Проектирование магистральной волоконно-оптической системы передачи с повышенной пропускной способностью

Выбор наиболее эффективного метода повышения пропускной способности магистральной системы передач. Расчет параметров квантово-электронного модуля и линейного тракта. Разработка структурной и функциональной схем приемника, передатчика и ретранслятора.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 17.04.2011
Размер файла 7,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Отчисления на социальные нужды, руб

ЕСН 26 %

17136,4

Страховые отчисления 0,2%

13,18

Итого:

17268,2

6.2.4 Амортизация основных фондов

Годовую сумму амортизации ЭВМ рассчитываем по формуле:

где НА - норма годовой амортизации ЭВМ;

СЭВМ - балансовая стоимость ЭВМ.

Для ЭВМ, используемых при разработке дипломного проекта норма годовой амортизации устанавливается в пределах 20 - 30 %, примем НА=20%. Первоначальная (балансовая) стоимость ЭВМ СЭВМ составляет 22000 руб.

Сумма амортизационных отчислений определяется с учётом общего времени использования ЭВМ:

где F - действительный годовой фонд работы оборудования (2000 ч);

NМЧ - количество часов рабочего времени, когда использовалась ЭВМ.

ЭВМ использовалась 50 дней в среднем по 6 часов в день, то есть

NМЧ = 50 ? 6 = 300 часов.

Тогда

Расчёт суммы амортизационных отчислений представлен в таблице 6.5.

Таблица 6.5 Суммы амортизационных отчислений.

Наименование

Количество

Балансовая

стоимость, руб

Время исполь-зования по теме, ч

Норма аморти-зации, %

Сумма аморти-зации, руб/год

Действ. год. фонд работы ПК, ч

Итого расходов, руб

Персо-нальный компьютер

1

22 000

300

20

4400

2000

660

6.3. Расчет цены НИР

К данной статье относятся расходы, которые прямо включить в себестоимость данной разработки не представляется возможным (например, расходы, связанные с эксплуатацией зданий, стоимость вспомогательных материалов). Они составляют в среднем 10% от начисленной заработной платы:

В итоге, суммируя затраты по всем пунктам получим сметную стоимость проекта:

Полная смета затрат приведена в таблице 6.6.

Таблица 6.6 Смета затрат на разработку.

№№п/п

Статья расходов

Сумма, руб.

Удельный вес, %

1

Материалы (без НДС)

3779

4,1

2

Основная заработная плата

65909,1

70

3

Социальные отчисления

17268,2

18,3

4

Затраты на амортизацию оборудования

660

0,7

5

Прочие расходы

6590,9

7

Итого:

94206,83

100,0

6.4 Выводы по эффективности предложений

Ввиду того, что сравнить экономический расчет не представляется возможным. Оценку данной системы передачи можно дать лишь на стадии промышленного производства. Для сравнения на стадии разработки требуются данные о аналогичных затратах у других фирм, а такие данные являются закрытыми.

7. Безопасность и экологичность проекта

7.1 Вопросы обеспечения безопасности труда и защиты окружающей среды

Безопасность при работе с оптическим кабелем. То, что волоконно-оптические системы могут представлять серьезную опасность для работающего с ними человека, совсем не новость. Вместе с тем полезно перечислить известные потенциальные опасности и указать меры по их ослаблению или полному устранению.

В ближайшем будущем почти каждый специалист в области телекоммуникаций будет иметь дело с оптическими системами. Работа с волоконной оптикой станет рутиной для следующего поколения. Поэтому научиться безопасно выполнять различные операции с ней лучше уже сейчас и не доводить дело до несчастных случаев.

Меры предосторожности при работе с источниками света. При работе с ОВ, прежде всего, следует позаботиться о выполнении техники безопасности в отношении источников света. Серьезную опасность могут представлять лазеры, однако наносимый ими вред проще всего предотвратить. Нужно всегда предполагать, что любое волокно активно и в качестве источника используется лазер, а не светоизлучающий диод (LED), который, несмотря на малую мощность, тоже может быть опасен, если выходящий из него свет фокусируется каким-либо смотровым прибором.

Практически во всех телекоммуникационных системах для передачи сигналов применяется инфракрасное излучение (ИК). Это значит, что его невозможно обнаружить визуально. Ни в коем случае нельзя "заглядывать" в волокно. Специальные конверторы или визуализаторы могут преобразовать свет из инфракрасного в видимый диапазон, но даже тогда его будет трудно обнаружить при ярком освещении. Для определения активности волокна лучше всего использовать датчик инфракрасного излучения.

При соединении волокон можно свести риск к минимуму, если держать конец волокна по направлению от себя. На самом деле в процессе соединения вообще не нужно смотреть на торец волокна, так как оно обычно располагается под крышкой сварочного аппарата или внутри механического соединителя. Конец волокна должен находиться на расстоянии вытянутой руки, что также очень важно. Если он сломан, то свет на выходе рассеивается поврежденным торцом и не представляет особой опасности. Если конец волокна сколот, свет, наоборот, остается коллимированным.

Кроме инфракрасного света нужно быть особенно внимательным при работе с ультрафиолетовым излучением (УФ). УФ иногда используется для отверждения клея в разветвителях и соединителях. В этом случае нельзя проводить работу без специальных защитных очков, ослабляющих УФ-излучение.

Оголенное волокно. Обломки оголенного волокна, т.е. волокна, с которого удалили защитную (вторичную) оболочку, оставив открытой стеклянную поверхность, могут быть очень опасными, если с ними обращаться неправильно. Сотни таких осколков образуются при сращивании оптических кабелей.

Каждый осколок нужно вовремя увидеть и избавиться от него. Никогда не стоит оставлять ОВ с оголенным концом. Его необходимо удалить, отрезав ОВ в области защитной оболочки. Ни в коем случае нельзя укорачивать оголенный конец ОВ, отрезая от него небольшую часть. Нужно резать ОВ в области, содержащей защитное покрытие, а затем оголить участок нужной длины. Для невооруженного взгляда конец оголенного волокна может показаться безопасным, но под микроскопом он похож на гарпун.

Оголенные концы могут легко попасть под кожу и обломаться, вызывая микроповреждения. Осколки волокна могут привести к попаданию инфекции в кожу, серьезным повреждениям глаз или внутренним повреждениям при попадании в легкие или в пищеварительный тракт. Несмотря на то что даже при аккуратном обращении с осколками волокна они могут быть потеряны, необходимо свести вероятность этого к нулю.

Утилизация осколков. В полевых условиях так же, как и в лабораториях, необходимо избавляться от осколков волокна. На сегодняшний день для этого существует два метода: использование специальных контейнеров и клейкой ленты. Специальные контейнеры, так называемые волоконные "урны", можно приобрести в магазинах: они должны иметь правильную маркировку и защиту от попадания осколков наружу. В комплектацию некоторых скалывателей волокна уже входят контейнер для сбора осколков. Можно также соорудить свои "урны" и подписать их соответствующим образом.

Важная деталь в процессе утилизации: куда деть полную осколков волоконную "урну"? Большинство таких контейнеров выбрасывают в мусорные баки. Но если "урна" случайно выпадет или разобьется, осколки могут оказаться снаружи. Поэтому нужно обмотать контейнер широкой изоляционной лентой, затем поместить его в двойной мусорный пакет и только потом выбросить.

Химикаты, острые объекты и электричество. ГН 2.2.5.1313-03 "Предельно допустимые концентрации вредных веществ в воздухе рабочей зоны". В некоторых случаях при работе с оптическим кабелем может потребоваться использование клеев, растворителей и пр. При особой чувствительности к каким-либо из применяемых химикатов необходимо носить защитные рукавицы. При использовании испаряющихся химикатов необходимо тщательно проветривать помещение и не курить. Хотя это часто и кажется лишним, лучше перед работой с конкретным химикатом ознакомиться с соответствующей техникой безопасности.

Бронированные кабели наружной прокладки содержат прочное металлическое покрытие, обычно сделанное из нержавеющей стали. При подготовке кабеля к соединению или разъединению нужно надевать перчатки для защиты от серьезных порезов, которые может нанести кабельная оплетка. Перчатки должны быть из кожи или кевлара. Большинство кабелей снабжены "вытяжным тросом" для создания разреза в кожухе. Лучше использовать щипцы или перчатки для удерживания троса во избежание получения от него травм.

Лазерное излучение. "Санитарные нормы и правила устройства и эксплуатации лазеров №5804-91", ГОСТ 12.1.040-83 "Лазерная безопасность". Действие лазерного излучения на живую ткань зависит от мощности светового потока и режима облучения. Лазеры непрерывного действия оказывают в основном тепловое влияние. Импульсные лазеры, кроме теплового действия, могут вызывать сложные превращения в ткани (взрывные процессы, процессы ионизации и пр.). Лазерное излучение действует также на нервную систему. Существенное значение имеет диаметр зрачка глаза. При большем диаметре на сетчатку попадает больше энергии лазерного излучения. Поэтому в ярко освещенной комнате возможность поражения меньше, чем в темной комнате. По степени опасности генерируемого излучения лазеры подразделяются на 4 класса. К первому классу относятся лазеры, выходное излучение которых не представляет опасности для глаз и кожи. Если лазеры способны нанести вред при облучении глаз прямым или зеркально отраженным излучением, то они принадлежат ко второму классу. В третий класс входят лазеры, представляющие опасность при облучении глаз прямым, зеркально отраженным, а также диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности или при облучении кожи прямым и зеркально отраженным светом. Если существует риск при облучении кожи диффузно отраженным излучением на расстоянии 10 см от отражающей поверхности, то лазерные установки причисляют к четвертому классу. Международная электротехническая комиссия имеет похожую систему классификации лазеров. Техника безопасности при работе с лазерными источниками подробно описана в таких документах, как ANSI z136.2-1988 или OSHA Technical Manual (раздел 3, глава 6). Опасные и вредные производственные факторы, которые могут иметь место при эксплуатации лазеров 1 - 4-х классов, приведены в таблице.

7.2 Пожарная безопасность.

Пожары наносят громадный материальный ущерб и в ряде случаев сопровождаются гибелью людей. Поэтому защита от пожаров является важнейшей обязанностью каждого члена общества и проводится в общегосударственном масштабе.

Цель противопожарной защиты - изыскание наиболее эффективных, экономически целесообразных и технически обоснованных способов и средств предупреждения пожаров и их ликвидации с минимальным ущербом при наиболее рациональном использовании сил и технических средств тушения.

Пожарная безопасность - это состояние объекта, при котором исключается возможность пожара, а в случае его возникновения используются необходимые меры по устранению негативного влияния опасных факторов пожара на людей, сооружения и материальных ценностей.

Пожарная безопасность может быть обеспечена мерами пожарной профилактики и активной пожарной защиты.

Пожарная профилактика включает комплекс мероприятий, направленных на предупреждение пожара или уменьшение его последствий. Активная пожарная защита меры, обеспечивающие успешную борьбу с пожарами или взрывоопасной ситуацией.

Пожар как фактор техногенной катастрофы. Пожар - это горение вне специального очага, которое не контролируется и может привести к массовому поражению и гибели людей, а также к нанесению экологического, материального и другого вреда. Горение это химическая реакция окисления, сопровождающаяся выделением теплоты и света. Для возникновения горения требуется наличие трех факторов: горючего вещества, окислителя и источника загорания. Окислителями могут быть кислород, хлор, фтор, бром, йод, окиси азота и другие. Кроме того, необходимо чтобы горючее вещество было нагрето до определенной температуры и находилось в определенном количественном соотношении с окислителем, а источник загорания имел определенную энергию. Наибольшая скорость горения наблюдается в чистом кислороде. При уменьшении содержания кислорода в воздухе горение прекращается. Горение при достаточной концентрации окислителя называется полным, а при его нехватке - неполным. Выделяют три основных вида самоускорения химической реакции при горении: тепловой, цепной и цепочно-тепловой. Тепловой механизм связан с экзотермичностью процесса окисления и возрастанием скорости химической реакции с повышением температуры. Цепное ускорение реакции связано с катализом превращений, которое осуществляют промежуточные продукты превращений. Реальные процессы горения осуществляются, как правило, по комбинированному (цепочно-тепловой) механизму. Процесс возникновения горения подразделяется на несколько видов: вспышка быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов; возгорание - возникновение горения под воздействием источника зажигания; воспламенение - возгорание, сопровождающееся появлением пламени; самовозгорание явление резкого увеличения скорости экзотермических реакций, приводящее к возникновению горения вещества при отсутствии источника зажигания.

Различают несколько видов самовозгорания:

Химическое - от воздействия на горючие вещества кислорода, воздуха, воды или взаимодействия веществ;

Микробиологическое - происходит при определенной влажности и температуры в растительных продуктах (самовозгорание зерна);

Тепловое - вследствие долговременного воздействия незначительных источников тепла (например, при температуре 100 С тирса, ДВП и другие склоны к самовозгоранию).

Самовоспламенение самовозгорание, сопровождается появлением пламени.

Взрыв чрезвычайно быстрое (взрывчатое) превращение, сопровождающееся выделением энергии с образованием сжатых газов.

Основными показателями пожарной опасности являются температура самовоспламенения и концентрационные пределы воспламенения. Температура самовоспламенения характеризует минимальную температуру вещества, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения.

Причины возникновения пожаров на предприятиях. Пожар на предприятии наносит большой материальный ущерб народному хозяйству и очень часто сопровождается несчастными случаями с людьми.

Основными причинами, способствующими возникновению и развитию пожара, являются:

1. нарушение правил применения и эксплуатации приборов и оборудования с низкой противопожарной защитой;

2. использование при строительстве в ряде случаев материалов, не отвечающих требованиям пожарной безопасности;

3. отсутствие на многих объектах народного хозяйства и в подразделениях пожарной охраны эффективных средств борьбы с огнем.

Лаборатории. При эксплуатации ЭВМ возможны возникновения следующих аварийных ситуаций: короткие замыкания; перегрузки; повыш. переходных сопротивлений в эл. контактах; перенапряжение; возникновение токов утечки.

При возникновении аварийных ситуаций происходит резкое выделение тепловой энергии, которая может явиться причиной возникновения пожара.

На долю пожаров, возникающих в эл. установках приходится 20%.

Режим короткого замыкания - появление в результате резкого возрастания силы тока, эл. искр, частиц расплавленного металла, эл. дуги, открытого огня, воспламенившейся изоляции.

Причины возникновения короткого замыкания:

· ошибки при проектировании; · старение изоляции; · увлажнение изоляции;

· механические перегрузки. Пожарная опасность при перегрузках - чрезмерное нагревание отдельных элементов, которое может происходить при ошибках проектирования в случае длительного прохождения тока, превышающего номинальное значение.

Меры по пожарной профилактике. Основы противопожарной защиты предприятий определены стандартами ГОСТ 12.1. 004 76 "Пожарная безопасность" ГОСТ 12.1.010 76 "Взрывобезопасность. Общие требования"

Этими ГОСТами возможная частота пожаров и взрывов допускается такой, чтобы вероятность их возникновения в течение года не превышала 106 или чтобы вероятность воздействия опасных факторов на людей в течение года не превышала 106 на человека.

Мероприятия по пожарной профилактике разделяются на организационные, технические, режимные, строительно-планировочные и эксплуатационные. Организационные мероприятия: предусматривают правильную эксплуатацию машин и внутризаводского транспорта, правильное содержание зданий, территории, противопожарный инструктаж и тому подобное. Режимные мероприятия запрещение курения в неустановленных местах, запрещение сварочных и других огневых работ в пожароопасных помещениях и тому подобное. Эксплуатационные мероприятия своевременная профилактика, осмотры, ремонты и испытание технологического оборудования. Строительно-планировочные определяются огнестойкостью зданий и сооружений (выбор материалов конструкций: сгораемые, несгораемые, трудносгораемые) и предел огнестойкости - это количество времени, в течение которого под воздействием огня не нарушается несущая способность строительных конструкций вплоть до появления первой трещины.

Способы и средства тушения пожаров. В практике тушения пожаров наибольшее распространение получили следующие принципы прекращения горения:

1) изоляция очага горения от воздуха или снижение концентрации кислорода путем разбавления воздуха негорючими газами (углеводы CО2 1214).

2) охлаждение очага горения ниже определенных температур;

3) интенсивное торможение (ингибирование) скорости химической реакции в пламени;

4) механический срыв пламени струей газа или воды;

5) создание условий огнепреграждения (условий, когда пламя распространяется через узкие каналы).

Вещества, которые создают условия, при которых прекращается горение, называются огнегасящими. Они должны быть дешевыми и безопасными в эксплуатации не приносить вреда материалам и объектам.

Вода является хорошим огнегасящим средством, обладающим следующими достоинствами: охлаждающее действие, разбавление горючей смеси паром (при испарении воды ее объем увеличивается в 1700 раз), механическое воздействие на пламя, доступность и низкая стоимость, химическая нейтральность.

Тушение пожаров водой производят установками водяного пожаротушения, пожарными автомашинами и водяными стволами. Для подачи воды в эти установки используют водопроводы.

Пар применяют в условиях ограниченного воздухообмена, а также в закрытых помещениях с наиболее опасными технологическими процессами. Гашение пожара паром осуществляется за счет изоляции поверхности горения от окружающей среды. При гашении необходимо создать концентрацию пара приблизительно 35 %

Пены применяют для тушения твердых и жидких веществ, не вступающих во взаимодействие с водой. Огнегасящий эффект при этом достигается за счет изоляции поверхности горючего вещества от окружающего воздуха. Огнетушащие свойства пены определяются ее кратностью отношением объема пены к объему ее жидкой фазы, стойкостью дисперсностью, вязкостью. В зависимости от способа получения пены делят на химические и воздушно-механические.

Воздушно-механическую пену низкой (до 20), средней (до 200) и высокой (свыше 200) кратности получают с помощью специальной аппаратуры и пенообразователей ПО1, ПО1Д, ПО6К и т.д.

Инертные газообразные разбавители: двуокись углерода, азот, дымовые и отработавшие газы, пар, аргон и другие.

Ингибиторы на основе предельных углеводородов, в которых один или несколько атомов водорода замещены атомами галоидов (фтор, хлор, бром). Галоидоуглеводороды плохо растворяются в воде, но хорошо смешиваются со многими органическими веществами:

· тетрафтордибромэтан (хладон 114В2);

· бромистый метилен;

· трифторбромметан (хладон 13В1);

· 3, 5, 7, 4НД, СЖБ, БФ (на основе бромистого этила);

Порошковые составы несмотря на их высокую стоимость, сложность в эксплуатации и хранении, широко применяют для прекращения горения твердых, жидких и газообразных горючих материалов. Они являются единственным средством гашения пожаров щелочных металлов и металлоорганических соединений. Для гашения пожаров используется также песок, грунт, флюсы. Порошковые составы не обладают электропроводимостью, не коррозируют металлы и практически не токсичны.

Огнетушители - устройства для гашения пожаров огнегасящим веществом, которое он выпускает после приведения его в действие, используется для ликвидации небольших пожаров. Как огнетушащие вещества в них используют химическую или воздухо-механическую пену, диоксид углерода (жидком состоянии), аэрозоли и порошки, в состав которых входит бром. Подразделяются: по подвижности: · ручные до 10 литров; · передвижные; · стационарные; по огнетушащему составу: · жидкостные; · углекислотные; · химпенные; · воздушно-пенные; · хладоновые; · порошковые; · комбинированные.

Огнетушители маркируются буквами (вид огнетушителя по разряду) и цифровой (объем). Ручной пожарный инструмент - это инструмент для раскрывания и разбирания конструкций и проведения аварийно-спасательных работ при гашении пожара.

Оценка пожарной опасности промышленных предприятий. В соответствии со СНиП 2280 все производства делят по пожарной, взрывной и взрывопожарной опасности на 6 категорий.

А взрывопожароопасные: производства, в которых применяют горючие газы с нижним пределом воспламенения 10 и ниже, жидкости с tвсп 280 C при условии, что газы и жидкости могут образовывать взрывоопасные смеси в объеме, превышающем 5 объема помещения, а также вещества, которые способны взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом (окрасочные цехи, цехи с наличием горючих газов и тому подобное).

Б взрывопожароопасные: производства, в которых применяют горючие газы с нижним пределом воспламенения выше 10; жидкости tвсп = 28...610С включительно; горючие пыли и волокна, нижний концентрационный предел воспламенения которых 65 Г/м3 и ниже, при условии, что газы и жидкости могут образовывать взрывоопасные смеси в объеме, превышающем 5 объема помещения (аммиак, древесная пыль).

В пожароопасные: производства, в которых применяются горючие жидкости с tвсп 610С и горючие пыли или волокна с нижним пределом воспламенения более 65 Г/м3, твердые сгораемые материалы, способные гореть, но не взрываться в контакте с воздухом, водой или друг с другом.

Г производства, в которых используются негорючие вещества и материалы в горячем, раскаленном или расплавленном состоянии, а также твердые вещества, жидкости или газы, которые сжигаются в качестве топлива.

Д производства, в которых обрабатываются негорючие вещества и материалы в холодном состоянии (цехи холодной обработки материалов и так далее).

Е взрывоопасные: производства, в которых применяют взрывоопасные вещества (горючие газы без жидкостной фазы и взрывоопасные пыли) в таком количестве при котором могут образовываться взрывоопасные смеси в объеме превышающем 5 объема помещения, и в котором по условиям технологического процесса возможен только взрыв (без последующего горения); вещества, способные взрываться (без последующего горения) при взаимодействии с водой, кислородом воздуха или друг с другом.

Правила устройства электроустановок ПУЭ регламентируют устройство электрооборудования в промышленных помещениях и для наружных технологических установок на основе классификации взрывоопасных зон и смесей.

Разрабатываемая в данном дипломном проекте магистральная ВОСП безопасна и соответствует нормам по безопасности.

7.3 Экологичность проекта

Разработанный проект никакой опастности для окружающей среды не представляет и никакого вредного воздействия на нее не оказывает.

Заключение

Целью данной выпускной работы явилась разработка методики проектирования магистральной волоконно-оптической системы передачи повышенной пропускной способности, заключающаяся в решении задачи расчета основных элементов системы, резервирования в сетях DWDM увеличение длины пролета с помощью оптических усилителей, организация узлов доступа к ВОЛС на основе пассивных DWDM мультиплексоров.

В технико-экономическом обосновании доказана актуальность применения метода спектрального уплотнения, показаны преимущества и недостатки данного метода по сравнению с традиционно используемыми методами.

В теоретической части произведен расчет параметров оптического линейного тракта ВОСП со спектральным уплотнением, рассмотрены особенности структуры ОЛТ, произведены расчеты основных параметров КЭМ передачи и приема при использовании метода WDM, а так же произведена оценка параметров оптического волокна.

В технической части работы на основе принципов полученных из теоретической части производится разработка структурной схемы ВОСП а также функциональной схемы, то есть разрабатывается состав аппаратуры оконечных пунктов и линейного тракта, достаточный для выполнения дипломного проектирования.

В данной выпускной работе систематизированы исходные данные, необходимые для построения и ввода в эксплуатацию магистральной волоконно-оптической системы передачи со спектральным уплотнением.

Таким образом, тема дипломного проекта "Проектирование магистральной волоконно-оптической системы передачи повышенной пропускной способности" выполнена полностью.

магистральный передача квантовый передатчик ретранслятор

Библиографический список

Концепция развития связи РФ.

Батушев Д.И. "Методы оптимального проектирования." Москва "Радио и связь", 1984.-246.с.

"Проектирование и техническая эксплуатация систем передачи": Учебник для ВУЗов / И.Р. Берганов, В.Н. Гордиенко, В.В. Крухмалев -М.:Радио и связь,1989.

"Системы многоканальной связи": Учебник для ВУЗов / А.М. Зингеренко, Н.Н. Баева, М.С. Тверецкий -М.: Связь, 1980.

Гроднев И.И., Верник С.М. "Линии связи": - Учебник для ВУЗов. - М.: Радио и связь, 1988.

Гитлиц М.В., Лев А.Ю. "Теоретические основы многоканальной связи": Учебное пособие для ВУЗов связи. - М.: Радио и связь, 1985.

"Проектирование цифровых систем передачи (ЦСП)": Учебное пособие / Ю.К. Казаков. - Рязань: РГРТА, 1994.

Убайдуллаев Р. Р. "Волоконно-оптические сет"и - М.: Эко-Тренз,1998 .

Иванов А.Б. "Волоконная оптика : компоненты, системы передачи,

Измерения".-M.:САЙРУС СИСТЕМС, 1999

Гауэр Дж. "Оптические системы связи".-M.: Радио и связь, 1989

"Цифровые и аналоговые системы передачи" : Учебное пособие / под ред. Иванова В.И. - М: Горячая линия - Телеком - 2003

Гроднев И.И. "Волоконно-оптические линии связи." - М.: Радио и связь, 1990.

Гроднев И.И. "Оптоэлектронные системы передачи информации." - М.: Радио и связь, 1991.

Мурадян А.Г. "Системы передачи информации по оптическому кабелю". - М.: Радио и связь, 1980.

"Волоконно-оптические системы передачи" / Бутусов М.М., Верник С.М. и др. - - М.: Радио и связь, 1992.

Гроднев И.И. "Оптические кабели: Конструкции, характеристики, производство и применение." - М.: Радио и связь, 1991.

Мурадян А.Г. "Оптические кабели многоканальных линий связи." - М.: Радио и связь, 1987.

Лукин И.А., Беляков М.И., Лебедев С.Ф., Лиференко В.Д., Марков Ю.В. "Комплекс аппаратуры пятеричной волоконно-оптической системы передачи." - Электросвязь, 1992, №5.

Лиференко В.Д., Марков Ю.В., Хрыкин В.Т., Сохранский С.С, Лукин И.А. "Комплекс аппаратуры линейного тракта световодных цифровых систем передачи."- Электросвязь, 1983, №5.

Андрушко Л.М. и др. "Волоконно-оптические линии связи. Справочник". М.: Радио и связь, 1985.

"Цифровая ВОСП для ГТС". - Электросвязь, 1985, №10.

Рудов Ю.К., Лукин И.А., Беляков М.И. "Высокоскоростные волоконно-оптические системы для магистральных линий связи"//Техника средств связи: ТПС. - 1989. Вып.6.

"Проектирование цифровых ВОСП"- Одесский ЭТИС , Одесса, 1987

Байдан И. Е. - "Проектирование цифровых каналов МСП на ЭК и ОК" - Одесса, 1990.

Скляров О. К. - "Современные ВОСП. Аппаратура и элементы." - М., Солон - 2001.

Кириллов В. И. - "Многоканальные системы передачи" - М., Новое знание, 2002.

Вербовецкий А.А. - "Основы проектирования цифровых оптоэлектронных систем связи" - М., Радио и связь, 2001.

Теумин И.И. Волноводы оптической связи.- М.: Связь, 1998г.-с.240.

Элион Г., Элион Х. Волоконная оптика в системах связи / Пер. с англ. / Под ред. Е.М. Дианова.- М.: Мир, 1989г.-с.280.

Адрушко Л.М., Смирнов В.И. Волоконно-оптические линии связи // Электросвязь.-1997г.- №2.- с.20-28.

Гордон Г.И., Заркевич Е.А. Солитонные волоконно - оптические системы передачи // Электросвязь.-1993г.-№2-с.11-19.

Носов Ю.Р. Волоконно-оптическая связь.- М: Радио и связь,1990г.

Волоконно - оптическая техника: история, достижения, перспективы/под ред. Дмитриева С.А., Слепова Н.Н.-М:2000г.

Слепов Н.Н. Современные технологии цифровых оптоволоконных сетей связи. - М: Радио и связь, 2000г.с.301.

Скляров О.К. Современные волоконно - оптические системы передачи.-М:Союн-Р,2001г.

Хасегава А., Кодама Ю. Передача сигналов оптическими солитонами // ТИИЭР.-1985г.-№9-с.57-65.

Теумин И.И. Влияние солитонов на передачу информации в волоконно-оптической системе передачи//Электросвязь.-1987г.-№7-с.39-47.

Справочник по волоконно-оптическим линиям связи / Л.М.Андрушко, В.А.Вознесенский.- К.:Техника,1998г.-с.220.

Волоконно-оптическое оборудование и сетевые решения/Проспект #1-98 фирмы "Вимком - Оптик". - М.,1998г.

Синев С.Г. Новые технологии в волоконно-оптических сетях. - М.: Радио и связь,1999г.-с.196.

Интернет-сайт www.kunegin.narod.ru

Интернет-сайт www.telam.ru

Интернет-сайт www.cisco.com

Интернет-сайт www.morion.ru

Интернет-сайт www.rittal.ru

Интернет-сайт www.chipdip.ru

Интернет-сайт www.aport.ru

Интернет-сайт www.globaloptical.ru

Интернет-сайт www.velcom.ru

Интернет-сайт www.tt.ru

Приложение

Список рекомендаций ITU-T

G.652: Характеристики одномодовых волоконно-оптических кабелей

G.653: Характеристики одномодовых волоконно-оптических кабелей со смешанной дисперсией

G.654: Характеристики одномодовых волоконно-оптических кабелей с минимальным затуханием на волне 1551 нм

G.691: Оптические стыки для одноканальных систем с оптическими усилителями.

G.692: Оптические стыки для многоканальных систем с оптическими усилителями.

G.702: Скорости передачи цифровой иерархии

G.703: Физические и электрические характеристики иерархических цифровых интерфейсов

G.704: Структура синхронных циклов, используемых на первом и втором уровнях иерархии

G.707: Скорости передачи СЦИ

G.708: Интерфейс сетевого узла СЦИ

G.709: Структура синхронного мультиплексирования.

G.75: Аппаратура цифрового группообразования, работающая на скорости передачи третьего порядка 34368 кбит/с и на скорости передачи четвертого порядка 139264 кбит/с и использующая положительное цифровое выравнивание

G.772: Цифровые защищенные точки контроля.

G.781: Структура Рекомендации, касающихся аппаратуры мультиплексирования СЦИ

С.782: Типы и общие характеристики аппаратуры мультиплексирования СЦИ

G.783: Характеристики функциональных блоков аппаратуры мультиплексирования СЦИ

G.784: Управление СЦИ

G.803: Архитектура транспортных сетей на базе СЦИ

G.811: Требования к стабилизации частоты первичных эталонов пригодных для плезиохронного взаимодействия международных цифровых трактов

G.812: Требования к стабильности частоты вторичных эталонов, пригодных для плезиохронного взаимодействия международных цифровых трактов

G.956: Цифровые линейные тракты, основанные на иерархии на базе 2048 Кбит/с, для использования на волоконо-оптических кабелях

G.957: Оптические интерфейс для систем и аппаратуры СЦИ .

G.958: Цифровые линейные тракты, основанные на СЦИ, для использования на волоконно-оптических кабелях

О.150. Цифровые испытательные последовательности для измерения качественных показателей цифровой аппаратуры передачи.

О.151. Аппаратура для измерения показателей ошибок в цифровых системах на первичной скорости передачи и выше. Выпуск III. 4, Синяя книга, 1988.

О.152. Измерительная аппаратура для скоростей передачи 64 кбит/с и N х 64 кбит/с. Исправлена в 1992 г.

О.171. Аппаратура для измерения дрожания и дрейфа фазы. Исправлена в 1995г.

ГОСТ 26886--86. Стыки цифровых каналов передачи и групповых трактов первичной сети ЕАСС. Основные параметры.

ГОСТ 27763--88. Структуры циклов цифровых групповых сигналов первичной сети единой автоматизированной сети связи. Требования и нормы.

ГОСТ 5237--83. Аппаратура электросвязи. Напряжения питания и методы измерения.

Размещено на Allbest.ru


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.