Применение магнетронных генераторов большей мощности в радиолокационных системах
Рассмотрение задачи о движении электронов в скрещенных полях при отсутствии колебаний. Определение рабочих и нагрузочных характеристик магнетронов. Изучение основных положений теории безопасности полетов. Анализ проблемы возбуждения СВЧ колебаний.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 30.08.2010 |
Размер файла | 6,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
ВВЕДЕНИЕ
В связи с развитием авиации, появлением новых высокоскоростных самолетов в настоящее время огромное внимание уделяется вопросам безопасности полетов и разработке новых систем обеспечения.
Существующие радиолокаторы, предназначенные для выявления небезопасных для полета областей активной грозовой деятельности, определения угла заноса самолета, а так же наблюдения за земной поверхности с целью ориентирования не могут решать поставленные задачи из-за малой дальности действия. По этому весьма актуальным вопросом является применение в существующих радиолокаторах магнетронов большей мощности. Возможна модернизация существующих радиолокаторов, которые выполнены в виде функционально законченных и в соответствующих комплектациях устанавливаются на самолетах гражданской и транспортной авиации Як-40, Як-42, Ил-62, Ил-86, Ан-24, Ан-26, Ан-30, Ан-32, Ту-134, Ту-154.
1 АНАЛИЗ МАГНЕТРОННЫХ ГЕНЕРАТОРОВ
Магнетронные генераторы, находящие сейчас широкое применение, имеют большую и сложную историю развития.
Поведение диодов в магнитном поле явилось предметом многочисленных опытов вскоре после создания первых электронных ламп. Сверхвысокочастотные колебания в диодах, помещенных в постоянное магнитное поле, были обнаружены еще в 1920--1924 гг. Толчком к этим исследованиям в значительной мере явились эксперименты по возбуждению колебаний в схеме тормозящего поля.
Установлено, что существуют три основных типа колебаний в магнетронах, различающихся своим электронным механизмом:
колебания циклотронного типа;
колебания типа отрицательного сопротивления;
колебания типа бегущей волны.
Наибольший практический интерес представляют колебания типа бегущей волны, которые происходят в многорезонаторных магнетронах, разработанных впервые в 1938--1940 гг. Н. Ф. Алексеевым и Д. Е. Маляровым. Этому типу колебаний уделяется в дальнейшем основное внимание.
Развитие многорезонаторных магнетронов привело к разработке мощных высокоэффективных автогенераторов, играющих важнейшую роль в технике СВЧ. Вместе с тем разработки и исследования магнетронных генераторов стимулировали появление большого класса приборов СВЧ магнетронного типа -- ламп бегущей волны М-типа, ламп обратной волны М-типа и платинотронов. Общим признаком магнетронов и других приборов М-типа является присутствие в междуэлектродном пространстве скрещенных постоянных электрического и магнитного полей.
Устройство типичного многорезонаторного магнетрона показано схематически на рисунке 1.1. Анодом магнетрона является сплошной цилиндрический медный блок, разделенный на сегменты продольными щелями. Эти щели входят в состав полых резонаторов, расположенных на равных расстояниях по окружности анода. Катод магнетрона имеет цилиндрическую форму и расположен внутри анода вдоль его оси.
Постоянное магнитное поле В направлено вдоль оси прибора, т. е. перпендикулярно плоскости чертежа на второй проекции (рис. 1.1).
Постоянное или импульсное анодное напряжение приложено между катодом и анодом и создает электрическое поле, перпендикулярное к направлению магнитного поля. Вывод СВЧ энергии производится обычно от одного из резонаторов, например, с помощью петли и коаксиальной линии.
Анализ работы многорезонаторных магнетронов показывает, что их действие можно наглядно рассматривать на основе бегущих волн, распространяющихся по внутренней поверхности анодного блока, обращенной к катоду. Это и послужило основанием для названия "колебания типа бегущей волны".
В пространстве взаимодействия между катодом и анодом магнетронов происходят все процессы, которые должны присутствовать в любом электронном генераторе и усилителе СВЧ: управление электронным потоком, образование сгустков и отдача энергии высокочастотному электрическому полю. В магнетронах нет разделенных в пространстве областей управления, группировки и отдачи энергии, которые имеются, например, в клистронах. Это обстоятельство, наряду со сложным характером движения электронов, значительно осложняет изучение процессов в магнетронах. Тем не менее, пользуясь представлениями о видах колебаний и методом эквивалентных схем в сочетании с расчетом движения электронов, оказывается возможным и в этом случае использовать общие методы.
Рисунок 1.1 - Схема устройства и включения магнетронного генератора: 1-анодный блок; 2-катод; 3-резонатор типа щель-отверстие; 4- пространство взаимодействия; 5 - вывод энергии
1.1 Движение электронов в статическом магнетроне
Прежде чем перейти к проблеме возбуждения СВЧ колебаний, рассмотрим задачу о движении электронов в скрещенных электрическом и магнитном полях в отсутствие колебаний.
Катод магнетрона, как правило, имеет цилиндрическую форму и расположен концентрично внутри цилиндрического анода. Отвлечемся от искажений постоянного электрического поля, вызываемых щелями в поверхности анода, и рассмотрим систему со сплошным анодом, изображенную на рисунке 1.2, а. Постоянное магнитное поле предположим направленным точно вдоль оси г. Пространственный заряд, создаваемый двигающимися электронами, учитывать не будем.
Пренебрегать действием пространственного заряда (коллективным взаимодействием электронов) в электронных приборах можно лишь с известной осторожностью. Особенно важно помнить об этом в случае магнетрона, так как под действием магнитного поля пространственный заряд может значительно увеличиться. Однако строгое решение задачи магнетрона с учетом пространственного заряда наталкивается на большие трудности. Многие важные свойства магнетронов могут быть рассмотрены независимо от присутствия и распределения пространственного заряда.
Рисунок 1.2 - К расчету движения электронов в цилиндрическом и плоском магнетронах со сплошным анодом в статистическом режиме. Электрон находится в точке А
Электроны эмитируются катодом с очень малыми начальными скоростями, поэтому величиной начальной скорости в статистическом режиме магнетрона можно сразу пренебречь. Однако при рассмотрении других ламп СВЧ со скрещенными электрическими и магнитным полями полезно общее решение, учитывающее начальную скорость электрона, начавшего свое движение из произвольной точки в пределах пространства взаимодействия. Учет начальных скоростей необходим также при анализе сортировки электронов в магнетронных генераторах в присутствии колебаний.
Расчеты движения электронов производится с наиболее простой плоской системы, изображенной на рис. 1.2, б. Рассмотрение плоского магнетрона важно не только с точки зрения простоты математического решения. Большинство современных магнетронов имеют катоды большого диаметра, что позволяет приближенно заменить катод и анод параллельными плоскостями.
1.2 Условия самовозбуждения
Рассмотрим сначала случай, когда отношение радиусов катода и анода магнетрона близко к единице, т. е. система электродов близка к плоской. Примем, что условием отдачи электронами максимальной энергии высокочастотному полю является совпадение фазовой скорости бегущей волны и средней скорости движения электронов в отсутствие колебаний. При этом всякое первоначальное колебание, возникающее в анодном блоке магнетрона, должно нарастать до тех пор, пока не начнут действовать ограничивающие нелинейные эффекты.
Используем уравнение, определяющее фазовую скорость волны -вида -й пространственной гармоники. Чтобы получить условие усредненного синхронизма между электронами и волной, вместо радиуса анода rа подставим средний радиус пространства взаимодействия, равный
. (1.1)
Таким образом, средняя фазовая скорость волны в пространстве взаимодействия составляет:
. (1.2)
Средняя скорость движения электронов равна . Отсюда условие синхронизма может быть записано в виде:
. (1.3)
В рассматриваемой системе напряженность постоянного электрического поля можно выразить в виде Подставляя эту величину в предыдущее уравнение и учитывая, что генерируемая частота определяется в основном резонансной частотой данного вида колебаний, т.е. что , имеем:
(1.4)
Согласно этому уравнению анодное напряжение, при котором должно происходить самовозбуждение многорезонаторного магнетрона, для каждого вида колебаний при фиксированном номере гармоники линейно связано с индукцией магнитного поля. Отношение есть величина постоянная для данного магнетрона при заданных значениях и .
На рисунке 1.3, а построены соответствующие графики для трех видов колебаний 8-резонаторного магнетрона при Здесь же построена парабола критического режима.
Рисунок 1.3 - Самовозбуждение магнетрона: а ) - для упрощенного случая при N=8, б)- для -вида колебаний
Прямые, определяемые уравнением (1.4), проходят через начало координат и пересекают критическую параболу. С физической точки зрения понятно, что при генерация колебаний типа бегущей волны невозможна: все электроны попадают на анод не позднее чем через половину периода циклоидального колебания. Поэтому условиям самовозбуждения отвечают лишь участки прямых, выделенные на рисунке 1.3, а сплошными линиями и лежащие ниже параболы критического режима.
Рассмотренные графики самовозбуждения не могут претендовать на большую точность, а можно лишь установить, что для каждого вида колебаний существуют оптимальные соотношения между постоянным анодным напряжением и индукцией магнитного поля. Это не означает, однако, что генерирование колебаний невозможно в точках плоскости (f/a, В), не лежащих на указанных прямых. Если увеличивать анодное напряжение при неизменной индукции магнитного поля, то генерируемая мощность на данном виде колебаний должна переходить через максимум и уменьшаться при удалении от прямой, определяемой уравнением (1.4). При дальнейшем увеличении напряжения Ј/а могут быть достигнуты условия синхронизма с полем волны следующего вида, имеющего более низкий номер п. Естественно предположить, что существует промежуточная область неустойчивой генерации, где небольшие изменения анодного напряжения и постоянного анодного тока приводят к скачкообразному переходу с одного вида колебаний на другой.
Отвлекаясь от возбуждения колебаний на пространственных гармониках, отметим, что -вид колебаний требует для своего возбуждения наименьшего анодного напряжения. Это свойство -вида играет большую роль, особенно при работе магнетронов в импульсном режиме. Одновременно можно сделать вывод, что -вид отделен от других видов колебаний не только по частоте, но и по величине анодного напряжения.
1.3 К.П.Д. магнетрона
Трудности, связанные с прямым вычислением отдаваемой электронами мощности, настолько велики, что в настоящее время не существует строгого расчета электронного к. п. д. магнетрона типа бегущей волны. В подобных случаях можно вычислить мощность, рассеиваемую электронами после взаимодействия с полем, и затем использовать закон сохранения энергии
Рассмотрим кинетическую энергию, которую имеет электрон в момент удара об анод после того, как значительная часть потенциальной энергии электрона отдана высокочастотному полю в пространстве взаимодействия.
При обсуждении процессов сортировки электронов было показано, что циклоидальная траектория благоприятного электрона при малой амплитуде высокочастотных колебаний наклоняется в сторону анода, но остается в основном такой же, как в статическом режиме. Радиус катящегося круга в плоском магнетроне равен
, (1.5)
где - расстояние между катодом и анодом.
Скорость, которую имеет электрон при ударе об анод, зависит от момента удара. Будем исходить из наихудшего с точки зрения величины к. п. д. случая, когда удар происходит в верхней точке циклоидальной траектории. Полюсом вращения является точка касания круга к плоскости, по которой происходит качение этого круга. Радиус вращения электрона равен здесь . Зная угловую скорость вращения круга нетрудно получить максимальную скорость электрона:
. (1.6)
К такому же результату можно придти, исходя из известной скорости центра круга, равной .
Максимальная кинетическая энергия, рассеиваемая электроном на аноде, равна
(1.7)
Тот же электрон, находясь на катоде до начала движения в пространстве взаимодействия, обладал по отношению к аноду потенциальной энергией, равной Wn = eUa, при нулевой кинетической энергии. Следовательно, энергия, отданная высокочастотному полю, по закону сохранения энергии равна Wn --.
К. п. д. рассматриваемого одиночного электрона, таким образом, имеет величину
(1.8)
Полученное уравнение можно преобразовать, выразив величину через критические параметры и .
(1.9)
Уравнение (1.9) показывает связь электронного к.п.д. магнетрона с постоянным анодным напряжением и индукцией магнитного поля. При В = Вкр электронный к.п.д. равен нулю, что вполне согласуется с делавшимися предположениями. Чем больше режим магнетрона отличается от критического, тем выше должен быть электронный к.п.д. Особенно интересно, что никакого теоретического предела повышения величины эл для магнетрона по рассматриваемым уравнениям не существует.
Зависимость электронного к.п.д. магнетрона от величины магнитного поля В можно сделать особенно наглядной, если учесть условие синхронизма при работе на любом фиксированном виде колебаний. Воспользуемся упрощенным условием самовозбуждения магнетрона:
(1.10)
Вводя это соотношение в (1.8) и полагая для цилиндрической системы имеем при
(1.11)
где - отношение радиуса катода к радиусу анода, равное .
Подставим в (1.11) величины е и m, а также введем резонансную длину волны - го вида колебаний .
Выражая индукцию магнитного поля в тесла и длину волны в сантиметрах, получаем:
(1.12)
Для оценки получаемого к.п.д. рассмотрим в качестве примера 8-резонаторный магнетрон 10-см диапазона, работающий на -виде колебаний при магнитной индукции 0,18 тл (1800 гс). Величину примем равной 1/3; такая или близкая к ней величина типична для магнетронов при N = 8. Вычисления по (1.12) дают: 70%.
Расчетные значения электронного к.п.д. по (1.11) и (1.12) обычно несколько превышают получаемую на практике величину . Отчасти это и понятно, так как в рассмотренном расчете не были учтены потери энергии за счет неблагоприятных электронов, бомбардирующих катод, а также непроизводительные потери электронов на боковые крышки магнетрона и некоторые другие факторы. Величина электронного к.п.д. существующих магнетронов сантиметрового диапазона составляет 50--70%, а в некоторых случаях и более. Столь высокая эффективность магнетронов делает их ценнейшим мощным автогенератором диапазона СВЧ. Для данного магнетрона при неизменной длине волны уравнение (1.11) можно переписать в виде
(1.13)
Полученное уравнение соответствует случаю, когда к.п.д. отсчитывается при движении вдоль одной из прямых самовозбуждения на плоскости (Ua, В) (см. рис. 1.3, а). Соответствующее графическое изображение зависимости эл = f(B) для 8-резонаторного магнетрона показано на рисунке1.4, а. Кривые электронного к.п.д. имеют вид отрезков гипербол. Чем ниже номер вида п, тем меньше электронный к.п.д. при одной и той же величине магнитной индукции В. Иначе говоря, для достижения одного и того же электронного к.п.д. наименьшее магнитное поле требуется при -виде колебаний.
Рисунок 1.4 - Зависимость электронного к.п.д магнетрона от индукции магнитного поля при const
Рост электронного к. п. д. магнетрона при увеличении магнитной индукции В и, напомним, при соответствующем повышении постоянного анодного напряжения а легко понять с физической точки зрения, так как при этом происходит неограниченное уменьшение радиуса катящегося круга и уменьшение энергии, рассеиваемой электронами на аноде. Такие же тенденции характерны для работы других приборов магнетронного типа. В этом отношении проявляются очевидные отличия и преимущества приборов М-типа в сравнении с приборами О-типа. В приборах М-типа электроны отдают СВЧ полю не кинетическую, а потенциальную энергию, полученную от источника постоянного напряжения. Средняя скорость переносного движения электронов не изменяется, благодаря чему не нарушаются условия синхронизма с полем бегущей волны.
Опыт в основном подтверждает ход зависимости эл = f(B) при , представленной на рисунке 1.4, а. Однако в случае разнорезонаторных магнетронов в некотором интервале значений магнитной индукции наблюдается "провал" электронного к. п. д., как показано качественно на рисунке 1.4, б. Исследования показали, что в центре "провала" произведение магнитной индукции, выраженной в тесла, на длину волны в сантиметрах имеет для всех магнетронов одинаковую величину, равную приблизительно 1,2 тл.см.
"Провал" электронного к. п. д. в разнорезонаторных магнетронах можно качественно объяснить с точки зрения циклотронного резонанса, возникающего при условии . В пространстве взаимодействия разнорезонаторного магнетрона, кроме поля -вида, имеется составляющая поля п = 0. При приблизительном совпадении частоты генерируемых колебаний и циклотронной частоты характер движения электронов может измениться. Большую роль играет тот факт, что поле нулевой составляющей значительно медленнее убывает при удалении от анода, чем поле -вида .
Форма спиц и их взаимодействие с полем -вида ухудшаются.
Обычно разнорезонаторные магнетроны эксплуатируются при более низком магнитном поле, чем поле, соответствующее центру "провала". Перейти в область больших индукций за "провалом" практически не удается из-за трудностей получения очень сильных магнитных полей.
Некоторое влияние на величину электронного к. п. д. магнетрона оказывает разделение видов колебаний. По-видимому, условия формирования спиц ухудшаются при наличии "загрязняющих" полей в пространстве взаимодействия. Электронный к. п. д. магнетрона может снизиться также за счет влияния поля связок около концов анодного блока. Это поле, не имеющее азимутальных вариаций, оказывает примерно такое же воздействие на пространственный заряд в магнетроне, какое имеет поле нулевой составляющей в магнетронах разнорезонаторной конструкции. Для устранения подобных эффектов связки обычно экранируются путем расположения их в кольцевых канавках, выточенных на торцах анодного блока.
Диаметр катода также влияет на величину электронного к. п. д. Для повышения величины желательно уменьшать отношение . Однако при малом - не могут полностью удовлетворяться условия синхронизма между электронами и полем, так как напряженность постоянного электрического поля имеет наибольшую величину у катода и уменьшается по направлению к аноду. Чтобы повысить электронный к. п. д. магнетрона, обычно рекомендуется выбирать наименьшую возможную величину, при которой получается достаточная устойчивость видов колебаний.
Для оценки оптимального отношения с предложены различные эмпирические соотношения, например:
(1.14)
где N -- число резонаторов. Отметим, однако, что зависимость эл = f() не очень критична и допускает заметные отклонения от величины, рассчитанной по уравнениям (1.14).
В заключение напомним, что полный к. п. д. магнетрона определяется с учетом к. п. д. резонаторной системы:
(1.15)
Как известно, величина в общем случае связана с собственной, нагруженной и внешней добротностями колебательной системы соотношением
(1.16)
Величина внешней добротности выбирается с учетом допустимого затягивания частоты магнетрона и обычно не бывает ниже 100--200. Собственную добротность желательно иметь как можно выше. Типичная величина в сантиметровом диапазоне имеет порядок 1000. Таким образом, по (1.16) к. п. д. резонаторной системы может составлять от 90--95% до 60--65% на наиболее коротких волнах. Типичные значения полного к. п. д. магнетронов составляют от 60--70% на дециметровых волнах до 20--30% на волнах длиной порядка 1 см.
1.4 Рабочие и нагрузочные характеристики магнетронов
При рассмотрении эксплуатационных свойств магнетронов используют две группы характеристик. К первой относятся вольтамперные характеристики, снятые при неизменной нагрузке, соответствующей режиму согласования выходного устройства магнетрона. Параметрами при снятии характеристик являются магнитная индукция В, генерируемая мощность Рген, частота генерируемых колебаний и полный к. п. д. (). Ко второй группе относятся зависимости генерируемой мощности и частоты от полного сопротивления (полной проводимости) нагрузки.
Вольтамперные характеристики магнетрона, снятые при условиях В = const, Рген = const, = const или = const, носят название рабочих характеристик. Эти характеристики принято строить в прямоугольной системе координат, по вертикальной оси которой откладывается постоянное анодное напряжение, а по горизонтальной оси -- постоянный анодный ток магнетрона.
Нагрузочные характеристики и при , как и для других типов автогенераторов СВЧ, удобно строить на комплексной плоскости полного сопротивления нагрузки в полярной системе координат.
Расчета нагрузочных и рабочих характеристик магнетронов обычно не производят. Тем не менее, форма этих характеристик непосредственно обусловливается физическими процессами, происходящими в магнетроне, и может быть качественно получена из простых соображений.
Рассмотрим идеализированные рабочие характеристики, которые можно предположить, если исходить из описанных свойств магнетронов типа бегущей волны.
Семейство кривых постоянной генерируемой мощности Рген = const можно получить из следующих соображений. Генерируемая мощность магнетрона, как и всякого электронного прибора, связана с постоянным анодным напряжением, постоянным анодным током и к. п. д. соотношением . Его можно переписать в виде
.
Отсюда следует, что если бы к. п. д. магнетрона оставался неизменным и не зависел от , то при Рген = const вольтамперные-характеристики имели бы вид равнобочных гипербол. Однако с ростом электронный к. п. д. несколько уменьшается, так как при этом повышается амплитуда СВЧ колебаний и увеличивается доля мощности, рассеиваемой на аноде в конце последнего витка циклоидальной траектории. Поскольку к. п. д. резонаторной системы, естественно, остается неизменным, то с увеличением тока линии постоянной мощности отклоняются от гипербол и несколько поднимаются, как показано качественно на рис. 1.5.
Чем больше генерируемая мощность, тем выше и правее должны располагаться кривые Рген = const.
Рисунок 1.5 - Идеализированные рабочие характеристики магнетронного генератора
Таким образом, вольтамперные характеристики магнетрона при В = const имеют вид семейства кривых с круто возрастающим начальным участком, показанным пунктиром на рис. 1.5, б. Далее следуют излом и почти горизонтальный участок, имеющий небольшой наклон к оси абсцисс и характеризующий работу магнетрона в генераторном режиме.
Типичные рабочие характеристики импульсного магнетрона 10-см диапазона приведены на рис. 1.6. Кроме кривых Рген = const и В = const, на этом графике показаны семейства кривых постоянного к. п. д. и постоянной генерируемой частоты. Рабочая точка магнетрона лежит в верхнем правом углу рассматриваемого графика.
Из рисунка 1.6 видно, что опытные кривые хорошо согласуются с обсуждавшимися ранее идеализированными характеристиками. Такое совпадение может рассматриваться как подтверждение правильности сделанных основных качественных предположений о механизме работы магнетрона.
По своему характеру нагрузочные характеристики магнетронов сходны с нагрузочными характеристиками других автогенераторов СВЧ с резонансной колебательной системой, например, отражательных клистронов. Такое сходство обусловлено тем, что затягивание частоты под действием внешней нагрузки обычно значительно меньше разделения видов.
Рисунок 1.6 - Типичные рабочие характеристики импульсного магнетрона 10-см диапазона
В качестве фиксированных параметров при определении нагрузочных характеристик магнетрона выбираются номинальные значения магнитной индукции В и постоянного анодного тока . Иногда (при особенно высокой мощности) во избежание пробоев при больших значениях коэффициента стоячей волны снятие нагрузочных характеристик производится при пониженной мощности. В качестве начала отсчета фазы стоячей волны обычно выбирается выходной фланец магнетрона.
Типичная нагрузочная характеристика импульсного магнетрона 3-см диапазона приведена на рисунке 1.7. Линии постоянной генерируемой мощности близки к окружностям постоянной активной проводимости нагрузки. Линии постоянной частоты имеют веерообразное расположение и близки к линиям постоянной реактивной проводимости на круговой диаграмме полных проводимостей в полярной системе координат.
Важным параметром магнетронов является степень затягивания частоты, определяемая при коэффициенте стоячей волны, равном 1,5(см. рис. 1.7).
Рисунок 1.7 - Пример реальной нагрузочной характеристики импульсного магнетрона 3-см диапазона
Этот параметр, встречающийся при рассмотрении любого автогенератора СВЧ, приобретает в случае магнетронов особую актуальность, так как магнетроны часто связываются с нагрузкой без развязывающих ослабителей. Обычно степень затягивания F3 для магнетронов 10-см диапазона составляет 10--15 Мгц; в 3-см диапазоне степень затягивания может доходить до 15--20 Мгц. Допустимая степень затягивания находится в тесной связи с возможностями схемы автоматической подстройки частоты, использующей электронную настройку гетеродина -- отражательного клистрона.
Основываясь на общих уравнениях затягивания частоты, можно найти соответствующие значения внешней добротности магнетрона на рабочем виде колебаний.
(1.17)
Через v0 здесь обозначена генерируемая частота при согласованной нагрузке, примерно равная резонансной частоте "холодного" блока на рабочем виде колебаний. Обычно учитывается также, что линии Рген = const и = const на рис. 1.7 пересекаются под углом, отличным от . В этом случае в правой части уравнения (1.17) вводится дополнительный эмпирический множитель, равный приблизительно 1,05.
Вычислим для примера требующуюся внешнюю добротность магнетрона, предназначенного для работы на волне 3,2 см. Задаваясь допустимой степенью затягивания, равной 20 Мгц, получаем по (1.17) : . Именно такие и несколько более высокие значения типичны для современных магнетронов.
1.5 Конструирования магнетронов
Основными конструктивными узлами современных магнетронов являются:
анодный блок (корпус) магнетрона, включающий резонаторную систему и устройства для разделения видов колебаний;
система перестройки частоты;
вывод энергии;
катод с соответствующими выводами;
вакуумная оболочка и система охлаждения;
магнитная цепь.
В большинстве магнетронов вся резонаторная система, механизм перестройки и значительная часть вывода энергии находятся внутри вакуумной оболочки и являются неотъемлемыми частями магнетрона. Это оказывает большое влияние на конструктивное оформление каждого из указанных узлов магнетрона.
Большинство современных магнетронов, за исключением некоторых магнетронов миллиметрового диапазона, используют -вид колебаний резонаторной системы. Данный вид колебаний обладает рядом особенностей и преимуществ в сравнении с другими видами колебаний. К числу таких преимуществ относятся отсутствие вырождения, наименьшее анодное напряжение при одной и той же индукции магнитного поля (если отвлечься от возбуждения на пространственных гармониках других видов колебаний), а также наибольший к. п. д. при неизменной величине магнитной индукции. Достоинством -вида является также конструктивная простота требующихся для этого резонансных систем.
При выборе количества резонаторов N необходимо учитывать следующее. Прежде всего, число N должно быть четным, чтобы обеспечить существование -вида колебаний. Увеличение числа резонаторов приводит к ухудшению разделения видов колебаний, но одновременно способствует снижению анодного напряжения при заданной индукции В и при неизменном диаметре анода. Обычные магнетроны 10-см диапазона имеют 8--12 резонаторов; в 3-см диапазоне применяются от 12 до 18 резонаторов. При переходе к миллиметровому диапазону число N доходит до 24--38 и более. Несколько особняком стоят коаксиальные магнетроны (см. далее), допускающие использование значительно большего числа резонаторов.
На волнах длиннее 3 см основное применение находят резонаторы типа щель--отверстие и лопаточные (секторные) резонаторы, показанные на рисунке 1.8. В миллиметровом диапазоне волн часто применяются щелевые резонаторы (рис. 1.8, в).
Рисунок 1.8 - Наиболее распространенные типы магнетронных резонаторов
Опыт показывает, что при использовании связок максимальные значения диаметра анодного отверстия da и рабочей длины анода . связаны с длиной волны ориентировочными соотношениями
В случае разнорезонаторной системы максимальные величины и могут быть заметно повышены:
В миллиметровом диапазоне волн и при идут на увеличение до 1,5 и даже до 2,0. Чтобы избежать при этом резкого увеличения числа резонаторов или повышения анодного напряжения и магнитной индукции, целесообразно использовать работу магнетрона на виде колебаний, отличном от , при синхронизме с пространственной гармоникой р = +1 или р = --1.
Равнорезонаторные блоки с "многоэтажными" связками, расположенными через равные интервалы по длине анода, могут иметь очень большую длину (до ), что позволяет значительно увеличить длину катода и резко повысить генерируемую мощность.
Механическая перестройка (настройка) частоты основывается на изменении резонансной частоты -вида колебаний анодного блока. Существование нескольких близко расположенных по частоте видов колебаний осложняет механическую настройку магнетронов. Важными условиями при любом способе перестройки являются сохранение достаточного разделения видов и приблизительное постоянство собственной и нагруженной добротностей анодного блока в пределах рабочего диапазона частот. Всякие паразитные резонансы, кроме основного резонанса -вида, являются недопустимыми.
Наиболее распространен вариант симметричной механической перестройки. Одновременное воздействие на резонаторы производится индуктивным или емкостным способом с помощью металлических колец, стержней и коронок, перемещающихся внутри резонаторов или в торцевых пространствах магнетрона. Несколько систем, обеспечивающих диапазон перестройки до ± (36) % от средней частоты, показаны схематически на рис. 1.9. При настройке индуктивным кольцом (рис. 1.9, а) основное воздействие производится на высокочастотное магнитное поле, проходящее через торцевое пространство. С приближением металлического кольца к торцу анодного блока уменьшается эквивалентная индуктивность всех резонаторов и, как следствие, повышается резонансная частота каждого резонатора и всего анодного блока в целом. Воздействие на высокочастотное магнитное поле в самих резонаторах производится с помощью индуктивной коронки, имеющей металлические стержни, как показано на рис. 1.9, б. Похожим образом производится емкостная настройка магнетрона, при которой металлическое кольцо или коронка (см. рис. 1.9, в, г) перемещается в торцевом пространстве вблизи той части сегментов, где имеется наиболее сильное электрическое поле, или около связок. Для расширения диапазона иногда используют комбинацию емкостной и индуктивной перестроек.
Рисунок. 1.9 - Симметричная механическая настройка магнетрона индуктивным кольцом и индуктивной коронкой (а, б) и емкостными кольцом и коронкой (в, г):1- анодный блок; 2- металлическое кольцо; 3- металлический стержень; 4 - отверстие резонатора; 5 - щель резонатора; 6 - связки.
Интересна разновидность магнетронных систем, использующая коаксиальный резонатор, который охватывает многорезонаторный анодный блок. Внутренним проводником этого резонатора является цилиндрическая поверхность собственно анодного блока. В этой поверхности прорезаны продольные щели, связывающие коаксиальный резонатор с магнетронными резонаторами через один, как показано на рис. 1.10. Коаксиальный резонатор возбуждается на виде колебаний Н011, отличающемся тем, что электрическое поле и токи в стенках имеют вид замкнутых окружностей. Подобной структуре поля и токов отвечает возбуждение анодного блока магнетрона на -виде, так как в резонаторах, расположенных через один и имеющих щелевую связь, колебания оказываются синфазными (сдвинутыми между собой по фазе на 2). Видам колебаний анодной системы, отличным от -вида, соответствуют виды колебаний в коаксиальном резонаторе, отличные от Н011. Эти колебания могут быть в свою очередь сильно подавлены, например с помощью поглощающих вставок и кольцевых щелей, нарушающих высокочастотные токи всех видов колебаний, кроме вида Н011.
Благодаря этому диаметр анода и число резонаторов в магнетроне с описанным коаксиальным резонатором ("коаксиальном магнетроне") могут быть значительно увеличены в сравнении с обычными магнетронами без ухудшения разделения основных видов колебаний. Увеличение диаметра анода позволяет значительно повысить генерируемую мощность магнетрона.
Коаксиальные магнетроны имеют и другие существенные преимущества. Накопление значительной энергии в коаксиальном высокодобротном резонаторе повышает собственную добротность Qo всей системы и стабильность частоты генерируемых колебаний. Степень затягивания частоты F3 может быть при этом значительно снижена за счет уменьшения связи с нагрузкой и повышения внешней добротности Q0 при одновременном улучшении к. п. д. резонаторной системы.
Рисунок 1.10 - Схема устройства коаксиального магнетрона: 1 -магнетронные резонаторы, 2--щели связи, 3--наружная стенка коаксиального резонатора; 4 -- поршень механической настройки; 5--вывод энергии (прямоугольный волновод)
Далее, благодаря улучшению разделения видов колебаний возможна работа при меньшей амплитуде высокочастотного напряжения в пространстве взаимодействия, что приводит к повышению электронного к. п. д. Существуют и другие достоинства магнетронов коаксиального типа, что позволяет отнести их к числу перспективных направлений развития магнетронных генераторов.
Устройство типичных коаксиальных и волноводных выводов энергии показано на рис. 1.11 и 1.12. Петля вводится обычно в один из резонаторов в области максимума СВЧ магнитного поля. Основная трансформация сопротивления, определяющая величину QBH, осуществляется в зависимости от размеров петли.
Рисунок 1.11 - Коаксиальные выводы энергии магнетронов малой и средней мощности 10-см диапазона: 1--петля, 2, 3 -- наружный и внутренний проводники коаксиальной линии; 4 -- стекло; 5--медь; 6-- ковар
Коаксиально-волноводные выводы энергии, жестко скрепляемые с магнетронами, применяются при умеренной мощности в коротковолновой части сантиметрового диапазона. При более высоких мощностях, а также при более коротких волнах используют в основном волноводные выводы. Между стандартным прямоугольным волноводом и анодным блоком обычно включается четвертьволновый волноводный трансформатор (рис. 1.12), понижающий сопротивление нагрузки в 100--200 раз. В качестве трансформаторов используются также многоступенчатые четвертьволновые и экспоненциальные переходы.
Рисунок 1.12 - Волноводный вывод энергии магнетрона 3-см диапазона с одноступенчатым четвертьволновым трансформатором: 1--анодный блок, 2 -- трансформатор, 3--круглое стеклянное или керамическое окно; 4 -- дроссель; 5--выходной фланец
Катод играет значительно большую роль в работе магнетронов, чем в работе большинства других электронных приборов СВЧ. Длина и диаметр катода необращенного магнетрона имеют пределы ввиду ограничений, накладываемых на высоту анодного блока lа, диаметр анода dэ и отношение . Требования к удельной эмиссии становятся особенно высокими. Если в 10-см диапазоне типичная величина эмиссии с катода магнетрона в импульсе составляет 10 a/см2, то в 3-см диапазоне требуемая плотность тока доходит примерно до 30 а/см2. С дальнейшим укорочением волны происходит соответствующий рост требуемой эмиссии. К катоду магнетрона предъявляется дополнительное требование -- способность работать с достаточным сроком службы в условиях значительной обратной бомбардировки. Значительную роль в работе магнетрона играет вторичная электронная эмиссия с катода. В связи с этим к материалу катода предъявляется также требование высокой вторичной эмиссии.
Основное назначение современных импульсных магнетронных генераторов -- передатчики радиолокационных станций и других радиотехнических устройств, в том числе линий импульсной связи, радиоотелеметрических систем, маяков и т. п.
Устройство двух типичных импульсных магнетронов приведено на рис. 1.13 и 1.14.
Рисунок 1.13 - Устройство типичного импульсного ненастраиваемого магнетрона 10-см диапазона: 1 -- анодный блок, 2 -- катод, 3 -- петля вывода энергии, 4-- двойные кольцевые связки, 5--коаксиальный вывод энергии, 6--боковые крышки; 7--вывод катода и накала 8---вывод накала 9--трубка для откачки; 10 --ковар; 11--стекло
Магнетроны находят также применение в качестве мощных генераторов, питающих линейные электронные ускорители. Магнетроны непрерывного режима все более широко применяются в установках промышленного и бытового СВЧ нагрева.
Диапазон мощностей импульсных магнетронов составляет от десятков ватт до 10 Мвт. Магнетроны непрерывного режима выпускаются на мощности от долей ватта до нескольких десятков киловатт.
Устройство митрона и схема его включения представлены на рис. 1.15. В этом приборе катод вынесен из пространства взаимодействия и расположен вдоль оси на одном из торцов
Рисунок 1.14 - Устройство типичного импульсного магнетрона 3-см диапазона (без постоянных магнитов). В более крупном масштабе изображено устройство катода, связок и анодного блока: 1- анодный блок с радиатором, 2-полюсный наконечник; 5 - катодная ножка, 4- катод; 5- окно вывода энергии; 6-связки; 7-Н-образный четвертьволновый трансформатор; 8-пермендгоровые наконечники
Катод окружен коническим дополнительным анодом -- управляющим электродом, образующим вместе с катодом магнетронную пушку типа Кайно--Тейлора. Вместо катода внутри резонаторной системы расположен цилиндрический неэмиттирующий отрицательный электрод ("холодный катод"), создающий в пространстве взаимодействия постоянное радиальное электрическое поле, как в обычном магнетроне.
Электронный поток, имеющий вид полой трубки, инжектируется в пространство взаимодействия митрона и взаимодействует с полем -вида колебаний. При Uа1 = const (см. рис. 1.15) постоянное анодное напряжение Uа практически не влияет на величину анодного тока, что позволяет использовать в "чистом виде" явление электронной настройки магнетронов. Для реализации широкого диапазона электронной настройки нагруженная добротность резонаторной системы снижается до 2--10. В митроне, изображенном на рис. 1.15, использована встречно-штыревая система, соединяемая двумя металлическими кольцами с внешним низкодобротным резонатором. С помощью митронов получают диапазон электронной настройки, доходящий до одной октавы при малой генерируемой мощности.
Рисунок 1.15 - Устройство магнетрона, настраиваемого напряжением: 1 -- накаленный катод; 2 -- отрицательный электрод; 3--конический управляющий электрод; 4-- анодные ламели (система встречных штырей); 5--керамика; 6 -- анодные кольца для включения внешней части резонатора; 7 -- наружный резонатор
Таким образом, митроны могут успешно конкурировать с лампами обратной волны типа О. Дополнительным преимуществом магнетронов, настраиваемых напряжением, является высокий к. п. д.
Вывод На основе анализа рассмотренных магнетронов можно в приемопередатчиках необходимо использовать импульсные магнетроны.
2 ТЕХНИЧЕСКАЯ ЧАСТЬ
2.1 Назначение и состав радиоаппаратуры для экспериментальных исследований
Радиолокатор "Гроза" обеспечивает радиолокационный обзор земной поверхности, обнаружение опасных для самолёта гидрометеообразований (грозы, мощнокучевая облачность и т. д.), измерение угла сноса самолёта и коррекцию бортового навигационного вычислителя. В состав радиолокатора входят следующие основные блоки:
- антенный блок, служащий для излучения в просматриваемое пространство импульсных СВЧ-колебаний З-сантиметрового диапазона волн и приёма отражённых сигналов;
- приёмно-передающий блок, осуществляющий генерацию мощных СВЧ- импульсов и усиление принятых отражённых сигналов;
- основной индикаторный блок с пультом, осуществляющий синхронизацию работы РЛС, формирование радиально-секторной развёртки "азимут- дальность" для индикатора, усиление видеосигналов и их индикацию, а также управление всей работой радиолокатора;
- блок стабилизации и управления, служащий для стабилизации зоны обзора РЛС в пространстве при кренах и тангаже самолёта;
- при наличии штурмана на борту самолёта - второй (дополнительный) индикатор штурмана;
- при установке навигационного вычислителя на борту - блок коррекции, служащий для коррекции счисленных текущих координат по характерным радиолокационным ориентирам;
- на самолётах, где необходима особо высокая надёжность, второй (дублирующий) приёмно-передающий блок, явяющийся горячим резервом первого блока и в случае выхода его из строя полностью выполняющий все его функции.
РЛС "Гроза" присваивается цифровое обозначение, совпадающее с принятым самолётостроительным предприятием номером типа самолета, например, "Гроза-40" - радиолокатор для самолета ЯК-40; "Гроза-24" - радиолокатор для самолёта АН-24.
2.2 Состав и размещение радиолокатора "Гроза"
В состав РЛС входят следующие блоки:
- антенный блок c рефлектором диаметром 560 мм;
- приёмно-передающий блок с повышенной разрешающей способностью;
- индикаторный блок с пультом управления радиолокатора;
- волноводный тракт.
Все блоки, за исключением антенного, размещаются в герметической кабине самолёта. Антенный блок и часть волноводного тракта находятся в негерметическом носовом радиопрозрачном обтекателе.
Индикаторный блок РЛС располагается в средней части приборной доски между рабочими местами первого и второго пилотов.
2.3 Основные технические характеристики радиолокатора "Гроза"
Основные технические характеристики РЛС "Гроза" следующие:
- средняя дальность наблюдения изображения незастроенных участков суши и крупных водных ориентиров при развёртке длительностью 250 км составляет 100 км;
- средняя дальность наблюдения изображений областных городов и промышленных центров - 155 км;
- средняя дальность наблюдения изображений особо крупных промышленных центров - 230 км;
- дальность обнаружения грозовой и кучево-дождевой облачности среднего развития - 130 км,
- диапазон высот полёта, в котором обеспечивается наилучшая равноконтрастность радиолокационного изображения земной поверхности - 5000- 9000 м;
- максимальная ошибка измерения радиолокатором угла сноса самолета - не более 1,5°;
- возможные углы ручного наклона оси диаграммы направленности антенны относительно плоскости горизонта ±10°;
- сектор азимутального обзора РЛС ±100° от строительной оси самолёта;
- частота азимутального обзора - 0,55 - 0,9 Гц (32-54 циклов обзора в минуту);
- импульсная мощность излучаемых радиоимпульсов - не менее 9 кВт;
- частота излучаемых СВЧ колебаний - 9370 ± 30 МГц;
- средняя мощность генерируемых СВЧ колебаний - не менее 8 ВТ;
- полоса пропускания сквозной частотной характеристики приемника на уровне половинной мощности - в пределах
.
где f1 - низшая граничная частота; f2 - высшая граничная частота;
- соотношение между граничными частотами полосы и частотой магнетрона fМ удовлетворяет условию
;
- длительность излучаемых радиоимпульсов - 2 ± 0,2 мкс;
- частота повторения излучаемых радиоимпульсов равна частоте бортовой электросети 200/115В, т.е. 400 Гц;
- чувствительность приёмного устройства РЛС по пропаданию сигнала в шумах - не менее 100 дБ/мВ;
- ширина диаграммы направленности по уровню половинной мощности в горизонтальной плоскости - не более 4,2°;
- длительность развёртки на индикаторе: 30 км; 50 км, 125 км, 250 км - все, начиная с нуля дальности, и 375 ± 25 км, начиная с дальности 200 км;
- интервал между калибрационными метками дальности: 10 км на развертках "30" и "50", 25 км - на развёртке "125" и 60 км - на развёртках "250" и "375";
- напряжение электропитания РЛС:
однофазное переменное напряжение 115 В с частотой 400 Гц или трёхфазное переменное напряжение с линейным значением 200 В и частотой 400 Гц; трехфазное напряжение 36 В с частотой 400 Гц; постоянное напряжение 27 В.
2.4 Режимы работы радиолокатора "Гроза"
В соответствии с тактическим назначением РЛС "Гроза" может эксплуатироваться в следующих режимах: "Земля", "Метео", "Контур", "Снос", "Коррекция".
Режим работы "Земля"
Изображение местности на экране индикатора в режиме "Земля" получается в результате различных значений эффективной отражающей поверхности наземных объектов, что приводит к различию амплитуд отражённых сигналов, поступающих на вход приёмника РЛС.
В свою очередь различие амплитуд сигналов вызывает различную яркость свечения отдельных элементов экрана, что позволяет судить о характере облучаемых объектов (рис. 2.1).
Для получения изображения местности антенна РЛС в режиме "Земля" имеет веерный луч - широкий в вертикальной плоскости и узкий (4°,2) в горизонтальной плоскости.
При работе РЛС в режиме "Земля" обеспечивается получение на индикаторе в полярных координатах "азимут-дальность" непрерывной радиолокационной карты земной поверхности в пределах азимутальных углов ±100° впереди самолёта. Экран индикатора имеет время послесвечения несколько большее времени цикла качания антенны РЛС, что и позволяет наблюдать летчику общую картину просматриваемой местности. В нижней части рис.2.1 приведён участок такого изображения (условно - в негативе). Выше приведены временные диаграммы с характером изменения напряжения UВУ- на выходе видеоусилителя и форма тока в отклоняющей катушке, обеспечивающая развёртку электронного луча по дальности.
Рисунок 2.1 - Принцип получения радиолокационного изображения на индикаторе кругового обзора
Первые отражённые сигналы приходят с дальности, равной высоте полёта, поэтому около центра экрана образуется тёмное пятно с радиусом, пропорциональным высоте полёта самолёта. Затем экран засвечивается сигналом, отражённым от различных объектов. От спокойной водной поверхности происходит зеркальное отражение и участок экрана, ей соответствующий, остаётся незасвеченным (тёмным). В связи с этим на тёмном фоне хорошо видны отражения кораблей, мостов и других надводных объектов. Искусственные сооружения создают достаточно интенсивные отражённые сигналы и их изображение также выделяется на фоне местности.
Для правильности воспроизведения обстановки на индикаторе необходимо, чтобы одинаковые объекты давали на экране одинаковую яркость засвета независимо от различия расстояний до каждого из них. При этом, в соответствии с основным уравнением дальности действия РЛС, должно выполняться условие
(2.1)
где Рпрм - мощность отражённых сигналов на входе приёмника;
G() - коэффициент усиления (по мощности) антенны РЛС вертикальной плоскости;
R - дальность до объектов.
Для выполнения этого условия необходимо выбрать особый закон изменения диаграммы направленности от текущего угла i (рис. 1).
При постоянной высоте полета Н
\
Как следует из условия (2.1) , откуда , т.е. коэффициент усиления антенны в вертикальной плоскости должен изменяться по закону . На рис.2.1 показана примерная форма такой диаграммы, называемой "косекансной".
При работе РЛС на развёртках "30", "50" и "125" обзор земной поверхности осуществляется косекансной веерной диаграммой направленности. Для получения такой диаграммы в этом режиме используется антенный отражатель (рефлектор) двойной кривизны.
При масштабе развёртки 250 км для обзора земной поверхности, в целях повышения дальностей наблюдения средних промышленных центров, используются поочерёдно два вида диаграмм направленности, переключаемых автоматически. При движении рефлектора вправо формируется узкая диаграмма направленности "карандашного" типа. За счёт большого послесвечения экрана индикатора радиолокационные изображения от узкого и веерного лучей воспринимаются оператором как единое целое. При работе на развёртке "375" обзор поверхности осуществляется только узким лучом, который имеет в два раза больший коэффициент направленного действия.
Получение с помощью одной антенной системы двух различных форм диаграммы направленности осуществляется следующим образом.
Сдвоенный отражатель антенны состоит из симметричного параболического отражателя и отражателя специальной формы, выполненного в виде "козырька" в верхней части параболоида.
Параболический отражатель при облучении его электромагнитной энергией формирует диаграмму направленности в виде узкого луча "карандашного" типа. Он изготовлен из полностью металлизированной стеклоткани. Профиль отражающей поверхности отражателя специальной формы рассчитан из условия получения в вертикальной плоскости косекансной диаграммы направленности. Этот отражатель представляет собой
поверхность двойной кривизны, выполненной из металлизированной стеклоткани, металлизированные нити которой расположены строго горизонтально и имеют шаг 3 мм. Оба отражателя жестко соединены между собой и установлены на металлический штампованный держатель чашеобразной формы. Отражатель специальной формы размещается перед симметричным параболическим отражателем и закрывает только верхнюю его часть, образуя тем самим своеобразный "козырёк" антенного рефлектора.
Формирование соответствующей диаграммы направленности осуществляется изменением плоскости поляризации излучаемых высокочастотных колебаний.
При вертикальной поляризации облучающая электромагнитная энергия беспрепятственно проходит сквозь отражатель специальной формы с горизонтальным расположением металлизированных нитей и отражается от симметричного параболоида. При этом формируется диаграмма направленности в виде узкого луча. При изменении поляризации облучающих колебаний на горизонтальную происходит отражение от являющегося для данной поляризации непрозрачным отражателя специальной формы и формируется веерная диаграмма направленности косекансного типа. На рис. 2.2 приведены диаграммы направленности в двух плоскостях для обоих режимов работы антенны.
Подобные документы
Генератор гармонических колебаний - устройство, без постороннего возбуждения преобразующее энергию источника питания в энергию гармонических колебаний. Проектирование элементов электрического генератора гармонических колебаний на операционном усилителе.
контрольная работа [74,1 K], добавлен 10.11.2010Характеристика свойств и принципов действия усилителей низкой частоты на биполярных транзисторах. Основные методики проектирования и расчета генераторов колебаний прямоугольной формы с управляемой частотой следования импульсов. Эскиз источника питания.
курсовая работа [56,0 K], добавлен 20.12.2008Принципы построения генераторов электрических колебаний. Баланс амплитуд, баланс фаз. Генераторы с трансформаторной связью. Кварцевые генераторы. Генераторы напряжения специальной формы. Генератор треугольного и прямоугольного напряжений. Мультивибраторы.
реферат [179,7 K], добавлен 01.12.2008Траектория движения электрона в скрещенных электрическом и магнитном полях. Ее графическая проекция на плоскость в виде циклоиды, радиус которой зависит от напряжённости и индукции полей. Способ управления электронным потоком с помощью магнитных линз.
курсовая работа [596,9 K], добавлен 18.04.2015Понятие и принципы получения незатухающих гармонических колебаний. Сущность задачи исследования генераторов, условия и возможности их возбуждения, общие принципы работы. Линейная теория автогенератора, порядок составление дифференциального уравнения.
реферат [81,2 K], добавлен 22.03.2010Анализ основных видов сложных сигналов, анализ широкополосных систем связи. Классификация радиолокационных систем, их тактических и технических характеристик. Разработка и обоснование основных путей развития радиолокационных систем со сложными сигналами.
курсовая работа [470,3 K], добавлен 18.07.2014Принципиальная схема RC–автогенератора. Создание модели операционного усилителя и его АЧХ. Генерация гармонических колебаний. Влияние температур на форму и спектральный состав генерируемых колебаний. Влияние обратной связи на генерацию колебаний.
курсовая работа [213,8 K], добавлен 26.01.2011Разработка функциональной и принципиальной схем генераторов прямоугольных импульсов, синусоидальных колебаний, шума и линейно-изменяющегося напряжения. Расчет трансформатора, усилителя мощности, конденсатора, резистора и надежности радиоэлементов.
курсовая работа [333,2 K], добавлен 13.12.2015Методы модуляции колебаний оптических частот и их характеристика. Спектр модулированных колебаний. Формы записи оптических сигналов. Оптическое приемное устройство прямого детектирования. Радиоприемное устройство с выходным сигналом на видеочастоте.
контрольная работа [2,2 M], добавлен 24.08.2015Характеристика схем автогенераторов: с автотрансформаторной и емкостной обратной связью. Изучение амплитудного условия самовозбуждения и амплитуды генерируемых колебаний, которая определяется балансом амплитуд. Методы стабилизации частоты автогенератора.
реферат [85,5 K], добавлен 15.03.2010