Вимірювальні сигнали

Сигнал, фізичний процес, властивості якого визначаються взаємодією між матеріальним об’єктом та засобом його дослідження. Характеристика параметрів сигналу. Параметр сигналу - властивість, яка є фізичною величиною. Інформативні та неінформативні сигнали.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид учебное пособие
Язык украинский
Дата добавления 14.01.2009
Размер файла 520,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

.

Рис.1.8. До пояснення методу одного збігу (ноніусного методу)

На рис. 1.8: X01 = 10 мм; n = 10; X02 = 9 мм; l = 8 і = 8 мм.

Таким чином, значення ступеня Х01 першої міри, а отже, і похибка дискретності вимірювання при використанні двох мір зменшується в n разів у порівнянні з використанням тільки однієї міри. Метод застосовується в тих випадках, коли неможливо або недоцільно створювати міру зі ступенем, меншим деякого значення Х0. Наприклад, практично неможливо створити лінійку з ціною поділки 0,1 мм або менше. Але цю задачу вирішують штангенциркуль і мікрометр, які мають дві шкали основну і ноніусну.

Метод подвійного збігу (метод коінциденції) полягає в одноразовому порівнянні n зістикованих вимірюваних величин X одного і того самого розміру (рис. 1.9,а) із зразковою величиною Х0, що відтворюється багатозначною нерегульованою мірою зі ступенем Х0 (рис. 1.9,б).

Результат вимірювання визначається за формулою

,

його абсолютна похибка

X = NX0 nX.

При такому вимірюванні зберігається та сама максимальна абсолютна похибка дискретності Xmax = X0, що і при вимірюванні однієї вимірюваної величини X (X max = X0), а це приводить до зменшення максимальної відносної похибки дискретності в n разів:

,

де X = X0/X максимальна відносна похибка дискретності вимірювання однієї фізичної величини X.

Рис1.9. До пояснення методу подвійного збігу (методу коінциденції)

Диференціальний (різницевий) метод ґрунтується на безпосередньому вимірюванні невеликої різниці розмірів X вимірюваної величини X і однорідної величини X0, що відтворюється мірою (рис. 1.10). Тоді результат вимірювання

X = X0 + X,

де X = XX0 різниця величин X та X0 на виході різницевого пристрою, яка подається на вимірювальний прилад. Диференціальний метод застосовується в тих випадках, коли розміри X і X0 є близькими.

Рис.1.10. До пояснення диференціального різницевого методу

Метод зрівноважування з регульованою мірою (або нульовий метод) полягає в тому, що вимірювана величина X порівнюється із зразковою величиною X0, що відтворюється багатозначною мірою, яка регулюється до повного зрівноважування розмірів вимірюваної величини і зразкової величини (рис. 1.11,а).Для фіксації моменту зрівноважування, тобто виконання умови X = X _ X0 = 0, на виході різницевого пристрою використовується компаратор або нуль-індикатор. Регулювання міри може здійснюватися вручну оператором за показами нуль-індикатора або автоматично (показано пунктиром).

Результат вимірювання X = X0.

Приклади застосування методу: вимірювання маси на рівноплечих терезах із зрівноважуванням набором гир; вимірювання електричної напруги компенсатором.

Рис.1.11. До пояснення методу зрівноважування:

а - з регульованою мірою; б - з регульованим масштабним перетворювачем

Другий варіант нульового методу (рис. 1.11,б) полягає в тому, що в процесі вимірювання використовується однозначна нерегульована міра X0 (X= const), а розмір вимірюваної величини X змінюється за допомогою регульованого масштабного вимірювального перетворювача, змінювання коефіцієнта перетворення якого відбувається до досягнення нульового ефекту на виході різницевого пристрою:

X = kмпХ Х0 0.

Тоді результат вимірювання .

Нульовий метод характеризується не тільки малими апаратурними витратами, але й значно меншою швидкодією у порівнянні з методом зіставлення, що обумовлено неминучими витратами часу на регулювання міри або масштабного перетворювача. Точність вимірювань цим методом визначається похибками міри (і масштабного перетворювача в іншому варіанті) та чутливістю різницевого пристрою (або компаратора). Іноді нульовий метод розглядають як різновид диференціального методу.

Метод заміщення це метод порівняння, в якому вимірювана величина X заміщується величиною Х0, що відтворюється регульованою мірою (рис.1.12).

Рис. 1.12. До пояснення методу заміщення

Вимірювання здійснюється за два етапи. На першому етапі до входу вимірювального приладу перемикачем S (положення I) вмикається величина X і фіксується показ вимірювального приладу. На другому етапі вимірювань перемикачем S (положення II) до приладу вмикається вихід міри Х0 і її регулюванням домагаються того cамого показу вимірювального приладу, що й на першому етапі. Результат вимірювання одержують з відлікового пристрою міри: Х = Х0. Точність методу заміщення залежить тільки від похибки міри і практично не залежить від систематичної похибки вимірювального приладу, що є суттєвим достоїнством методу заміщення. Метод використовується у ЗВТ високої точності, в тому числі в еталонах.

Контрольні запитання та завдання

1. Дайте визначення метрологічного забезпечення, вимірювальної інформації, вимірювання, метрології. Поясніть, як вони взаємозв'язані.

2. Що таке фізична величина, розмір і значення фізичної величини? Чим відрізняються істинне й умовно істинне значення фізичної величини?

3. Що таке результат вимірювання? Як результат вимірювання виражають математично (основне рівняння вимірювань) і чисельно? У чому полягає метрологічна суть вимірювань?

4. Що таке єдність вимірювань і чому потрібно її забезпечувати?

5. Назвіть та охарактеризуйте основні елементи процесу вимірювання, наведіть структурну схему їх взаємодії.

6. Які вимоги ставляться до фізичної моделі об'єкта вимірювання? Наведіть приклади об'єкта вимірювання і його фізичної моделі для двох-трьох досліджуваних об'єктів.

7. Наведіть визначення методу і принципу вимірювання, методики виконання вимірювань. Назвіть основні етапи процесу вимірювання.

8. Дайте визначення системи фізичних величин, наведіть рівняння зв'язку між фізичними величинами. Як розділяють фізичні величини?

9. Що таке розмірність фізичної величини? Як позначають та одержують розмірності фізичних величин (наведіть приклади)?

10. Що таке одиниця вимірювань, або одиниця фізичної величини? Наведіть рівняння зв'язку між одиницями фізичних величин. Як відрізняються одиниці фізичних величин і як вони позначаються (наведіть приклади)?

11. Як установлюються одиниці фізичних величин? Охарактеризуйте систему SI, назвіть її головні достоїнства.

12. Дайте визначення відносних і логарифмічних фізичних величин, наведіть одиниці цих фізичних величин.

13. Що таке кратні і часткові одиниці вимірювань (ОФВ)? Як вони утворюються? Перелічіть множники і префікси десяткових кратних і часткових одиниць, наведіть їх позначення і приклади запису.

14. Дайте визначення засобів вимірювальної техніки. Що є їх принциповою відмінністю від інших технічних засобів? Назвіть ознаки класифікації засобів вимірювальної техніки.

15. Дайте класифікацію і визначення засобів вимірювальної техніки за функціональним призначенням.

16. Дайте класифікацію і визначення засобів вимірювальної техніки за метрологічним призначенням.

17. Наведіть і охарактеризуйте класифікацію засобів вимірювань.

18. Наведіть і охарактеризуйте класифікацію вимірювальних приладів.

19. Наведіть і охарактеризуйте класифікацію вимірювальних пристроїв.

20. Дайте визначення вимірювальної операції та її різновидів.

21. Дайте визначення вимірювальних сигналів та їх різновидів.

22. Наведіть і охарактеризуйте класифікацію вимірювань.

23. Як розділяють прямі методи вимірювань? Поясніть фізичну суть усіх різновидів прямого методу вимірювань.


Подобные документы

  • Спектральний аналіз детермінованого сигналу. Дискретизація сигналу Sv(t). Модуль спектра дискретного сигналу та періодична послідовність дельта-функцій. Модулювання носійного сигналу. Амплітудні та фазові спектри неперіодичних та періодичних сигналів.

    курсовая работа [775,5 K], добавлен 05.01.2014

  • Вимоги до вибору коду лінійного сигналу волоконно-оптичного сигналоприймача, їх види, значення та недоліки. Сутність скремблювання цифрового сигналу. Специфіка блокових кодів. Їх переваги, використання, оцінки та порівняння. Властивості лінійних кодів.

    контрольная работа [474,4 K], добавлен 26.12.2010

  • Амплітудно-модульований сигнал. Математична модель модульованого сигналу. Частота гармонічного сигналу-перенощика. Спектральний склад АМ-сигналу. Визначення найбільшої та найменшої амплітуди модульованого сигналу. Максимальна потужність при модуляції.

    контрольная работа [369,4 K], добавлен 06.11.2016

  • Аналогові та дискретні сигнали та кола. Узгоджені фільтри (випадкові сигнали). Проходження сигналів через лінійні кола. Амплітудна та кутова модуляція. Коефіцієнт передачі та імпульсний відгук узгодженого фільтра. Смуга пропускання селективного кола.

    курсовая работа [2,5 M], добавлен 19.10.2010

  • Операторне зображення детермінованих сигналів. Взаємозв’язок між зображенням Лапласа та спектральною функцією сигналу. Властивості спектрів детермінованих сигналів. Поняття векторного зображення. Застосування векторного зображення сигналів у радіотехніці.

    реферат [134,9 K], добавлен 16.01.2011

  • Сигнали як носії інформації і випадкові функції часу, їх сутність. Випадкова функція - математична модель випадкового сигналу. Статистичні характеристики, властиві випадкового процесу. Одновимірна функція розподілу ймовірностей випадкового процесу.

    реферат [437,0 K], добавлен 08.01.2011

  • Мета і методи аналізу й автоматичної обробки зображень. Сигнали, простори сигналів і системи. Гармонійне коливання, як приклад найпростішого періодичного сигналу. Імпульсний відгук і постановка задачі про згортку. Поняття одновимірного перетворення Фур'є.

    реферат [1,4 M], добавлен 08.02.2011

  • Процес перетворення неперервних повідомлень у дискретні за часом та рівнем. Квантування - процес виміру миттєвих відліків. Перетворення аналогового сигналу в сигнал ІКМ. Інформаційні характеристики джерела повідомлення. Етапи завадостійкого кодування.

    курсовая работа [915,1 K], добавлен 07.02.2014

  • Проектування каналу збору аналогових даних реальної мікропроцесорної системи, який забезпечує перетворення аналогового сигналу датчика - джерела повідомлень в цифровий код. В такому каналі здійснюється підсилення, фільтрація і нормування сигналу.

    курсовая работа [305,8 K], добавлен 18.09.2010

  • Розгляд методу математичного аналізу – вейвлет-перетворення, застосування якого дозволяє оброблювати сигнали будь-якого виду (в даному випадку медико-біологічного, а саме – фотоплетизмограми). Порівняння з Фурьє-аналізом. Переваги вейвлет-перетворенння.

    курсовая работа [1,9 M], добавлен 03.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.