим комбинациям посылает на передатчик сигналы переспроса. Остальные комбинации выдаются в ПИ по мере их поступления.
Системы с восстановлением порядка следования комбинаций (РОС-ПП). От систем РОС-ПП данные системы отличаются лишь тем, что приемник их содержит устройство, восстанавливающее порядок следования комбинаций.
Системы с переменным уплотнением (РОС-ПП). Здесь передатчик поочередно передает комбинации из последовательностей, причем число последних выбирается так, чтобы ко времени передачи комбинаций на передатчике уже был принят сигнал ОС по ранее переданной комбинации этой последовательности.
Системы с блокировкой приемника на время приема комбинаций после обнаружения ошибки и повторением или переносом блока из комбинаций (РОС-ПП).
Системы с контролем заблокированных комбинаций (РОС-ПП). В этих системах после обнаружения ошибки в кодовой комбинации и передачи сигнала переспроса производится контроль на наличие обнаруженных ошибок h -1 комбинаций, следующих за комбинацией с обнаруженной ошибкой.
2.2.2 Системы с информационной обратной связью
Различие в логике работы систем с РОС и ИОС проявляется в скорости передачи. В большинстве случаев передача служебных знаков требуют меньших затрат энергии и времени, чем передача по прямому каналу опознавателей в системе с РОС. Поэтому скорость передачи сообщений в прямом направлении в системе с ИОС больше. Если помехоустойчивость обратного канала выше помехоустойчивости прямого, то достоверность передачи сообщений в системах с ИОС также выше. В случае полной бесшумной информационной обратной связи можно обеспечить безошибочную передачу сообщений по прямому каналу независимо от уровня помех в нем. Для этого надо дополнительно организовать корректировку искажаемых в прямом канале служебных знаков. Такой результат, в принципе, недостижим в системах с РОС распределенного типа. В случае группирующихся ошибок существенную роль играют условия, в которых передаются информационная и контрольная части кодовых комбинаций в обеих системах связи. При использовании ИОС часто имеет место единственная декорреляция ошибок в прямом и обратном каналах.
Важную роль при сравнении передачи сообщений с РОС и ИОС играют также длина используемого кода n и его избыточность s/t. Если избыточность невелика (s/n<0,3), то даже при бесшумном обратном канале ИОС практически не обеспечивает по достоверности преимущества перед РОС. Однако скорость передачи у систем с ИОС по-прежнему выше. Следует указать еще одно преимущество систем с ИОС, обусловленное различием в скорости. Каждому заданному значению эквивалентной вероятности ошибки соответствует оптимальная длина кода, при отклонении от которой скорость передачи в системе с РОС уменьшается. В системах с ИОС при s/n>0,3 передачу сообщений выгоднее вести короткими кодами. При заданной наперед достоверности скорость передачи от этого становится больше. Это выгодно с практической точки зрения, т.к осуществлять кодирование и декодирование при коротких кодах легче. С увеличением избыточности кода преимущество систем с ИОС по достоверности передачи возрастает даже при одинаковых по помехоустойчивости прямом и обратном каналах, особенно если передача сообщений и квитанции в системе с ИОС организована так, что ошибки в них оказываются некорректированными. Энергетический выигрыш в прямом канале системы с ИОС оказывается на порядок выше, чем в системе с РОС. Таким образом, ИОС во всех случаях обеспечивает равную или более высокую помехозащищенность передачи сообщений по прямому каналу, особенно при больших s и бесшумном обратном канале. ИОС наиболее рационально применять в таких системах, где обратный канал по роду своей загрузки может быть без ущерба для других целей использован для эффективной передачи квитирующей информации.
Однако общая сложность реализации систем с ИОС больше, чем систем с РОС. Поэтому системы с РОС нашли более широкое применение. Системы с ИОС применяют в тех случаях, когда обратный канал может быть без ущерба для других целей эффективно использован для передачи квитанций.
3. Расчёт характеристик систем передачи информации
Объем передаваемой информации за сеанс связи |
800 кБит |
|
Время передачи |
6 мин |
|
Остаточное затухание канала |
10 дБ |
|
Эффективное значение напряжения помехи в полосе 3,1 кГц |
1,2 мВ |
|
Характер ошибок в дискретном канале |
независимые |
|
Вероятность появления пакета ошибок, *10-5 |
3 |
|
Длина линии связи |
- |
|
В ходе работы необходимо:
*определить скорость передачи информации;
*выбрать вид модуляции;
*выбрать вариант построения системы передачи информации, обеспечивающий передачу заданного объема информации за сеанс связи при наиболее эффективном использовании каналов связи;
*разработать структурную схему системы;
*разработать функциональную схему приемного или передающего устройства и построить временные характеристики сигналов в различных сечения устройства.
1. Определим необходимую скорость передачи данных по каналу связи при условии, что объем служебной информации за сеанс не превысит 8%. Скорость передачи информации V равна количеству информации, передаваемой по каналу связи за единицу времени [бит/ с]:
(3.1)
где Iп - объем передаваемой информации,
Tсс - время сеанса связи
Полученная скорость передачи информации, равная 2400 бит/с, соответствует ГОСТу 17422-82.
Скорость модуляции B определяется по формуле:
Вычислим количество позиций сигнала. Зная, что , и подставив исходное значение для полосы пропускания, получим:
т.е. имеем четырехпозиционный сигнал. Тогда скорость модуляции равна
2. Рассчитаем полосу пропускания для фильтра
Ширина полосы пропускания фильтра не превышать допустимой полосы 3100 Гц. 1700 Гц ? 3100 Гц ? можно использовать скорость модуляции B = 1200 Бод.
Для того чтобы моделировать четырехпозиционный сигнал со скоростью передачи информации 2400 бит/с, понадобится использование двойной относительной фазовой манипуляция (ДОФМ).
3. Рассчитаем эффективное значение напряжения помехи при полосе пропускания фильтра ?Fпф = 1700 Гц по формуле:
4. Потенциальная помехоустойчивость при использовании метода ДОФМ:
,
где Ф(q) - Функция Крампа
- вероятность ошибки
q - отношение сигнал/помеха
При скорости модуляции В=1200 Бод вероятность ошибки , получим:
5. Рассчитаем эффективное значение напряжения сигнала по формуле:
Уровни сигнала на входе и выходе канала:
тогда
Для того чтобы передающее устройство не вышло из строя, должно выполняться условие:
(3.13)
где: Pсвх - уровень сигнала на входе,
Pmax - максимально допустимый уровень сигнала.
Для каналов тональной частоты Pmax = -13 дБ.
Условие (3.13) выполняется, следовательно, этот тип модуляции может быть использован для построения системы передачи с данными параметрами.
4. Структурная и функциональная схема систем передачи информации
дискретный цифровой помехоустойчивость манипуляция
1. Система передачи сигнала состоит из передающего устройства преобразования сигналов (УПСпер), канала связи и принимающего устройства преобразования сигналов (УПСпр).
Структурная схема системы передачи информации приведена на рисунке 7.
Рис. 7. Структурная схема системы передачи информации
К - кодер,
ФМ - фазовый модулятор сигнала,
Г - генератор,
ПФ - полосовой фильтр,
ОА - ограничитель амплитуды,
ДФ - фазовый демодулятор,
ФНЧ - фильтр нижних частот,
ВУ - выходное устройство,
ДК - декодер.
Сигнал из кодера поступает в модулятор, на выходе которого получается последовательность положительных и отрицательных импульсов, умноженных на синусоидальное несущее колебание, создаваемое генератором импульсов Г.
Преобразователь обеспечивает изменение фазы несущей частоты.
Полосовой фильтр УПСпер служит для ограничения спектра сигнала, передаваемого в канал связи.
Полосовой фильтр УПСпр предназначен для уменьшения помех, приходящих из канала связи. Ограничение амплитуды ОА позволяет, во-первых, почти полностью устранить влияние изменений амплитуды сигнала в канале связи на длительность принимаемых сигналов и, во-вторых, значительно уменьшить искажения элементов сигнала в результате нестационарных процессов. Кроме того, ОА уменьшает действие импульсных помех. Демодулятор превращает сигнал в импульсы постоянного тока. Фильтр нижних частот ФНЧ подавляет в выпрямленном сигнале высшие гармоники и остатки несущей. Выходное устройство ВУ обеспечивает форму и амплитуду сигналов на выходе, необходимую для нормального функционирования приемника информации ПИ.
2. Рассмотрим принцип работы системы передачи при ДОФМ.
На рис. 8. приведена функциональная схема системы передачи информации.
Рис. 8. Функциональная схема системы передачи информации.
Правило кодирования при ДОФМ иллюстрирует таблица 1 (Рекомендация V.26 МККТТ).
Таблица. 1. Правило кодирования при ДОФМ.
Символ 1 канала |
0 |
0 |
1 |
1 |
|
Символ 2 канала |
0 |
1 |
0 |
1 |
|
Разность фаз |
р/4 |
3р/4 |
7р/4 |
5р/4 |
|
Из приведенного следует, что модемы ДОФМ реализуют кодирование при m = 4.
При ДОФМ для передачи информации по первому двоичному каналу используются, например, фазовые сдвиги р/2 и Зр/2, а по второму двоичному каналу 0 и р, что иллюстрируется векторными диаграммами (рисунок 9). Сплошными линиями показаны фазовые положения векторов отдельных каналов, а пунктиром -- фазовые положения векторов при совместной работе двух каналов. Таким образом, любой комбинации единичных элементов в каждом из двоичных каналов соответствует определенный сдвиг по фазе.
Рис. 9. Векторные диаграммы сигналов ДОФМ.
Поступающая на передатчик последовательность импульсов разбивается на пары бит, называемые «дибит». Возможны четыре различных дебита: 00, 01, 10 и 11. Фазовый модулятор использует импульсный принцип, т. е. фаза изменяется путём добавления импульсов в процессе деления частоты. При этом требуемый фазовый скачок получается как сумма трёх меньших скачков.
Демодулятор ДОФМ устроен так, что при сдвиге фаз между предыдущим и последующим единичными элементами на 45° на выходах обоих каналов получаются нули, при ? =225° -- единицы, при ? =135° на выходе первого канала -- ноль, второго -- единица и при ? =315° на выходе первого канала -- единица, а второго -- ноль. При ДОФМ на той же скорости модуляции, что и при ОФМ, обеспечивается вдвое большая эффективная скорость передачи, поскольку каждое фазовое состояние соответствует не одному биту информации (как при ОФМ), а двум битам (по одному в каждом канале).
Заключение
В ходе выполнения курсового проекта мной были изучены виды модуляции, выявлены достоинства и недостатки каждого из них.
В результате выполнения данного курсового проекта было спроектировано устройство преобразования сигналов, основной задачей которого является передача сигналов данных по каналу связи с требуемой скоростью V и вероятностью ошибки P0.
Для его проектирования были рассчитаны параметры системы связи. При данной скорости модуляции была выбрана ДОФМ, как наиболее оптимальный режим работы, обеспечивающий заданную помехоустойчивость на определенной частоте.
Для выбранного типа системы разработана структурная и функциональная схемы.
Список литературы
1.Белов С.П. Методические рекомендации по выполнению курсовых проектов (работ) по дисциплине "Теория электрической связи" для студентов специальности 210406 "Сети связи и системы коммутации"/С.П. Белов, Е.И. Прохоренко. - Белгород:, 2005. - 32с.
2.Гаранин М.В., Журавлев В.И., Кунегин С.В. Системы и сети передачи информации. - М.: "Радио и связь", 2001. - 366с.
3.Дж. Дэвис, Дж. Карр. Карманный справочник радиоинженера/ Пер. с англ. - М.: «Додэка-XXI», 2002. - 544 с.
4.Кловский Д.Д. Теория электрической связи. - М.: «Радио и связь»,1999. - 433с.
5.С.И. Баскаков. Радиотехнические цепи и сигналы, 2-е издание. - М.: Высшая школа, 2005. - 462с.
Размещено на Allbest.ru
Подобные документы
Методы кодирования сообщения с целью сокращения объема алфавита символов и достижения повышения скорости передачи информации. Структурная схема системы связи для передачи дискретных сообщений. Расчет согласованного фильтра для приема элементарной посылки.
курсовая работа [1,1 M], добавлен 03.05.2015Статистический анализ искажений. Выбор способа повышения верности передачи заданного сообщения. Составление структуры пакета передаваемых данных для заданного протокола. Составление функциональных схемы передающего и приемного оконечных устройств.
курсовая работа [1,5 M], добавлен 09.07.2012Разработка структурных схем передающего и приемного устройств многоканальной системы передачи информации с ИКМ; расчет основных временных и частотных параметров. Проект амплитудно-импульсного модулятора для преобразования аналогового сигнала в АИМ-сигнал.
курсовая работа [1,7 M], добавлен 20.07.2014Функции основных блоков структурной схемы системы передачи дискретных сообщений. Определение скорости передачи информации по разным каналам. Принципы действия устройств синхронизации, особенности кодирования. Классификация систем с обратной связью.
курсовая работа [478,7 K], добавлен 13.02.2012Формы представления информации, ее количественная оценка. Сущность и первичное кодирование дискретных сообщений. Совокупность технических средств, предназначенных для передачи информации. Система преобразования сообщения в сигнал на передаче и приеме.
реферат [84,0 K], добавлен 28.10.2011Способы передачи дискретных сигналов и телеграфирования в соответствии с исходными данными. Преобразование исходной кодовой комбинации с целью повышения достоверности передачи. Устройство защиты от ошибок, асинхронная передача и дискретный сигнал.
контрольная работа [3,1 M], добавлен 26.02.2012Проектирование радиоэлектронной системы передачи непрерывных сообщений по цифровым каналам. Расчет и выбор параметров преобразования сообщения в цифровую форму, радиолинии передачи информации с объекта. Описание структурной схемы центральной станции.
курсовая работа [4,7 M], добавлен 07.07.2009Методы цифровой обработки сигналов в радиотехнике. Информационные характеристики системы передачи дискретных сообщений. Выбор длительности и количества элементарных сигналов для формирования выходного сигнала. Разработка структурной схемы приемника.
курсовая работа [370,3 K], добавлен 10.08.2009Проектирование радиоэлектронной системы передачи непрерывных сообщений с подвижного объекта по радиоканалу на пункт сбора информации. Расчет параметров преобразования сообщений и функциональных устройств. Частотный план системы и протоколы ее работы.
курсовая работа [242,1 K], добавлен 07.07.2009Исследование сущности и функций системы передачи дискретных сообщений. Расчет необходимой скорости и оценка достоверности их передачи. Выбор помехоустойчивого кода. Определение порождающего полинома. Оптимизация структуры резерва дискретных сообщений.
курсовая работа [213,8 K], добавлен 14.01.2013