Компьютерная схемотехника

Применение булевой алгебры при анализе и синтезе цифровых электронных устройств. Реализация логических функций в разных базисах. Параметры и характеристики цифровых интегральных микросхем. Структура локальной микропроцессорной системы управления.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид книга
Язык русский
Дата добавления 20.03.2011
Размер файла 3,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Внешний вид микросхемы приведен на рисунке 10.25, а описание выводов - в таблице 10.1.

Таблица 10.1 - Описание выводов микросхемы МАХ154

Номер вывода

Наименование

Назначение

1

AIN4

Аналоговый вход 4

2

AIN3

Аналоговый вход 3

3

AIN2

Аналоговый вход 2

4

AIN1

Аналоговый вход 1

5

REF OUT

Выход внутреннего опорного напряжения: +2.5В

6

DBO

Бит 0 выхода

7

DB1

Бит 1 выхода

8

DB2

Бит 2 выхода

9

DB3

Бит 3 выхода

10

RD

Управляющий бит доступа к данным и начала преобразования

11

INT

Сигнал индикации завершения преобразования

12

GND

Земля

13

Vref-

Нижняя граница входного сигнала

14

Vref+

Верхняя граница входного сигнала

15

RDY

Выходной сигнал готовности для микро- процессора. Принимает значение логического нуля, когда CS активен, и переходит в третье состояние по окончанию преобразования.

16

CS

Выбор микросхемы (кристалла)

17

DB4

Бит 4 выхода

18

DB5

Бит 5 выхода

19

DB6

Бит 6 выхода

20

DB7

Бит 7 выхода

21

A1

Бит 1 номера входного канала

22

A0

Бит 0 номера входного канала

23

NC

Не подключен

24

Vdd

Питание +5В

Таблица 10.2 отражает выбор входного канала адресными сигналами А1 и А0.

Таблица 10.2

А1

А0

Входной канал

0

0

AIN1

0

1

AIN2

1

0

AIN3

1

1

AIN4

Микросхема МАХ154 использует только два управляющих вывода: чтение - RD и выбор кристалла - CS. Операции чтения и преобразования инициируются низкими уровнями CS и RD, защелкивая адресные входы мультиплексора.

Функциональная схема MAX154 приведена на рисунке 10.26.

Рисунок 10.26

На входе схемы стоит четырехканальный аналоговый мультиплексор, который в зависимости от комбинации сигналов на адресных входах А0, А1 соединяет (коммутирует) один из аналоговых входов с устройством выборки-хранения, запоминающим входной сигнал и поддерживающим его практически неизменным в течении времени преобразования АЦП.

В АЦП использован «параллельно-последовательный» принцип преобразования. Два четырехразрядных параллельных АЦП служат для получения выходного 8-битного результата. Каждый из четырехразрядных АЦП содержит по пятнадцать компараторов, осуществляющих сравнение текущего значения входного сигнала с нормированными постоянными эталонными напряжениями. Величины этих напряжений зависят от значений опорных напряжений: VREF+ и VREF-, и отличаются друг от друга на величину u, которая соответствует изменению выходного 4-разрядного ДК каждого АЦП на 1мзр.

Вначале преобразования, используя 15 компараторов, верхний 4-битный АЦП старших 4-х разрядов сравнивает неизвестное входное напряжение с эталонными напряжениями и подает на выход 4-ре старших бита. Одновременно эти значения старших бит поступают на вход ЦАП, который формирует аналоговое напряжение, пропорциональное этому коду. Это напряжение вычитается из входного аналогового сигнала и полученная разность u поступает на вход нижнего 4-битного АЦП, где сравнивается с эталонными напряжениями 15 компараторов для получения значений 4-х младших разрядов выходного ДК. На выходе MAX154 находится регистр-защелка с третьим состоянием, что позволяет напрямую подключать микросхему к шине данных или портам ввода.

Описание работы параллельного 4-х разрядного АЦП

Простейшая схема четырехразрядного АЦП дана на рисунке 10.26.1.

Рисунок 10.26.1

Преобразователи этого типа осуществляют одновременное квантование сигнала с помощью набора компараторов, включенных параллельно источнику входного сигнала. Пороговые уровни компараторов устанавливаются с помощью резистивного делителя, подключенного к источнику опорного напряжения UОП в соответствии с используемой шкалой квантования. Число уровней квантования, а соответственно и число компараторов для n-разрядного АЦП равно 2n-1.

При подаче на такой набор компараторов сигнала UВХ на их выходах имеет место дискретный сигнал, отображающий срабатывание отдельных компараторов. Так, например (см. рисунок 10.26.1) если входное напряжение не выходит за пределы диапазона от 2,5u до 3,5u (u - шаг квантования), то компараторы с первого по третий устанавливаются в состояние 1, а компараторы с четвертого по пятнадцатый - в состояние 0. Для преобразования числа сработавших компараторов в двоичный код используется соответствующее кодирующее устройство. Состояния данного кодирующего устройства для четырехразрядного АЦП показаны в таблице 10.2.1

Таблица 10.2.1

Входное

напряжеие

Состояние компараторов

Выходной двоичный код

u*вх

К15

К14

K13

K12

K11

K10

K9

K8

K7

K6

K5

K4

K3

K2

K1

а3

а2

а1

а0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

2

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

1

0

3

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

1

1

4

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

1

0

0

5

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

0

1

0

1

6

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

0

1

1

0

7

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

0

1

1

1

8

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

0

0

0

9

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

0

0

1

10

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

1

0

11

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

0

1

1

12

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

13

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

1

14

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

15

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

*Входное напряжение дано в условных единицах: цифрами от 0 до 15 пронумерованы уровни квантования аналогового входного сигнала.

Кодирующее устройство (рисунок 10.26.1) реализовано с применением одного 15-ти входового логического элемента “ИЛИ-НЕ”; 14-ти элементов “запрет” и шифратора (преобразователя) 16-позиционного ”унитарного” кода в 4-х разрядный двоичный код.

Существует два режима работы микросхемы, которые определяются длительностью сигнала на входе RD.

Режим 0 (рисунок 10.27) инициализируется удержанием низкого значения сигнала чтения RD до завершения преобразования.

Рисунок 10.27

Он предназначен для микропроцессоров, которые могут быть переведены в состояние ожидания. В этом режиме преобразование начинается вместе с операцией чтения (низкий уровень CS и RD), и данные считываются, когда преобразование завершается. Логический ноль на входах CS и RD защелкивает адресные входы мультиплексора и инициирует преобразование. Выходы DB0-DB7 находятся в высокоимпедансном состоянии до окончания преобразования. Сигнал готовности RDY подключается ко входу READY/WAIT микропроцессора. RDY принимает логический ноль по спаду CS и переходит в высокоимпедансное состояние по окончанию преобразования, когда результат выдается на линии данных. Сигнал INT принимает значение логического нуля, когда преобразование заканчивается и логической единицы, когда сигнал на входе RD переходит в единичное состояние. Режим 1 (рисунок 10.28) не требует ожидания со стороны микропроцессора.

Рисунок 10.28

Операция чтения одновременно инициирует преобразование и чтение результатов предыдущего преобразования. Сигнал INT принимает значение логической единицы по фронту RD и логического нуля по окончанию преобразования. Вторая операция чтения необходима для считывания результатов предыдущего преобразования. Второй сигнал RD защелкивает новый адрес в мультиплексоре и инициирует следующее преобразование. Задержка в 2,5мкс должна соблюдаться между операциями чтения.

В нашем случае будем использовать режим работы 0, т.к. режим 1 требует длительность сигнала 600нс. Для выбранной ОМЭВМ эта длительность равна 1 мкс.

На рисунке 10.29 приведена передаточная характеристика MAX154.

Рисунок 10.29

10.2.4.2 Расчет АЦП MAX154

Микросхема MAX154 может измерять входной сигнал со скоростью изменения до 157 мВ/мкс.

Если входной сигнал изменяется по синусоидному закону

Uвх.АЦП = Um sin2ft,(10.12)

то скорость его изменения

(10.13)

При 2ft = 0 значение скорости будет максимальным, а cos0=1.

В этом случае выражение (10.13) примет вид

.(10.14)

Подставляя вместо значение 157мВ/мкс, а также учитывая, что максимальное значение Um, которое может обрабатываться рассматриваемым АЦП, равно 2,5В, определим значение максимальной частоты:

Максимальная частота квантования по времени fmax ограничена временем преобразования tПРБ = 2мкс и временем между преобразования (временем сброса) tСБР =0,5мкс.Тогда

(10.15)

При использовании в АЦП MAX154 четырех каналов преобразования максимальная частота дискретизации на один канал равна

(10.16)

Это значение значительно превышает требования теоремы взятия отсчетов (теоремы Котельникова): частота дискретизации должна быть не менее, чем в два раза выше, чем максимальная частота изменения входного сигнала, которая по приведеным выше соображениям равна 10 кГц.

10.3 Применение ЦАП при выводе цифровой информации из МПС

Цифро-аналоговые преобразователи (ЦАП) предназначены для преобразования цифровых сигналов в аналоговые и служат для сопряжения цифровых и аналоговых устройств. Они широко используются для управления аналоговыми устройствами при помощи микроконтроллеров в таких отраслях техники, как системы управления технологическими процессами (исполнительные устройства программируемых станков, роботов и т.д.); дискретная автоматика; измерительная автоматика; и т.д.

Среди различных исполнений ЦАП широкое применение находит преобразователь с резисторной матрицей (РМ) R-2R и с суммированием токов. Его упрощенная структура приведена на рисунке 10.30.

Рисунок 10.30

На инвертирующем входе операционного усилителя (ОУ) в соответствии с заданным значением входного двоичного кода суммируются токи, взвешенные по двоичному закону и пропорциональные значению опорного напряжения Uоп. Входной ток матрицы I задается источником внешнего опорного напряжения и последовательно делится в узлах РМ R-2R по двоичному закону.

На входы а0, а1, ..., аn-1 поступают цифровые сигналы, соответствующие значению i-го разряда входного двоичного кода. Если на входе i-го разряда присутствует логическая единица, то ключ Кл переключается в верхнее положение и ток данной ветви резисторной матрицы поступает на инвертирующий вход операционного усилителя. Если на вход i-го разряда поступает логический нуль, то ключ переключается в нижнее положение, и данная ветвь матрицы R-2R подключается к общей шине.

Так как матрица резисторов является линейной цепью, ее работу можно проанализировать методом суперпозиции, т.е. вклад в выходное напряжение от каждого источника (разряда) рассчитать независимо друг от друга. Вклады от каждого разряда суммируются на входе ОУ и на выходе получается результат в виде напряжения.

10.3.1 Расчет ЦАП на матрице R-2R c суммированием токов

Рассмотрим работу ЦАП, если в старшем разряде ДК присутствует логическая единица, а в остальных разрядах - логические нули. Следовательно, ключ Клn-1 находится в верхнем положении и подключает ветвь РМ с резистором 2R ко входу ОУ, а остальные ключи находятся в нижнем положении и подключают остальные ветви матрицы к общей шине. Эквивалентная схема ЦАП для этого случая приведена на рисунке 10.31,а. Очевидно, что эквивалентное сопротивление РМ выше узла Мn-1 равно 2R. Так как потенциал инвертирующего входа ОУ близок к нулю, то входной ток I в узле Мn-1 делится на два равных тока I/2.

Для вывода выражения, определяющего выходное напряжение, примем, что ИМСОУ (DA) близка к идеальной, т.е. КU.ИМСОУ; Rвх, тогда U0, IИ0. Выходное напряжение

(10.17)

Учитывая, что источник опорного напряжения Uоп нагружен сопротивлением Rн=2R2R=R, то , а соотношение (10.17) можно записать в виде

.(10.18)

Рассмотрим работу ЦАП, если на вход схемы поступает комбинация ДК: 010...00 В. В этом случае ключ Клn-2 включен в верхнее положение, а остальные ключи - в нижнее. Эквивалентная схема ЦАП примет вид, представленный на рисунке 10.31,б. Ток I/2 в узле Мn-2 опять делится пополам, поэтому выходное напряжение, обусловленное разрядом (n-2) равно:

(10.19)

Тоже самое происходит при поступлении единицы в других разрядах ЦАП.

Рисунок 10.31

Выражение для определения суммарного выходного напряжения от действия единиц во всех разрядах входного ДК примет вид:

(10.20)

Если обозначить значения i-х разрядов входного ДК аi, где аi равно 0 или 1, то выражение (10.20) примет вид:

(10.21)

Сомножитель является десятичным эквивалентом входного двоичного кода (представляет значение входного цифрового кода).

Рассмотренный преобразователь называют умножающим (перемножающим), потому что выходное напряжение пропорционально произведению значения опорного сигнала Uоп на значение входного цифрового кода.

Максимальное значение выходного напряжения (напряжение в конечной точке шкалы (диапазона) при аi=1 во всех разрядах входного ДК определяется из выражения:

(10.22)

Минимальное напряжение на выходе ЦАП при аi=0 во всех разрядах кода равно:

(10.23)

Коэффициент передачи (величина шага квантования по уровню), т.е. расчетное приращение выходного напряжения при изменении входного кода на единицу младшего разряда (цена младшего значащего разряда (МЗР)) составляет:

(10.24)

10.3.2 ЦАП К572 ПА1

10.3.2.1 Описание микросхемы К572 ПА1

Микросхема ЦАП типа К572 ПА1 является универсальным структурным звеном для построения микроэлектронных ЦАП. Она находит широкое применение в различной аппаратуре благодаря малой потребляемой мощности, достаточно высокому быстродействию, небольшим габаритам и др. [25].

Микросхема (рисунок 10.32) выполнена в герметичном корпусе с 16-ю выводами типа 201.16-8 с двухрядным вертикальным расположением выводов.

Микросхема предназначена для преобразования 10-разрядного параллельного двоичного кода на цифровых входах в ток на аналоговом выходе, который пропорционален значениям кода и опорного напряжения. Она выполнена по КМОП технологии с поликремниевыми затворами [24, 25]. Нумерация и назначение выводов микросхемы:

1 - аналоговый выход;

2 - аналоговый выход;

3 - общий вывод;

4 - цифровой вход (старший 9-й разряд ДК);

5...12 - цифровые входы (разряды 8...1);

13 - цифровой вход (младший 0-й разряд ДК);

14 - напряжение источника питания;

15 - опорное напряжение;

16 - вывод резистора обратной связи (ОС).

В состав ИС ЦАП К572 ПА1 (рисунок 10.32) входят: прецизионная поликремниевая резисторная матрица (РМ) типа R-2R, усилители-инверторы (УИ) для управления токовыми ключами, токовые двухпозиционные ключи (ТК), выполненные на КМОП транзисторах.

Рисунок 10.32

При поступлении в одном из разрядов входного ДК логической единицы усилитель-инвертор формирует управляющие сигналы, под действием которых транзисторный ключ соединяет резистор 2R с правым нижним выходом ключа. Если подается логический нуль, то резистор 2R соединяется с левым нижним выходом ключа. Для работы с выходом по напряжению к ИС ЦАП К572 ПА1 подключается операционный усилитель, осуществляющий преобразование суммы токов на входе в выходное напряжение (инвертирующее включение ОУ ).

Основные параметры ЦАП:

- время установления выходного тока: 5мкс;

- напряжения: Uип = +5...+17В, Uоп = -17...+17В;

- входное напряжение логического нуля: (0Uвх+0,8В);

- входное напряжение логической единицы: (+4,5UвхUип).

Основная схема включения ЦАП показана на рисунке 10.33.

Рисунок 10.33

Если Uип = +15В + 10% и Uоп = +10,24В, то указанные в справочниках параметры выдерживаются достаточно точно. Если на вход ЦАП поступают цифровые сигналы с выхода ТТЛ схем, то схема включения ЦАП К572 ПА1 имеет вид, приведенный на рисунке 10.34.

Рисунок 10.34

Если Uип = +5В, то выходы ТТЛ схем могут соединяться с цифровыми входами ЦАП напрямую без согласующих элементов. Но при этом справочные параметры схемы ухудшаются. Не задействованные цифровые входы ЦАП необходимо заземлять.

10.3.2.2 Расчет ЦАП К572 ПА1

В БИС ЦАП К572 ПА1 выполняется условие:

R=Roc и n=10.(10.25)

Поэтому выражения (10.21, 10.22, 10.23) принимают вид:

(10.26)

(10.27)

Коэффициент передачи ЦАП:

(10.28)

При Uоп=-10,24 В:

(10.29)

(10.30)

Если на вход данного ЦАП поступает 8-разрядный двоичный код, то возможны несколько вариантов использования микросхемы:

1-й - данные подаются на 8 входов, соответствующих младшим разрядам входного ДК, а оставшиеся старшие два входа заземляются. В этом случае коэффициент передачи равен 10 мВ/МЗР, а диапазон изменения выходного напряжения - от 0 до 2,55 В.

2-й - заземляются два входа, соответствующие младшим разрядам входного ДК, а на оставшиеся старшие входы подаются входные цифровые сигналы. В этом случае коэффициент передачи равен 40 мВ/МЗР, а диапазон изменения выходного напряжения: от 0 до (40*255 [MЗР])=10200 мВ = 10,2 В.

10.3.3 ЦАП MAX506

На сегодняшнем рынке микросхем представлен широкий спектр СБИС ЦАП, среди которых распространенными являются микросхемы фирмы «MAXIM».

Ниже рассмотрена современная СБИС ЦАП фирмы «MAXIM» - МАХ506, выполненная по КМОП технологии. Она представляет собой четырехканальный 8 битовый ЦАП, а также выполняет функции шинного формирователя, регистров и схемы согласования уровней (см. рисунок 10.1).

10.3.3.1 Описание микросхемы MAX506

MAX506 может работать как от источника питания +5В, так и от двухполярного источника 5В.

Потребляемый входной ток: 1мА при логических уровнях КМОП на цифровых входах и 2мА при ТТЛ.

Скорость изменения выходного сигнала: 0.7В/мкс

Время установления выходного сигнала: 6мкс

Диапазон рабочих температур: от -40°С до +85°С.

Суммарная погрешность преобразования - 1МЗР.

Внешний вид микросхемы и ее функциональная схема приведены соответственно на рисунках 10.35 и 10.36.

Рисунок 10.35

Рисунок 10.36

Схемы цифро-аналоговых преобразователей построены на обратной R-2R резисторной матрице (рисунок 10.38).

Адресные входы А0 и А1 в соответствии с таблицей 10.3 выбирают (определяют) какой из четырех ЦАП получает информацию с шины данных и осуществляет преобразование в данный момент времени. Когда на входе WR (запись) присутствует логический нуль (активный сигнал), входная информация запоминается в одном из четырех регистров-защелок, где хранится до следующей записи. Таблица 10.3 в схеме MAX506 реализована с помощью входной логики, включающей три инвертора и четыре трехвходовых конъюнктора.

Таблица 10.3 - Адресация ЦАП MAX506

A1

AO

Состояние защелки

H

X

X

Входные данные изолированы от защелок

L

L

L

Входная защелка ЦАП A прозрачна

L

L

H

Входная защелка ЦАП B прозрачна

L

H

L

Входная защелка ЦАП C прозрачна

L

H

H

Входная защелка ЦАП D прозрачна

H - высокое состояние, L - низкое, X - не учитывается.

Схема MAX506 содержит 4-ре непосредственных ЦАП с выходом по напряжению, включающих обратную R-2R матрицу с суммированием напряжений (рисунок 10.38).

С помощью матрицы резисторов цифровое 8-разрядное слово, записанное в резистор-защелку, преобразуется в эквивалентное аналоговое напряжение, пропорциональное приложенному эталонному напряжению VREF.

Ниже приводится описание выводов MAX506 (таблица 10.4).

Таблица 10.4 - Описание выводов микросхемы МАХ506

Номер вывода

Имя

Назначение

1

VOUTB

Аналоговый выход В

2

VOUTA

Аналоговый выход А

3

VSS

Отрицательное питание -5.5В до 0В

4

VREF

Опорное напряжение

5

AGND

Земля для аналоговых сигналов

6

DGND

Земля для цифровых сигналов

7

D7

Бит 7 входного двоичного кода

8

D6

Бит 6 входного двоичного кода

9

D5

Бит 5 входного двоичного кода

10

D4

Бит 4 входного двоичного кода

11

D3

Бит 3 входного двоичного кода

12

D2

Бит 2 входного двоичного кода

13

D1

Бит 1 входного двоичного кода

14

D0

Бит 0 входного двоичного кода

15

WR

Используется для записи данных во входной регистр-защелку преобразователя, выбранный сигналами А0 и А1

16

A1

Бит 1 адреса выбора ЦАП

17

A0

Бит 0 адреса выбора ЦАП

18

VDD

Положительное питание +4.5…+5.5В

19

VOUTD

Аналоговый выход D

20

VOUTC

Аналоговый выход C

Временные диаграммы работы микросхемы МАХ506 приведены на рисунке 10.37.

Рисунок 10.37

Рассматриваемая микросхема может работать в однополярном (таблица 10.5) или биполярном режиме (таблица 10.6).

Таблица 10.5 - Однополярная кодовая таблица MAX506

Содержимое ЦАП

Аналоговый выход

Старшие биты

Младшие биты

1111

1111

1000

0001

1000

0000

0111

1111

0000

0001

0000

0000

Таблица 10.6 - Биполярная кодовая таблица MAX506

Содержимое ЦАП

Аналоговый выход

Старшие биты

Младшие биты

1111

1111

1000

0001

1000

0000

0111

1111

0000

0001

0000

0000

10.3.3.2 Расчет ЦАП MAX506

Микросхема MAX506 содержит ЦАП, использующий режим работы суммирующего элемента, близкий к холостому ходу (операционный усилитель суммирует напряжения, рисунок 10.38).

Рисунок 10.38

Различают ЦАП, суммирующие токи, и ЦАП, суммирующие напряжения. К первой категории относится рассмотренный выше ЦАП К572 ПА1 (раздел 10.3.2). Микросхема MAX506 относится к преобразователям второй категории.

По сравнению с ЦАП, который суммирует токи, в MAX506 используется обратное включение входа и выхода матрицы R-2R.

На входы а0, а1,а2,…,аn-1 поступают цифровые сигналы, соответсвующие значению i-го разряда входного двоичного кода. Если на входе i-го разряда присутствует логическая единица, то соответствующий ключ КЛ переключается в верхнее положение и опорное напряжение Uоп через резисторы матрицы R-2R с определенным коэффициентом деления подается на неинвертирующий вход операционного усилителя (ОУ) DA1, где происходит суммирование напряжений.

Если на вход i-го разряда поступает логический нуль, то ключ переключается в нижнее положение, и данная ветвь матрицы R-2R подключается к общей шине.

Так как матрица резисторов является линейной цепью, ее работу можно проанализировать методом суперпозиции, т.е. вклад в выходное напряжение от каждого источника (разряда) рассчитать независимо друг от друга. Вклады от каждого разряда суммируются на неинвертирующем входе ОУ и на выходе получается результат в виде напряжения.

Рассмотрим работу ЦАП, если в старшем разряде входного ДК присутствует логическая единица, а в остальных разрядах - логические нули. Следовательно, ключ КЛn-1 находится в верхнем положении и подключает ветвь резисторной матрицы (РМ) с резистором 2R к источнику опорного напряжения Uоп. Остальные ключи находятся в нижнем положении и подключают остальные ветви РМ (резисторы 2R) к общей шине. Эквивалентная схема ЦАП для этого случая приведена на рисунке 10.39 ,а. Очевидно, что эквивалентное сопротивление РМ выше узла Мn-1 равно 2R.

Т.к. входное сопротивление ОУ велико и последний работает в режиме, близком к холостому ходу, то ток, создаваемый источником Uоп протекает через два одинаковых резистора 2R, образующих делитель напряжения Uоп. В этом случае напряжение на выходе делителя определяется из выражения:

.(10.31)

А Б

Рисунок 10.39

Рассмотрим работу ЦАП, если на вход схемы поступает комбинация ДК: 010…0 В. В этом случае ключ КЛn-2 включен в верхнее положение, а остальные ключи - в нижнее. Эквивалентная схема ЦАП, примет вид, представленный на рисунке 10.39,б.

Рассматривая резисторы R и 2R, расположенные ниже узла Мn-2, как включенные последовательно, заменяем их эквивалентным сопротивлением:

R+2R=3R. (10.32)

Тогда напряжение в точке Мn-2 определяется выражением:

.(10.33)

Зная напряжение в точке Мn-2, можно определить сигнал в узле Мn-1:

.(10.34)

Аналогичным образом можно доказать, что при подаче на вход ЦАП ДК: 001…0 В напряжение на неинвертирующем входе ОУ будет равно:

.(10.35)

И, наконец, при поступлении кода: 00…01 В напряжение

.(10.36)

Выражение для определения суммарного выходного напряжения от действия единиц во всех разрядах входного ДК примет вид:

.(10.37)

Если обозначить значения i-х разрядов входного ДК аi, где аi равно 0 или 1, то последнее выражение преобразуется к виду:

.(10.38)

Сомножитель является десятичным эквивалентом входного двоичного кода (представляет значение входного цифрового кода).

Рассмотренный преобразователь называют умножающим (перемножающим), потому что выходное напряжение пропорционально произведению значения опорного сигнала Uоп на значение входного цифрового кода.

Коэффициент передачи, т.е. расчетное приращение выходного напряжения при изменении входного кода на единицу младшего разряда (цена младшего значащего разряда (МЗР)) составляет:

.(10.39)

Для рассчитываемого ЦАП число разрядов ДК n=8, поэтому выражения (10.38), (10.39) примут вид:

,(10.40)

,(10.41)

где - цифровое значение входного ДК.

10.4 Особенности аппаратной и программной реализации модуля АЦП-ЦАП МПС

При проектировании модуля АЦП-ЦАП требуется решать следующие основные задачи:

10.4.1 Аппаратный уровень:

- выбор разрядности по заданной погрешности дискретизации;

- выбор величины дискретизации по времени по теореме Котельникова (10.6);

- определение необходимости применения и, если это необходимо, то выбор микросхемы УВХ;

- определение требуемого времени преобразования;

- выбор микросхем АЦП и ЦАП, обеспечивающих нужную погрешность, быстродействие и потребляемую мощность;

- выбор схем включения, обеспечивающих требуемый диапазон изменения входных и выходных напряжений;

- разработка принципиальной схемы.

10.4.2 Программный уровень:

- формирование импульса выборки для УВХ;

- формирование сигнала запуска АЦП (“СТАРТ”);

- проверка готовности данных на выходе АЦП (анализ выхода “ READY-ГОТОВНОСТЬ”);

- после определения готовности ввод данных в МП-р (ОМЭВМ);

- формирование сигнала ”СБРОС” для АЦП;

- после завершения этапа обработки вывод управляющего воздействия в цифровом виде в порт вывода;

Пример схемной реализации модуля АЦП-ЦАП приведён в 10.1.1.

10.5 Обмен между МП-м (ОМЭВМ) и ПК по последовательному каналу связи с помощью интерфейса RS-232С

Обмен информацией между МП-м (ОМЭВМ) и ПК может производиться через последовательный порт последнего (СОМ-порт) [37, 38, 39]. Для этого используется интерфейс RS-232С и, если ПК удалён от МП-ра на значительное расстояние, модем (рисунок 10.40).

Рисунок 10.40

На рисунке 10.40 представлена структурная схема сопряжения микропроцессора (ОМЭВМ) с модемом через интерфейс RS-232С, который включает:

УАПП - универсальный асинхронный программируемый приёмопередатчик;

УПУ - устройство преобразования уровней;

Разъём RS-232С.

Помимо интерфейса RS-232С схема сопряжения содержит:

БРА - буферный регистр адреса;

ШФ - шинный формирователь.

10.5.1 Устройство асинхронное программируемое приёмопередающее (УАПП)

УАПП (рисунок 10.41) преобразует данные из параллельного формата в последовательный при передаче (выводе) из микропроцессора и из последовательного формата в параллельный при приёме (вводе) в микропроцессор.

Рисунок 10.41

Формат передаваемых данных в канал связи в последовательном формате представлен на рисунке 10.42.

Рисунок 10.42

Собственно данные (5, 6, 7 или 8 бит) сопровождаются стартовым битом, битом чётности/нечётности (если такой контроль программно предусмотрен) и стоповым единичным сигналом, включающим 1; 1,5 или 2 стоп-бита. Получив стартовый бит, приёмник выбирает из линии биты данных через определённые интервалы времени. Очень важно, чтобы тактовые частоты приёмника и передатчика были одинаковыми (допустимое расхождение - не более 10 %) [37]. Скорость передачи по RS-232С может выбираться из ряда: 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 бит/с (бод).

Более подробно работа и устройство УАПП на аппаратно-программном уровне рассмотрены в [37, 38, 39].

10.5.2 Устройство преобразования уровней (УПУ)

Все сигналы RS-232С передаются/принимаются специально выбранными уровнями, обеспечивающими высокую помехоустойчивость связи (рисунок 10.43) [38].

Рисунок 10.43

Следует отметить, что данные передаются/принимаются в инверсном виде: логической единице соответствует низкий уровень, а логическому нулю - высокий уровень.

Как видно из рисунка 10.43 при передаче логического нуля на выходе интерфейса должен формироваться высокий уровень напряжения в диапазоне +5В…+15В, при передаче логической единицы - низкий уровень напряжения в диапазоне -5В…-15В.

При приёме на вход интерфейса поступает высокий уровень напряжения в диапазоне +3В…+25В, несущий информацию о логическом 0, или низкий уровень напряжения в диапазоне -3В…-25В, отображающий логическую единицу.

Таким образом, для согласования ТТЛ/КМОП уровней сигналов, действующих в микропроцессорной системе, с уровнями сигналов последовательного интерфейса, передаваемых в линию связи/ принимаемых из линии связи используют устройства преобразования уровней (УПУ).

Различные варианты схемной реализации УПУ рассмотрены в [38], одним из которых является применение микросхемы фирмы MAXIM: MAX232A. Данная микросхема (рисунок 10.44) требует один источник питания +5В и ряд дополнительных элементов - конденсаторов С1, С2, … ,С5, что не является чрезмерной платой за преимущества её применения.

Рисунок 10.44

10.5.3 Разъём RS-232С

Для связи интерфейса RS-232С с внешним терминалом (модемом) может использоваться 25- или 9-контактный разъём (рисунок 10.45).

Рисунок 10.45

Назначение основных контактов следующее:

- SG - сигнальное заземление, нулевой провод;

- TxD - данные, передаваемые микропроцессором в последовательном коде (отрицательная логика);

- RxD - данные, принимаемые микропроцессором в последовательном коде (отрицательная логика);

- DCD - обнаружение несущей данных (детектирование принимаемого сигнала);

- DTR - запрос передатчика терминала;

- DSR - готовность передатчика терминала;

- RTS - запрос приёмника терминала;

- CTS - готовность приёмника терминала;

- RI - индикатор вызова. Говорит о приёме модемом сигнала вызова по телефонной сети.

10.5.4 Буферный регистр адреса RS-232C

Взаимодействие между ОМЭВМ и УАПП может быть организовано через линии порта Р0 ОМЭВМ с применением команд работы с внешней памятью данных (ВПД). Т.е. отдельные регистры УАПП будут адресоваться, как ячейки внешнего ОЗУ (ВПД).

В этом случае линии порта Р0 используются в режиме мультиплексирования: сначала на выход Р0 выдаётся младший байт адреса ВПД, а затем по линиям Р0 может осуществляться обмен данными (вывод или ввод). При этом вывод (запись, передача) данных через Р0 сопровождается сигналом на выходе Р3.6, а ввод (чтение, приём) - сигналом на выходе Р3.7.

Для запоминания (защёлкивания) адреса ВПД (в нашем случае отдельных регистров УАПП) применяют буферный регистр адреса (БРА), в качестве которого может быть использована микросхема КР1533ИР23 (рисунок 10.46).

Рисунок 10.46

Эта микросхема представляет собой 8-разрядный параллельный регистр с возможностью перевода выходов в 3-е (высокоимпедансное, отключенное) состояние (ОЕ=1). В активном режиме на входе OE должен быть логический 0. Для записи данных в БРА необходимо подать динамический синхросигнал (перепад из 0 в 1) на вход C (CLOCK). После этого при активном сигнале на входе OE (разрешение вывода) на выход БРА выдаётся информация, соответствующая данным на его входах в момент прихода синхросигнала.

10.5.5 Шинный формирователь

Информация, выдаваемая на выход порта Р0 ОМЭВМ, в общем случае может предназначаться и другим устройствам, кроме УАПП, подключённым к выводам Р0. Выходы порта Р0 имеют низкую нагрузочную способность и допускают подключение к каждому из них не более двух входов микросхем типа ТТЛ. С целью повышения нагрузочной способности выводов ОМЭВМ, а также организации двухстороннего обмена информацией между ОМЭВМ и системной шиной применяют шинные формирователи (ШФ).

В качестве ШФ может быть использована микросхема КР1533АП6 (рисунок 10.47), которая обеспечивает двухсторонний обмен информацией по 8 линиям и способна отдать в нагрузку ток 0,1/30 мА.

Рисунок 10.47

Направление обмена информацией зависит от значения управляющего сигнала на входе DIR. Если DIR=1, то данные передаются от А к В, а если DIR=0, то от В к А. При этом на входе OE должен присутствовать активный сигнал - логический 0. Если ОЕ=1, то выходы ШФ переводятся в высокоимпедансное (отключённое) состояние.

На рисунке 10.48 приведена функциональная схема модуля ОМЭВМ, а на рисунке 10.49 аналогичная схема интерфейса RS-232C.

Размещено на http://www.allbest.ru/

Рисунок 10.48

Рисунок 10.49

10.6 Выбор и расчет датчиков, нормирующих преобразователей и фильтров нижних частот (ФНЧ)

10.6.1 Выбор и расчет датчиков и нормирующих преобразователей

10.6.1.1 Выбор датчиков

Выбор датчиков производится в соответствии с назначением и требованиями к работе конкретной ЛМПСУ (рисунок 10.1), из которых определяют :

- вид контролируемых параметров, например, расход газа, давление газа, температура;

- диапазон изменения параметров контроля.

Например, в задании на проектирование системы указывается на необходимость измерения расхода газообразных сред, который изменяется в диапазоне 0...800 м3/час.

В этом случае может быть выбран датчик типа ТУРГАС ПРГ-800, который предназначен для измерения расхода природного горючего газа (метан), воздуха и других не агрессивных газов с плотностью не менее 0,7кг/м3, температурой 0...500С и давлением не более 0,59МПа (6кгс/см2).

Выходной сигнал выбранного расходомера составляет 0...5 мА постоянного тока при нагрузке: 0...2,5 кОм.

Питание осуществляется от сети переменного тока напряжением 220В, частотой 50 Гц при потребляемой мощности не более 20ВА.

В задании также указывается на необходимость измерения давления, которое изменяется в диапазоне 0...600кПа.

Для этого может быть выбран датчик фирмы “Motorola” типа MPX2700D,A с параметрами:

- диапазон измеряемых давлений P, кПа: 0…700;

- диапазон выходного напряжения Uвых max, В: 0…40;

- коэффициент преобразования Uвых/P, мВ/kПа - 0,057;

- входное сопротивление Rвх, кOм - 1,8.

Наконец в задании указывается на необходимость измерения температуры, которая изменяется в диапазоне 0...500С. Для этого выбран датчик фирмы «Analog Devices» типа ТМР12 с параметрами:

- диапазон рабочих температур, С: -40…+100;

- абсолютная погрешность в рабочем диапазоне температур, С - 3;

- максимальный потребляемый ток, мA - 600.

10.6.1.2 Выбор нормирующих преобразователей

Тип нормирующего преобразователя определяется видом и диапазоном изменения аналоговых сигналов, снимаемых с выходов выбранных выше датчиков, а также диапазоном изменения аналогового напряжения АЦП, которое составляет, например, 0...+5В.

Так, для канала измерения расхода в качестве нормирующего преобразователя используется резистор значением 1 кОм. Выходной ток, снимаемый с выхода датчика расхода и изменяющийся в диапазоне: 0...5мА, протекает по этому резистору и формирует напряжение UДР=(0...5мА)1Ком=0...5В.

Для канала измерения давления в качестве нормирующего преобразователя использован делитель напряжения (рисунок 10.50), т.к. с выхода выбранного датчика давления снимается сигнал в диапазоне 0...40в.

Рисунок 10.50

Напряжение на выходе делителя Uвых=Uвх.фнч определяется соотношением резисторов R1 и R2:

.(10.26)

С выхода датчика давления поступает напряжение в диапазоне от 0 до 40 В, который необходимо привести к диапазону входных напряжений АЦП, составляющему 0…5 В.

Из выражения 10.26 можно заметить, что соотношение между резисторами R1 и R2 имеет вид :

.(10.27)

Подставив в 10.27 значение Uвх и Uвых, получим: .

Приняв R2=2кОм, получим R1=27=14 кОм.

Для канала измерения температуры в качестве нормирующего преобразователя использован масштабирующий усилитель (рисунок 10.51), т.к. с выхода датчика температуры снимается сигнал в диапазоне 0...0,45В.

Рисунок 10.51

Коэффициент усиления этого усилителя определяется выражением, вывод которого предоставлен ниже:

Будем считать, что ИМСОУ (DA1) близка к идеальной. Тогда:

Кu.имсоу;(10.28)

Rвх;(10.29)

Rвых.(10.30)

Выходное напряжение рассматриваемого усилителя определяется выражением:

Uвых = Uос + U + Uвх = Iос R2 + U +Uвх.(10.31)

При выполнении (10.28) U0, тогда (10.31) примет вид:

Uвых = Uос + Uвх = Iос R2 + Uвх.(10.32)

Поскольку при выполнении условия (10.29), ток 0, то Iос=IR1. Подставляя последнее в (10.32), получим:

Uвых = IR1R2 + Uвх.(10.33)

Для определения значения IR1 запишем выражение, связывающее Uвх, U и UR1:

Uвх = U + UR1 = U + IR1R1.(10.34)

Последнее с учетом (10.28) примет вид:

Uвх = IR1R1.(10.35)

Отсуда получим и, подставляя его в (10.33), запишем:

Uвых = ·R2 + Uвх = Uвх(),(10.36)

откуда коэффициент усиления:

.(10.37)

В свою очередь значение резистора R3 рассчитывается по формуле:

.(10.38)

Задаваясь значением резистора R1 и из формулы (10.38), получим выражение для расчёта R2 по известному значению коэффициента усиления Ku:

. (10.39)

Рассчитываем требуемое значение коэффициента усиления

Задаемся значением резистора R1=10 кОм и определяем величину резистора R2: R2=(11,1-1)·10 кОм=101 кОм.

В соответствии с номинальным рядом стандартных значений резисторов Е192 принимаем R2=101кОм.

Рассчитываем значение резистора R3: кОм.

Принимаем R3=9,1кОм .

10.6.2 Выбор ФНЧ

При вводе сигналов, снимаемых с датчиков в виде аналоговых напряжений, часто необходимо исключать прохождение высокочастотных помех на вход АЦП, которое формирует цифровой сигнал для микропроцессорного устройства обработки информации. Для этого используют активные фильтры нижних частот (ФНЧ).

На рисунке 10.52 приведены амплитудно-частотные характеристики (АЧХ) идеального и реального ФНЧ.

Рисунок 10.52

Диапазон или полоса частот, в которых сигналы проходят с минимальным затуханием, называется полосой пропускания, а диапазон, в котором сигналы подавляются, образуют полосу задерживания. Более толстой линией на рисунке 10.52 показана логарифмическая АЧХ идеального ФНЧ с полосой пропускання 0щщc и полосой задерживания щ>щc. Частота щc между этими полосами называется частотой среза. Значение А, дБ, идеального ФНЧ в полосе пропускания равно А0, а в полосе задерживания - нулю. На практике невозможно реализовать эту идеальную характеристику, поскольку потребуется сформировать очень узкую переходную область.

АЧХ реальных АФ ближе приближаются к идеальным для фильтров более высокого порядка. Однако, повышение порядка связано с усложнением схем и более высокой стоимостью.

Основная проблема при проектировании фильтра заключается в приближении реальной АЧХ с заданной степенью точности к идеальной при наименьших затратах. Пример такой реальной характеристики показан на рисунке более тонкой линией.

На практике должны быть определены и четко разграничены полосы пропускания и задерживания. В качестве полосы пропускания выбирается диапазон частот, где значение АЧХ больше или равно некоторого, заранее выбранного числа, обозначенного А1, а полосу задерживания образует диапазон частот, в котором амплитуда меньше определенного значения, например, А2. Интервал частот, в котором характеристика постоянно спадает, переходя от полосы пропускания к полосе задерживания, называется переходной областью. Изображенная на рисунке 10.52 АЧХ реального фильтра имеет полосу пропускания в диапазоне частот 0щщc, полосу задерживания в диапазоне щщc и переходную область в диапазоне щcщщ1.

Одной из основных задач, решаемых при проектировании АФ, является отыскание аналитической аппроксимирующей функции, которая с требуемой точностью воспроизводит заданную по условиям АЧХ.

Существует несколько типов стандартных типов фильтров, которые могут использоваться для аппроксимации заданных АЧХ проектируемых АФ: фильтры Баттерворта, Чебышева, инверсные Чебышева и эллиптические.

Фильтры Баттерворта обладают монотонной (максимально плоской ) АЧХ; АЧХ фильтра Чебышева содержит пульсации (колебания коэффициента передачи) в полосе пропускания и монотонна в полосе задерживания; АЧХ инверсного фильтра Чебышева монотонна в полосе пропускания и обладает пульсациями в полосе задерживания, а АЧХ эллиптического фильтра обладает пульсациями как в полосе пропускания, так и в полосе задерживания.

Одним из основных методов проектирования АФ, у которых значение порядка n>2, являются каскадное соединение звеньев 1-го и 2-го порядков, что позволяет получить фильтр любого высокого порядка.

Как видно из рисунка 10.53 каскадное соединение фильтров 1-го и 2-го порядков дает фильтр 3-го порядка, каскадное соединение двух фильтров 2-го порядка дает фильтр 4-го порядка и т.д. Увеличивая число соединяемых фильтров 1-го и 2-го порядков, можно получить фильтр любого нужного нам порядка.

Рисунок 10.53

Фильтры четных порядков строятся из n/2 каскадов 2-го порядка, где n- порядок фильтра. Суммарный коэффициент передачи АФ, собранного каскадным соединением фильтров 1-го и 2-го порядков, равен произведению коэффициентов передачи исходных звеньев.

Существует несколько способов схемной реализации АФ: на ИНУН, биквадратный фильтр и другие.

Одной из наиболее простых схем АФ, реализующей требуемые передаточные функции отдельных звеньев фильтра, является схема с многопетлевой обратной связью (МОС) (рисунок 10.54).

Рисунок 10.54

Схема имеет такое название потому, что она содержит два пути прохождения сигнала обратной связи: через резистор и через конденсатор.

Фильтр с МОС имеет хорошую стабильность характеристик, низкое входное сопротивление и может эффективно применяться для значений коэффициента усиления, не превышающего 10.

На кафедре АУТС разработан пакет прикладных программ для расчета активных фильтров, который может быть использован в данной работе. В качестве схемы выбран фильтр с МОС.

10.6.3 Расчет ФНЧ

Исходные данные для расчета:

АЧХ ФНЧ должна быть монотонной в полосе пропускания и в полосе задерживания.

Коэффициент усиления К=1.

Частота среза fc=10Гц.

Максимальное затухание в полосе пропускания 1=3дБ.

Минимальное затухание в полосе задерживания 2=20дБ.

Ширина переходной области Тwнч=10Гц.

Эти данные были введены в программу расчета фильтра, которая определила, что заданным значениям удовлетворяет фильтр Баттерворта 4-го порядка. Его принципиальная схема показана на рисунке 10.55 и включает два звена 2-го порядка, реализованные на ИМС ОУ: DA1,DA2.

Рисунок 10.55

Расчетный порядок фильтра - 4.

Добротность: звено1 - 0.541196, звено2 - 1.306563

Значения элементов:

звено1: R1=34,8 кОм; R2=34,8 кОм; R3=1,74 кОм; С1=422 нФ; С2=1 мкФ;

звено2: R4=82,5 кОм; R5=82,5 кОм; R6=41,2 кОм; С3=73,2 нФ; С4=1 мкФ.

На рисунке 10.56 приведены характеристики: отдельных звеньев ФНЧ; АЧХ идеального ФНЧ, соответствующая расчетным значениям его компонентов без их округления; АЧХ реального ФНЧ, соответствующая реальным значениям компонентов схемы, полученным после их округления к конкретному стандартному ряду электронных элементов Е96.

1,3,5 - реальные характеристики всего фильтра, 1-го и 2-го звеньев

2,4,6 - теоретические характеристики всего фильтра, 1-го и 2-го звеньев

Рисунок 10.56

10.7 Разработка схемы алгоритма и управляющей программы

Неотъемлемой частью любой микропроцессорной системы является управляющая программа, которая обеспечивает выполнение системой заданных функций.

На рисунке 10.57 приведена схема алгоритма работы ЛМПСУ, структура которой показана на рисунке 10.1.

В начале производится начальная инициализация ведомой ОМЭВМ, включающая начальные установки, программирование таймеров, последовательного и параллельного портов, системы прерываний.

Затем обрабатывается первый (индекс 0) канал трехканальной системы сбора, обработки информации и управления. Это происходит в том случае, если отсутствует прерывание от установки флага RI=1 ведомой ОМЭВМ (входной буфер приемника последовательного канала полон). RI=0 отражает отсутствие необходимости удаленного управления, которое заключается в получении ведомой ОМЭВМ команды от микро ЭВМ более высокой ступени иерархии.

Значение контролируемого параметра 1-го канала (в нашем случае - расход газа) через аналоговый мультиплексор и устройство выборки-хранения, встроенные в микросхему MAX154, поступит на вход АЦП этой микросхемы.

Затем формируется сигнал запуска АЦП, ожидается окончание преобразования и после его завершения информация о текущем значении контролируемого параметра вводится в ОМЭВМ. Здесь это значение сравнивается с заданным, в результате чего вырабатывается сигнал рассогласования, который поступает на цифровой ПИД-регулятор, реализованный программно, и предназначенный для обеспечения требуемого качества процесса управления.

С выхода регулятора снимается управляющее воздействие, которое через параллельный порт ОМЭВМ выводится сигналом - запись в предварительно выбранный регистр - защелку четырехканального ЦАП MAX506.

Цифровое значение, сохраненное в регистре, непосредственно цифро-аналоговым преобразователем, выполненном на матрице R-2R и операционном усилителе, преобразуется в аналоговую величину - напряжение, которая выдается на соответствующий исполнительный элемент.

После завершения обработки первого канала формируется сигнал сброса для АЦП и аналогично обрабатываются второй канал - измерения давления, а затем третий - измерения температуры.

Если после этого работа системы не завершена, то управление вновь передается обработке 1-го канала и т.д.

Если перед очередным циклом обработки появляется сигнал необходимости удаленного управления, то основная программа прерывается и управление передается подпрограмме, осуществляющей взаимодействие с микро ЭВМ более высокого уровня.

Рабочая управляющая программа, реализующая данный алгоритм на языке Ассемблер ОМЭВМ МК51 приведена в таблице 10.7.

Рисунок 10.57

Таблица 10.7 - Рабочая управляющая программа

Блок

Метка

Команда

Комментарий

1

SETB P2.6

Подача высокого уровня на WR

2

MAIN:

JB P3.2, REMCONTROL

Переход к подпрограмме удаленного управления при наличии сигнала УУ

3

MOV R0, 0

Установка начального канала

4

LOOP:

MOV A, P2

AND A,#11111100b

OR A, R0

MOV P2, A

Чтение информации из порта P2

Маскировка битов номера канала АЦП

Запись номера канала

Вывод номера канала в порт P2

5

CLR P2.2

Подача низкого уровня на CS, RD

6

NOP

NOP

Задержка для окончания преобразования АЦП

7

MOV A, P1

Чтение данных из АЦП

8

ACALL REG_PROC

MOV R1, A

Вызов подпрограммы ПИД - регуля-тора ПП возвращает результат в аккумуляторе

9

MOV A, R0

MOV C, ACC.0

MOV P2.4, C

MOV C, ACC.1

MOV P2.5, C

SJMP CONTINUE:

Загрузка номера канала в аккумулятор

Побитовый вывод номера канала в ЦАП

10

REMCONTROL:

Выполнение команды удаленного управления

11

CHECKEXIT:

JNB P3.5, MAIN

Переход к началу программы

12

RET

Выход из программы

13

CONTINUE:

MOV A, R1

MOV P0, A

Загрузка сигнала управления в аккумулятор

Вывод сигнала управления в ЦАП

14

CLR P2.6

SETB P2.6

Подача перехода 0->1 на ЦАП (запуск)

15

SETB P2.2

Подача высокого уровня на CS, RD

16

INC R0

CJNE A, #3, LOOP

SJMP CHECKEXIT

Переход к следующему каналу

Выполнить для 0..2 канала

Переход к следующей итерации

На рисунке 10.58 дана схема электрическая принципиальная ЛМПСУ, реализующая описанную выше задачу

СПИСОК ЛИТЕРАТУРЫ

1 Цифровая и вычислительная техника. Э.В.Евреинов и др. Под редакцией Э.В. Евреинова. Москва: Радио и связь, 1991. -464с.:ил.

2 Электронные промышленные устройства :Уч. для студ. вузов спец. "Промышленная электроника" В.И. Васильев, Ю.М. Гусев, В.Н. Миронов и др. -М.: Высшая школа, 1988.-303стр.:ил.

3 Руденко В.С. и др. Приборы и устройства промышленной электроники. В.С. Руденко, В.И. Сенько, В.В. Трифонюк (Библиотека инженера ) К.: Техника, 1990. -368cтp.

4 Токхейм Р. Основы цифровой электроники :Пер. с англ. -М.: Мир, 1988. - 392стр.ил.

5 Гутников В.С. Интегральная электроника в измерительных устройствах. 2-е издание, перераб. и дополн. -Л.:Энергоатомиздат. Ленингр. Отделение, 1988.-304стр.: ил.

6 Браммер Ю.А., Пащук И.Н., Импульсная техника .-К.: Высшая школа , 1985.-320стр: ил.

7 Зубчук В.И. и др. Справочник по цифровой схемотехнике /В.И. Зубчук, В.П. Сигорский, А.Н. Шкурко.-К.:Техника, 1990.-448стр.

8 Тули М. Справочное пособие по цифровой электронике:Пер. с англ.-М.: Энергоатомиадат, Ленингр. отделение, 1990. 176стр.: ил.

9 Димитрова М.И., Пунджев В.П. 33 схемы с логическими элементами И-HЕ: Пер. с болг.-Л.: Энергоатомиздат. Ленингр. отделение, 1988. 112стр.:ил.

10 Федорков Б.Г., Телец В.А. Мкросхемы ЦАП и АЦП: функционирование, параметры, применение. -М .Энергоатомиздат, 1990. -320стр.:ил.

11 Цифровые интегральные микросхемы: Справочник /П.П. Мальцев, Н.С. Долидзе, М.И. Критенко и др. -М.: Радио и связь, 1994.-240стр : ил.

12 Вениаминов В.Н., Лебедев О.Н.. Мирошниченко А.И. Микросхемы и их применение: Справ. Пособие.-3-е изд., перераб. и доп.-М . Радио и связь, 1989 240стр.:ил.-(Массовая радиобиблиотека: Вып. 1143).

Размещено на Allbest.ru


Подобные документы

  • Интегральные микросхемы, сигналы. Такт работы цифрового устройства. Маркировка цифровых микросхем российского производства. Базисы производства цифровых интегральных микросхем. Типы цифровых интегральных микросхем. Схемотехника центрального процессора.

    презентация [6,0 M], добавлен 24.04.2016

  • Представление информации в цифровых устройствах, кодирование символов и основы булевой алгебры. Классификация полупроводниковых запоминающих устройств. Базовая структура микропроцессорной системы, ее функциональное назначение и способы передачи данных.

    учебное пособие [1,7 M], добавлен 19.12.2011

  • Системы счисления в цифровых устройствах. Теоремы, логические константы и переменные операции булевой алгебры. Назначение, параметры и классификация полупроводниковых запоминающих устройств, их структурная схема. Процесс аналого-цифрового преобразования.

    курсовая работа [1,8 M], добавлен 21.02.2012

  • Технические характеристики цифрового компаратора. Описание цифровых и аналоговых компонентов: микросхем, датчиков, индикаторов, активных компонентов, их условные обозначения и принцип работы. Алгоритм работы устройства, структурная и принципиальная схемы.

    курсовая работа [1023,2 K], добавлен 29.04.2014

  • Создание микропроцессорной системы на базе микроконтроллера, предназначенного для функциональной диагностики цифровых и интегральных микросхем. Разработка и расчёт блоков микроконтроллера, сопряжения, управления, питания, цифровой и диодной индикации.

    курсовая работа [1,5 M], добавлен 28.01.2016

  • Основные положения алгебры логики. Составление временной диаграммы комбинационной логической цепи. Разработка цифровых устройств на основе триггеров, электронных счётчиков. Выбор электронной цепи аналого-цифрового преобразования электрических сигналов.

    курсовая работа [804,2 K], добавлен 11.05.2015

  • Реализация булевых функций на мультиплексорах. Применение постоянных запоминающих устройств (ПЗУ). Структурная схема программируемых логических матриц (ПЛМ). Функциональная схема устройства на микросхемах малой и средней степени интеграции, ПЗУ и ПЛМ.

    курсовая работа [524,1 K], добавлен 20.12.2013

  • Алгоритмическое, логическое и конструкторско-технологическое проектирование операционного автомата. Изучение элементной базы простейших цифровых устройств. Разработка цифрового устройства для упорядочивания двоичных чисел. Синтез принципиальных схем.

    курсовая работа [2,5 M], добавлен 07.01.2015

  • Описание булевой алгеброй переключательных функций узлов цифровых устройств. Доказательство теорем перебором по идемпотентным, коммутативным, ассоциативным, дистрибутивным, отрицающим законам двойственности, двойного отрицания и операции склеивания.

    реферат [48,5 K], добавлен 12.06.2009

  • Параметры и свойства устройств обработки сигналов, использующих операционного усилителя в качестве базового элемента. Изучение основных схем включения ОУ и сопоставление их характеристик. Схемотехника аналоговых и аналого-цифровых электронных устройств.

    реферат [201,0 K], добавлен 21.08.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.