Анализ эксплуатации СЭУ по эксплуатационным параметрам ГД

Главный двигатель и его основные характеристики, расчет рабочего цикла главного дизеля. Электроэнергетическая система судна, система автоматического управления элементом СЭУ. Оценка возможности модернизации СЭУ путем использования тепловых аккумуляторов.

Рубрика Транспорт
Вид дипломная работа
Язык русский
Дата добавления 27.06.2019
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Надзор за безопасным выполнением работ включает: надзор за соблюдением указаний технической документации, а также выполнением работающими инструкций по технике безопасности; применением безопасных рабочих приемов и использованием индивидуальных защитных средств; дополнительный усиленный надзор за четким выполнением всех требований техники безопасности лицами, недавно поступившими на работу; надзор за чистотой и порядком на рабочих местах и в проходах; надзор за соблюдением режима труда, установленного для данного вида работ.

Обеспечение безопасности передвижения людей по судну достигается конструктивными и организационными мерами.

К первым относится безопасное расположение и прямолинейность проходов, соблюдение установленных для них габаритов; безопасное взаиморасположение входов - выходов, трапов, оборудования и конструкций; фиксация дверей и люков в открытом положении; удаление выступающих в проходы конструкций, о которые можно споткнуться или ушибиться; выбор безопасных размеров трапов и переходных мостиков, нескользких поверхностей покрытий проходов и ступеней трапов, легко очищаемых от грязи и льда; установка необходимых ограждений в местах возможного падения людей; установка штормовых поручней. Вторые предусматривают постоянный надзор за состоянием и содержанием путей сообщения, устройство временных проходов и установку временных ограждений, надзор за выполнением правил движения по судну.

Обучение технике безопасности предусматривает прямое обучение командного и рядового плавсостава, а также пропаганду безопасных методов труда.

Порядок расследования, учета и анализа несчастных случаев, а также разработки профилактических мероприятий, предупреждающих повторение подобных случаев, установлен регламентирующими документами.

Вопросы технологического обеспечения безопасности работ конструктивного обеспечения безопасности оборудования, отчасти организационного обеспечения безопасности работ (правильная организация рабочих мест), а также конструктивные меры по обеспечению безопасности передвижения людей по судну решаются в процессе проектирования обеспечения безопасности моряков при заходе в порты судоремонтных заводов и др. предприятий.

Устранение случаев травматизма при передвижении людей по судну достигается разработкой конструктивных мер, обеспечивающих безопасность судовых путей сообщения, а также выполнением организационных мероприятий.

Наиболее характерные несчастные случаи при пользовании судовыми путями сообщения - падение на скользких настилах, ушибы ног и коленных суставов о высокие комингсы, ущемление пальцев рук в дверях, ушибы головы о верхнюю кромку дверного проема или о расположенные в проходах конструкции. Наблюдаются также случаи травматизма в результате пользования нештатными короткими, но опасными путями, вместо более протяженных -штатных путей.

Все проходы на судах (на открытых палубах и в помещениях) должны быть прямолинейными и, по возможности, кратчайшими. На открытых палубах следует обеспечить безопасные проходы с борта на борт. На грузовой палубе необходимо предусмотреть свободные проходы с борта на борт в носовой или кормовой части каждого грузового трюма.

Недопустимо на сравнительно больших судах, имеющих четыре-пять трюмов, делать всего два поперечных прохода: один в кормовой части палубы, другой - в носовой, так как это вынуждает людей нередко ходить по люковым крышкам, а при открытых трюмах даже по комингсам люков. С точки зрения безопасности прохода с борта на борт очень неудобны проектируемые в последнее время неразрезные комингсы люков, при которых идущему приходится дважды подниматься и опускаться по трапам.

Согласно требованиям Регистра России из машинного отделения, следует предусматривать не менее двух удобных и безопасных выходов. Считается, что это требование обеспечивается наличием обычных выходов на решетки МКО с обоих бортов судна. На судах со средней надстройкой или надстройкой, смещенной от кормы на один трюм можно дополнительно пользоваться выходом через туннель гребного вала.

Туннель имеет два выхода: один в машинное отделение, другой по вертикальному трапу на палубу. На некоторых паротурбинных судах предусмотрен также выход через котельное отделение. На теплоходах с кормовым расположением машинного отделения дополнительные выходы отсутствуют. В случае пожара люди, находящиеся в машинном отделении, могут воспользоваться только обычными выходами, то есть должны подняться на средние или верхние решетки. В то же время на эти решетки при пожаре поднимаются раскаленные воздух и газы, преграждающие доступ к выходу. Кроме того, наличие только этих сравнительно длинных путей для выхода задерживает своевременное использование углекислотной установки.

Необходимо предусматривать из машинного отделения с нижнего настила дополнительный аварийный выход. Он должен располагаться в специальной шахте размером 700x800 мм (не менее 600x700 мм) у носовой переборки и иметь внизу герметически закрывающуюся дверь. Дверь должна открываться и закрываться с двух сторон (снаружи шахты и изнутри). Шахту следует оборудовать системой орошения. Такие меры исключат несчастные случаи во время эвакуации людей из машинных отделений при пожаре, дадут возможность скорее использовать необходимые средства пожаротушения.

Достаточная высота проходов - одно из важнейших условий безопасного передвижения людей. Высота основных проходов должна быть не менее 2 м, а если возможно, то 2,1 м. Относительно редко используемые проходы могут иметь высоту 1,8 м.

Эти условия должны особенно строго соблюдаться в машинно-котельных отделениях судов и других помещениях, насыщенных оборудованием.

В проходах нельзя размещать оборудование, не должно быть выступающих или пересекающих конструкций (балки, трубопроводы, рымы). В проходы не должны выходить органы управления системами или другие конструкции, о которые можно ушибиться или споткнуться. Ничто не должно уменьшать свободной ширины прохода по всей его высоте. Уступы палубы в проходах (разная высота палуб) следует заменять пандусными сходами с углом наклона менее 10°. При необходимости увеличить угол наклона пандусного схода (но не более чем до 30°), на нем через каждые 300 - 320 мм ставят упорные планки против скольжения (как на сходнях).

В исключительных случаях, при значительной разнице в высоте палуб и недостаточном расстоянии для устройства пандусного схода, допустима установка ступени. При этом необходимо обеспечить ее отчетливую видимость, предусмотрев соответствующее освещение этого места (над ним рекомендуется устанавливать светильник) и выделив ступень на фоне палубы предупреждающим (желтым) цветом. Высота ступени не должна превышать 350 мм, в противном случае требуется соответствующий трап.

Если невозможно избежать размещения оборудования в неосновных проходах его следует устанавливать только с одной стороны. Предметы, имеющие высоту менее 600 мм должны быть ограждены до высоты 700 - 800 мм, чтобы о них нельзя было споткнуться. Уменьшение свободной ширины неосновных проходов допускается только до 600 мм. В пределах основных проходов размещать оборудование не следует. Для противопожарного оборудования рекомендуется делать соответствующие ниши.

В проходах нельзя устраивать люки повседневного пользования, желоба. Если в неосновных проходах установлены редко используемые или запасные люки их крышки должны закрываться заподлицо с палубой и запираться специальными ключами, замок также должен быть утоплен.

Посадочные гнезда люков следует делать широкими и прочными, чтобы исключить возможность просадки и опускания крышки люка под весом проходящих людей. На переборке по обеим сторонам люка, на расстоянии 800-1000 мм от него, должны быть закреплены соответствующей длины цепочки с гаками на свободном конце для перекрытия прохода при открытом люке. На противоположной переборке устанавливают проушины.

Высота дверных проемов (от палубы или ступени комингса), а также различных конструктивных арок и проемов повседневного пользования должна быть не менее 1,9 м, а редко используемых 1,8 м. Эти размеры надо выдерживать независимо от того, в какие помещения ведут двери. Не рекомендуется, например, делать входы уменьшенных размеров под полубак, что иногда наблюдается.

Недопустимо проектировать вход в подшкиперские кладовые только через люк па палубе, расположенный в носовой оконечности бака, так как это опасно и может вызвать тяжелый травматизм.

Приводит к травматизму также неудачная планировка и взаиморасположение дверей. Иногда, например, водонепроницаемые двери в надстройку открываются в направлении ее выступов. В открытом состоянии наружные рукоятки двери соприкасаются с выступом надстройки, в результате зафиксированы ушибы рук такими дверями.

Расположение дверей в любых проходах на судне не должно препятствовать движению людей. Если за открываемой более чем на 90° дверью требуется расположить какое-либо оборудование или конструкцию, к которым может подходить человек или о которые ударяется эта дверь, необходимо установить стопоры, не препятствующие, однако, открытию дверей на 90°. Все двери, а также крышки входных люков оборудуют фиксаторами автоматического действия, не допускающими их самопроизвольное закрытие от качки, толчка или вибрации.

Металлические двери, ведущие с открытых палуб во внутренние помещения надстройки, следует теплоизолировать. Это предотвратит их отпотевание, коррозию, стекание влаги на палубу у входа. Вместо теплоизоляции возможна установка с внутренней стороны вторых легких неметаллических и малотеплопроводных дверей (деревянных или из слоистых пластинок). Это особенно важно для судов, плавающих в северных широтах, так как в холодных условиях у входа нередко образуется наледь на котором легко поскользнуться. Для судов ледового плавания целесообразно центральные входы в надстройку (у парадных трапов) оборудовать воздушными тепловыми завесами. Дверные комингсы высотой более 380 мм следует оборудовать с двух сторон ступенькой.

Ступенька нужна и у более низких комингсов при ширине их свыше 100 мм. Более широкие комингсы не рекомендуются, потому как через них трудно и опасно ходить в условиях шторма и резкой качки судна. Конструкцию комингсов проектируют исходя из размеров человеческого шага. Учитывая, что при переходе через высокие комингсы идущий обычно инстинктивно приостанавливает движение, как бы готовясь сделать более длинный шаг, можно принять длину такого одиночного шага для человека среднего роста до 900 мм, для человека низкого роста 800 - 850 мм.

Важно предусмотреть конструктивные меры против скольжения людей на палубах и особенно в проходах. Для этого целесообразно использовать специальные нескользящие мастики. Исследования отечественных частичных покрытий, проведенные на рыбопромышленных судах, показали, что при правильной технологии нанесения их на поверхность палубы они служат продолжительное время даже при самых тяжелых условиях эксплуатации.

Частичные покрытия сравнительно легко восстановить в случае местного повреждения или износа, при этом не нужно даже удалять оставшееся неповрежденным покрытие.

На некоторых судах, преимущественно иностранной постройки, применяют иногда нескользкие мастики с включением частиц абразивного материала. Они дают хороший эффект, но недостаточно износоустойчивы (абразивные включения быстро стираются, однако довольно легко реставрируются путем подсыпки по свежей краске абразивных частиц). В дополнение к противоскользящим мастичным покрытиям в местах возможного скольжения (например, у схода с трапов и переходных мостиков) рекомендуется класть листы из штампованной чечевицы образным рельефом стали. Важно механизировать работы по очистке палуб, проходов, переходных мостиков и трапов.

В основных проходах машинно-котельных отделений судов и насосных отделений танкеров проектируют нескользкие поверхности настилов (рифленые, с чечевицеобразной штамповкой, сотовой конструкции). Наименее скользкими и наиболее износоустойчивыми являются ажурные настилы (с сотообразными или прямоугольными ячейками).

Работы в машинно-котельных отделениях (далее - МКО) должны выполняться обслуживающим персоналом судна под контролем ответственного лица командного состава. Обслуживающий персонал судна должен обеспечиваться СИЗ. На дверях МКО должны быть нанесены соответствующие знаки безопасности, указывающие на обязательное применение персоналом СИЗ.

В МКО запрещается: находиться посторонним лицам без сопровождения персонала судна и разрешения вахтенного механика; хранить легковоспламеняющиеся вещества; снимать средства защиты органов слуха; выполнять работы без СИЗ; персоналу судна самостоятельно (без ведома вахтенного или старшего (главного) механика) пускать (останавливать) механизмы, обслуживающие судовую энергетическую установку (далее - СЭУ); хранить (размещать) посторонние предметы и оборудование; работать на неисправном оборудовании; эксплуатировать механизмы с неисправными приборами контроля, защиты и аварийно-предупредительной сигнализации; производить ремонтные работы на действующих механизмах; подтягивать резьбовые соединения на механизмах, сосудах и трубопроводах, находящихся под давлением; оставлять демонтированные детали в подвешенном состоянии.

Работы по техническому обслуживанию и ремонту СЭУ должны проводиться по распоряжению ответственного лица командного состава и с ведома старшего (главного) механика.

Движущиеся части механизмов и оборудования СЭУ должны быть ограждены. Запрещается снимать во время работы механизмов ограждения с движущихся частей (маховики, муфты, фланцевые соединения, валы).

Постоянные рабочие места, расположенные на высоте 500 мм и выше, должны иметь надежное леерное ограждение.

Для повышения уровня освещенности на временных рабочих местах необходимо применять дополнительные (переносные) светильники.

МКО должно быть оборудовано приточно-вытяжной вентиляцией.

Двери, лазы, люки, используемые для входа (выхода) в (из) МКО, должны находиться в исправном состоянии.

Проходы к аварийным выходам, аварийному и противопожарному имуществу должны быть всегда свободными.

Все сменно-запасные части, детали, инструменты, материалы должны храниться на штатных местах и быть надежно закреплены.

Трапы, плиты, палуба должны быть чистыми и сухими. Пролитые нефтепродукты должны сразу убираться.

У механизмов СЭУ должны быть вывешены инструкции по их безопасной эксплуатации.

Все механизмы СЭУ (дизели, котлы, турбины) должны эксплуатироваться в полном соответствии с инструкциями завода-изготовителя и Правилами.

В ЦПУ должны находиться схемы балластной, осушительной, топливной систем с пронумерованными клапанами (вентилями, клинкетами). На штатных местах клапаны должны иметь шильдики, четко указывающие назначение клапана (клинкета).

Газовыпускные тракты дизелей, котлов, турбин, установок инертного газа должны быть надежно уплотнены с целью препятствия проникновению выпускных (отработанных) газов в МКО и судовые помещения.

Персонал для подъема тяжестей, открытия (закрытия) больших маховиков должен использовать средства малой механизации: рычаги, тали, пневмогайковерты.

При обжатии (отдачи) гаек большого диаметра гаечный ключ, проворачиваемый ударами кувалды, необходимо поддерживать тросом или поддерживать таким образом, чтобы руки и тело поддерживающего человека не могли попасть под удар кувалды, соскользнувшей с ключа.

В процессе подъема тяжелых предметов с помощью талей, лебедок, кранов необходимо следить за тем, чтобы масса поднимаемого груза не превышала грузоподъемность механизма.

Руководитель работ должен контролировать своевременное освидетельствование, испытание и ремонт грузоподъемного механизма и грузозахватных приспособлений. При этом на механизме и грузозахватном приспособлении должны быть указаны: регистрационный номер, максимальная грузоподъемность, дата освидетельствования, цвета безопасности.

Перед подъемом груза члены экипажа судна должны проверить исправность грузозахватных приспособлений, чтобы резьба на рым-болтах была чистая. Использовать в работе грузозахватные приспособления, не имеющие бирок с указанием допустимой грузоподъемности, даты испытания, регистрационного номера, запрещается.

Подъем (спуск) тяжелых и крупногабаритных деталей должен производиться под руководством ответственного лица в полном соответствии с требованиями технологической карты (инструкцией) по безопасному производству работ.

На судах, имеющих знак автоматизации A1, А2 и A3, на входах и видных местах в МКО должны быть нанесены предупреждающие знаки "Внимание! Механизмы запускаются автоматически!".

Газовыпускные тракты, паропроводы, трубопроводы горячей воды, топлива и холодильных установок должны иметь термоизоляцию. Поврежденные участки термоизоляции должны быть немедленно восстановлены.

Все механизмы, трубопроводы, защитные кожухи и ограждения в МКО должны иметь надежный фундамент и быть закреплены, чтобы избежать повышенных вибраций и поломок. Персонал МКО должен постоянно контролировать исправность крепления перечисленных выше механизмов и систем СЭУ.

Персонал МКО должен принимать своевременные меры по удалению из льял и деки МКО протечек топлива, отработанного масла и воды с помощью сепаратора льяльных вод в специальный танк (цистерну) для последующей передачи на специализированный сборщик в порту.

Дренажные спуски в трубопроводах и фильтрах должны быть прочищены и содержаться в чистоте.

Перед началом разборки трубопроводов, вентилей, клинкетов, клапанов, вскрытия горловин, а также ремонта на оборудовании, которое находилось под давлением, должны быть приняты меры по исключению подачи к месту производства работ рабочего агента (вода, пар, хладон, воздух). При этом необходимо: закрыть запорные клапаны (вентили) на системе; установить на запорных клапанах запрещающие знаки "Не открывать! Работают люди!"; для предотвращения несанкционированного открытия установить заглушки; для "стравливания" давления рабочего агента открыть клапаны (краны) или ослабить болты на фланце с противоположной от места работ стороны. При этом запрещается снимать гайки с резьбы, так как возможны "выбросы" пара (конденсата), скопившегося в трубопроводе; убедиться по показаниям приборов в снижении давления до атмосферного, и в том, что трубопровод полностью осушен.

По окончании ремонта руководитель работы перед сборкой системы трубопроводов должен осмотреть участок трубопровода и убедиться, что внутри нет посторонних предметов (гайки, инструмент, ветошь) и на фланцах нет повреждений.

Горловины топливных, масляных танков можно вскрывать только с разрешения старшего (главного) механика. Горловины водяных танков вскрываются только с разрешения старшего помощника капитана.

Работы внутри топливных, масляных и водяных танков (цистерн) можно проводить только после проведения комплекса мероприятий по выветриванию, удалению остатков рабочего агента в полном соответствии с требованиями технологической карты на производство судовых работ, проведения целевого инструктажа и оформления наряда-допуска.

Горловины танков (цистерн) разрешается задраивать только после осмотра танка (цистерны) ответственным лицом. Горловины необходимо задраивать на все штатные гайки (болты).

Обтирочный материал (ветошь) после использования должен храниться в металлических контейнерах и по мере наполнения сжигаться в судовой инсинераторной установке (или сдаваться на берег).

После производства работ в МКО персонал должен принять должные меры личной гигиены по удалению с кожи тела остатков нефтепродуктов. При этом запрещается пользоваться керосином, бензином, растворителями.

7. Мероприятия по совершенствованию СЭУ и ее эксплуатации

7.1 Анализ мероприятий, направленных на повышение энергетической эффективности СЭУ

Доля расходов на топливо в общих эксплуатационных затратах на судно составляет 25 - 30% и возрастает с увеличением грузоподъемности и скорости хода судна, агрегатной мощности главных и вспомогательных дизелей. Поэтому снижение расхода топлива является одной из главных задач, решаемых на этапах проектирования и эксплуатации теплоходов.

Экономичность каждого из элементов дизельной энергетической установки оценивается его КПД и в различной степени отражается на экономичности ДЭУ в целом.

Для транспортного судна, энергия, используемая по прямому назначению на перевозку, сохранение грузов и обслуживание пассажиров, относится к полезной, а энергия, затрачиваемая на обслуживание главных и вспомогательных дизелей, экипажа и судна в целом к потерям.

Современные ДЭУ оборудуются турбогенераторами, работающими на паре от утилизационного котла, вакуумными водоопреснительными установками, использующими тепло воды, охлаждающей дизели, валогенераторами, гидроприводом вспомогательных механизмов. При этом не только уменьшаются расходы топлива, масла, но повышается ресурс вспомогательных дизелей, котлов.

Экономичность ДЭУ во многом зависит от согласования режимов работы механизмов, их технического состояния, использования средств утилизации, рационального распределения расходов топлива на главные и вспомогательные потребители. Всё это отражается на КПД установки. Исходя из этого под КПД установки понимается отношение полезной энергии, потребляемой на транспортные расходы (перевозка, подготовка и сохранение груза, и обслуживание пассажиров), ко всей энергии, затрачиваемой на установку.

К возможным путям увеличения КПД установки относят повышение КПД главных двигателей и снижение потерь энергии в передаче. Однако экономичность главных дизелей оказывает решающее влияние на КПД установки, так как доля расхода топлива на этот потребитель является наибольшей. В то же время режим работы с максимальным КПД главных дизелей не обязательно соответствует максимуму КПД установки. При увеличении частоты вращения КПД установки растёт до тех пор, пока приращение доли расхода топлива на главные дизели преобладает над уменьшением эффективного КПД главного дизеля. Максимум КПД установки достигается при больших частотах вращения, чем максимум эффективного КПД главных дизелей.

При уменьшении частоты вращения КПД установки снижается быстрее эффективного КПД главных дизелей из-за уменьшения доли расхода топлива на главные дизели.

Решающим фактором повышения эффективного КПД главных дизелей являются:

· Дальнейшее форсирование дизелей на основе совершенствования систем газообмена и наддува и повышение КПД турбокомпрессоров.

· Использование конструкций, допускающих организацию рабочего цикла с высоким значением максимального давления сгорания Pz.

· Применение длинноходовых и сверхдлинноходовых дизелей с прямоточно-клапанной продувкой (отношение S/D = 2,5 - 3,85).

· Согласование эксплуатационных режимов с характеристикой удельного расхода топлива, be = f (n).

· Применение керамики и композитных материалов, ограничивающих теплообмен между газом и стенками цилиндра.

· Использование энергии выпускных газов в силовых турбинах комбинированных дизелей.

Дальнейшее повышение экономичности на 2 - 3 % путём согласования эксплуатационных режимов с характеристикой удельного расхода топлива является результатом совместного действия конструктивных и эксплуатационных факторов.

Одним из средств повышения КПД судовых дизелей и ДЭУ в целом, как отмечалось выше, является применение силовой турбины. При КПД турбокомпрессора >0,65 необходимые параметры наддува (давление и расход воздуха) можно получить, направляя в турбину не весь поток газов, а только его часть (90% и более). Остальной газ параллельным потоком отводится в силовую турбину, связанную через муфту и редуктор с валом дизеля. Соответствующая автоматика управляет газоперепускным клапаном и муфтой. При снижении мощности дизеля до 55% клапан закрывается, муфта отключается, и весь газ направляется в наддувочный турбокомпрессор. Таким образом, осуществляется своеобразное регулирование мощности турбокомпрессора, улучшение параметров наддува и экономичности дизеля во всём диапазоне эксплуатационных режимов.

Дальнейшее повышение КПД установок после мероприятий, связанных с увеличением КПД главных дизелей и передач, может быть осуществлено путём глубокой утилизации тепловых потерь и применяемых способов привода вспомогательных механизмов.

Утилизация тепловых потерь в главных, а в некоторых случаях и вспомогательных дизелей, позволяет существенно уменьшить расходы топлива на вспомогательные потребители. Часть энергии выпускных газов традиционно используется в утилизационных котлах для получения водяного пара. В зависимости от системы охлаждения газов и способа использования пара возможны различные схемы утилизации:

Пар от утилизационного котла во время хода направляется в систему подогрева топлива, воды, воздуха и на другие нужды, то есть происходит замена вспомогательного котла утилизационным, в которых из-за ограниченной производительности срабатывается 1/3 - 1/2 часть располагаемой теплоты газов (в этом случае такие системы называют системами частичной утилизации).

Основная часть пара используется в утилизационной паротурбинной установке, работающей по циклу Ренкина (утилизационный турбогенератор вырабатывает электроэнергию, идущую на привод вспомогательных механизмов, освещение и другие потребители); в этом случае утилизационная установка во время хода полностью или частично замещает вспомогательные дизели и в связи с повышенной производительностью котлов утилизируется большая часть (2/3 - 3/4) располагаемой теплоты газов и такие системы называются системами глубокой утилизации.

Излишки пара не сбрасываются в конденсатор, а в виде избыточной энергии на режимах полного хода (Nегд> 50%) передаются на винт. В этом случае совместная работа главного дизеля и утилизационного турбогенератора на винт осуществляется через механизм отбора избыточной мощности турбогенератора на редуктор главной передачи. При этом автоматически обеспечивается стабилизация частоты вращения генератора в рабочем диапазоне частот вращения главного дизеля. В такой схеме кроме утилизации части теплоты наддувочного воздуха, предусматривается возможность дополнительного отбора теплоты выпускных газов путём генерирования пара низкого давления, направленного в последнюю ступень турбины.

Утилизация энергии выпускных газов силовой турбины, работающей совместно с валогенератором главного дизеля на замещение вспомогательных дизелей. В высокоэкономичных судовых дизелях с низкой температурой газов за турбиной (220 - 240°С) такая схема позволяет рационально сочетать простые схемы утилизации с высокой топливной экономичностью, низкой стоимостью, малыми затратами на обслуживание установки. В этом случае энергетический КПД установки повышается вследствие совместного воздействия на эффективный КПД главного дизеля и снижения расхода энергии на вспомогательное потребление.

Наиболее широкое распространение получила первая схема утилизации тепловых потерь. Но из-за малых расходов пара и отсутствия постоянных потребителей эффективность её ограничена, особенно при плавании в летнее время или в тропических районах.

Реализация схемы глубокой утилизации с валогенератором возможна при использовании высокофорсированных четырёхтактных дизелей, которые имеют повышенную температуру выпускных газов. При условии полного замещения вспомогательных дизелей и вспомогательных котлов избыточная мощность утилизационного турбогенератора на режимах полного хода (Nегд> 50%) может превышать потребности судна в электроэнергии в 2 - 3 раза.

В современных ДЭУ используются и схемы утилизации второй основной потери тепла главных дизелей - тепла охлаждающей воды.

Вода, вышедшая из дизелей, может использоваться как греющая среда в различных теплообменных аппаратах (подогревателей воды, топлива, масла), в испарителях котловой и питьевой воды, а иногда и для отопления. Однако достаточно широкое применение нашли пока только вакуумные водоопреснительные установки, которые дают возможность "срабатывать" значительный теплоперепад и достигать существенного экономического эффекта. Расчёты и опыт показывают целесообразность приготовления пресной воды в рейсе из забортной для увеличения грузоподъёмности судна и повышения КПД установки. Расход тепла на водоопреснительные установки для сухогрузного теплохода составляет 1,7 - 2,8 % расхода тепла на главный двигатель и возрастает до 2 - 3,4 % для танкера в связи с большими расходами пресной воды на питание котлов.

Наиболее экономичными являются вакуумные водоопреснительные установки поверхностного типа. Расход электроэнергии на ВОУ такого типа составляет 4 - 6 кВт/ч на тонну дистиллята (для безповерхностных 12 - 15 кВт/ч). В качестве греющей среды используется охлаждающая вода главных дизелей с температурой 60 - 65°С. Испарение забортной воды происходит при низкой температуре 30 - 40°С и соответствующем давлении 0,0043 - 0,0075 МПа, что обеспечивает высокую надёжность и малое накипеобразование. Испаритель подключён параллельно к водоохладителю главного дизеля. Это даёт возможность поддержать оптимальные температуры воды в системе охлаждения независимо от режима работы испарителя и использовать его как резервное средство охлаждения пресной воды в случае выхода из строя основного водоохладителя. Возможна и последовательная схема включения. По выходе из испарителя температура пресной воды понижается на 5 - 15°С и возвращается в систему охлаждения дизеля за водоохладителем. Забортная вода подаётся в конденсатор испарителя из напорной магистрали забортной воды. Температура её по выходе из конденсатора повышается на 4 - 8°С. Испаритель питается забортной водой от эжекторного насоса через измерительное устройство (ротаметр). Расход забортной воды, подаваемой в камеру испарения в 3 - 4 раза больше производительности испарителя. При нормальной работе испарителя содержание хлоридов не превышает 6 мг/л. Допускаемая температура забортной воды 28 - 30°С.

На режиме полного хода в испаритель направляется часть охлаждающей пресной воды, так что используемое тепло составляет примерно 1/4 располагаемого. Повышение КПД дизельной энергетической установки при использовании тепла охлаждающей воды в вакуумном испарителе оценивается условно исходя из предложения, что при его отключении такое же количество дистиллята получается в обычном испарителе, работающем на паре от вспомогательного котла.

К числу потерь энергии в ДЭУ относятся и потери в приводе вспомогательных механизмов. В ДЭУ транспортных теплоходов подавляющее число ВМ, в том числе и обслуживающих главные дизели, имеют автономный привод от электродвигателей. В ДЭУ малой мощности часто применяют дизели с навешенными механизмами. Несмотря на ряд конструктивных и эксплуатационных достоинств, для автономного электрического привода характерны сравнительно низкий КПД. Потери в передаче, состоящие из потерь в генераторах, в сети и электродвигателях, составляют 20 - 35 % от передаваемой мощности. Учитывая, что КПД вспомогательных дизелей ниже КПД главных, поэтому становится ясным проявление практического интереса к схемам привода механизмов от валогенераторов. Чаще всего использование валогенераторов отмечается в многомашинных ДЭУ с винтом регулируемого шага. Через муфту сцепления и повышающий редуктор они связываются с главной редукторной передачей и на режимах n = const полностью обеспечивают установку электроэнергией (коэффициент замещения вспомогательных дизелей Кп = 1). Использование валогенератора даёт экономию топлива, соизмеримую с экономией, получаемой от утилизации тепла выпускных газов.

7.2 Оценка возможности модернизации СЭУ путем использования тепловых аккумуляторов

Под тепловым аккумулированием теплоты понимают физические и химические процессы, посредством которых происходит накопление теплоты, в тепловых аккумуляторах. Аккумулирование теплоты является промежуточным этапом между ее производством и потреблением, целесообразность которого определяется, прежде всего, характеристиками источника и потребителя.

В настоящее время известны следующие способы аккумулирования теплоты:

· Аккумулирование явной теплоты.

· Аккумулирование скрытой теплоты фазовых переходов.

· Аккумуляторы, основанные на поглощении теплоты в процессе обратимых химических реакций.

Аккумулирование явной теплоты осуществляется за счет использования теплоемкости твердого или жидкого теплоаккумулирующего материала при его нагревании. Данный способ аккумулирования наиболее распространен и широко применяется в энергетике, промышленности, на железнодорожном транспорте. Это связано главным образом с использованием недорогих природных теплоаккумуляционных материалов и простых проверенных технических решений.

Второй способ аккумулирования теплоты осуществляется за счет использования скрытых теплот обратимых фазовых превращений, например, плавления-кристаллизация, возгонка-сублимация или испарение-конденсация. К достоинствам аккумулирования теплоты фазового перехода плавление-кристаллизация можно отнести обеспечение высокой плотности запасаемой энергии при использовании небольших перепадов температур, а также возможность получения постоянной температуры теплоносителя на выходе из теплоаккумуляторов фазового перехода и создание относительно низких давлений в теплоаккумулирующем объеме аккумулятора.

Третий способ - химическое аккумулирование теплоты осуществляется за счет использования энергии обратимых реакций. В этом случае теплота трансформируется в химическую энергию. Достоинствами химического аккумулирования теплоты являются долгосрочность ее хранения без потерь, способность воспроизводства запасенной теплоты при температурах выше начальной и возможность транспортировки продуктов реакции с последующим высвобождением теплоты в требуемом месте. Тепловые аккумуляторы, реализующие данный способ аккумулирования в основном применимы в составе энергоустановок небольшой мощности и требуют сложных конструктивных решений.

Из рассмотренной специфики процессов в аккумуляторах теплоты, можно сделать вывод, что аккумулирование тепловой энергии, основанное на использовании обратимого процесса фазового перехода плавление-кристаллизация, является наиболее предпочтительным. Однако существующие технические решения в области тепловых аккумуляторов на основе фазового перехода, имеют ряд недостатков, обусловленных сложностью конструкции теплообменных аппаратов. В этой связи применение шнекового теплообменника позволяет упростить конструкцию, уменьшить размеры установки и исключить засорение теплообменной поверхности. Кроме того, вышеприведенный способ передачи тепловой энергии от теплоаккумулирующего материала к теплоносителю и обратно, позволяет контролировать соответственно разряд и заряд теплового аккумулятора. Принципиальная схема теплоаккумулятора на основе фазового перехода со шнековым теплообменником представлена на рисунке 7.1.

Рисунок 7.1 - Принципиальная схема теплоаккумулятора со шнековым теплообменником

На схеме можно выделить основные компоненты конструкции: баки-аккумуляторы (1, 2) соединены шнековым транспортером (3), приводимым в действие приводом (4). В состав электропривода входят асинхронный двигатель, преобразователь частоты для регулирования скорости вращения шнека, а также вспомогательных устройств сопряжения валов электродвигателя и шнекового транспортера. Разряд теплоаккумулятора начинается с приведения в действие привода (4). Теплоаккумулирующий материал в виде расплава движется по шнековому теплообменнику (3) из бака-аккумулятора (1). В процессе движения он отдает запасенную теплоту теплоносителю, циркулирующему в наружном контуре теплообменника, кристаллизуется и направляется в бак-аккумулятор (2) для нового цикла зарядки.

Суть предлагаемой концепции состоит в том, что отходящая теплота отработавших газов и охлаждающей жидкости дизелей не только утилизируется, но и аккумулируется. Данное тепло может быть использовано для решения проблемы предпусковой тепловой подготовки двигателя, так же для обогрева кают экипажа при низких температурах окружающего воздуха. Для этих целей следует использовать теплоаккумулятор фазового перехода. Кроме того, теплоаккумулятор фазового перехода может быть использован, не только как аккумулятор теплоты, но и как аккумулятор холода. Это может быть использовано в системе охлаждения воздуха в каютах экипажа в летний период. электроэнергетический дизель управление аккумулятор

Таким образом, теплоаккумулятор фазового перехода является автономным и достаточно энергоемким накопителем энергии, функционирующим за счет утилизации отходящей теплоты отработавших газов и охлаждающей жидкости двигателя.

Выводы

В данной работе мы провели анализ СЭУ спасательного судна водоизмещением 7980 т на котором в качестве главного двигателя установлен дизель 5 ДКРН 62/140-3.

Описано спасательное судно "Саяны", приведены его основные характеристики и размерения.

Рассмотрен главный дизель, рассмотренные вопросы эксплуатации топливной, масляной и системы охлаждения дизеля и других его элементов соответствуют Правилам технической эксплуатации и Инструкции по эксплуатации компании - производителя. Произведен расчет рабочего процесса, а также описан процесс эксплуатации ГД. Электроэнергетическая система судна позволяет в полном объеме обеспечить эксплуатационные характеристики заданного судна и судовые потребители электрической энергии.

Описано планирование технического обслуживания и ремонтов элемента СЭУ, приведены основные технические неисправности и способы их решения. Описан процесс ремонта форсунки.

Рассмотрены мероприятия по предотвращению загрязнения окружающей среды в соответствии с МАРПОЛ 73/78, требования Международной конвенции по охране человеческой жизни на море 1974 года с поправками 1978 и 1983 годов (СОЛАС-74).

Произведен анализ эксплуатации ДЭУ по эксплуатационным параметрам главного дизеля, на основе этого анализа предложена модернизация путем использования тепловых аккумуляторов.

Библиографический список

1. Гжиров Р.И. Краткий справочник конструктора. Машиностроение, 1983. - 459 с.

2. Дейнего Ю.Г. Технический механизм для судовых механиков. Одесса: Батискаф, 2007 - 280 с.

3. Локтев И.В., Завъялов А.А., Царев Л.Н. Технология использования топлива на судовых установках. Учебное пособие. - Одесса: ОННА, 2011 - 151 с.

4. Корнилов Э.В. Судовые главные двигатели с электронным управлением. Одесса: Ассоциация морских иижинеров-механиков, 2008 - 145 с.

5. Ланчуковскнй В.И., Козьминых А.В. Автоматизированные системы управления судовых дизельных и газотурбинных установок. Москва: 1983 - 320 с.

6. Сизых В.А. Судовые энергетические установки. - 2-у изд., перераб. и доп. - М.: Транспорт, 1989. - 263 с.

7. Пахомов Ю.А. Топливо и топливные системы судовых дизелей. / Ю.А. Пахомов, Ю.П. Коробков, Е.В. Дмитриевский, Г.Л. Васильев. - М.: РКонсульт, 2004. - 496 с.

8. Сизых В.А. Судовые энергетические установки. - 3-у изд., перераб. и доп. М.: Р Консультант, 2003. - 264 с.

9. Судовой механик. Справочник. Том 1. Под редакции А.А. Фока. - Одесса: Феникс, 2008 - 103 с.

10. Дейнего Ю.Г. Эксплуатация судовых механизмов и систем (библиотека судового механика) / Дейнего Ю.Г. - М.: Моркнига, 2008. - 240 с.

11. Лакиза Р.И., Амелин В.И. Испытания механизмов судовых устройств. - Л.: Судостроение, 1971. - 184 с.

12. Возницкий И.В., Пунда А.С. Судовые двигатели внутреннего сгорания. Том 2. Теория эксплуатации двигателя / И.В. Возницкий, А.С. Пунда. - М.: Моркнига - 2010 - 382 с.

13. Скорняков В.П. Безопасность жизнедеятельности. Часть II. Безопасность в чрезвычайных ситуациях: Учебное пособие. - СПб.: СПГУВК, 1996. - 113 с.

14. Международная конвенция по предотвращению загрязнения моря с судов от 1973 г., измененная и дополненная в соответствии с Протоколом от 1978. MARPOL 73/78.- СПб.: ЗАО "ЦНИИМФ", 2008.

15. Наставление по борьбе за живучесть судна (НБЖС), РД 31.60.14-81. С приложениями и дополнениями / СПб: ЗАО ЦНИИМФ, 2004. - 384 с.

16. Международная конвенция по охране человеческой жизни на море 1974 года (текст, измененный Протоколом 1988 года к ней и с поправками). - СПб.: ЗАО ЦНИИМФ, 2008. - 984 с.

17. Научный журнал КубГАУ, № 91 (07), 2013

Размещено на Allbest.ru


Подобные документы

  • Устройства и системы управления судна. Электростанция, балластно-осушительная система, противопожарная система, рулевое устройство, буксирное и спасательное устройство. Техническая эксплуатация и техническое обслуживание главного двигателя судна.

    курсовая работа [1,4 M], добавлен 05.04.2016

  • Главный энергетический комплекс дизельной энергоустановки грузового судна, выбор и обоснование состава, расчет характеристик. Принцип действия четырехтактного дизеля. Действия по управлению главным дизельным двигателем. Схемы механических индикаторов.

    курсовая работа [1,5 M], добавлен 25.03.2012

  • Описание конструктивных особенностей двигателя. Расчет рабочего цикла и процесса газообмена дизеля. Определение наиболее нагруженного колена вала двигателя 6S60MC, определение запаса прочности. Расчет и построение динамических диаграмм судового дизеля.

    учебное пособие [13,6 M], добавлен 03.10.2013

  • Тепловой расчет рабочего цикла, топливо. Процесс впуска. Расчет внешней скоростной характеристики. Динамический расчет КШМ. Основные параметры и показатели двигателя. Система жидкостного охлаждения. Сравнение рассчитанного двигателя с прототипом.

    дипломная работа [872,6 K], добавлен 25.01.2008

  • Обоснование необходимости повышения топливной экономичности судовой энергетической установки путем использования вторичных энергоресурсов. Турбокомпаундная схема утилизации теплоты главного двигателя. Производительность утилизационного турбогенератора.

    курсовая работа [905,9 K], добавлен 16.04.2016

  • Выбор возможного варианта размещения грузов. Оценка весового водоизмещения и координат судна. Оценка элементов погруженного объема судна. Расчет метацентрических высот судна. Расчет и построение диаграммы статической и динамической остойчивости.

    контрольная работа [145,3 K], добавлен 03.04.2014

  • Расчет сопротивления воды движению судна. Особенности выполнения проектировочного и проверочного расчетов движительного комплекса, принципы определения винтовых характеристик главного двигателя. Расчет и построение ходовых (тяговых) характеристик судна.

    курсовая работа [1,0 M], добавлен 18.10.2013

  • Расчёт цикла дизеля. Статистический анализ выпускаемых двигателей. Моделирование регуляторной характеристики дизеля. Определение наиболее нагруженного режима. Профилирование безударного кулачка. Расчёт подшипников скольжения, цилиндро-поршневой группы.

    дипломная работа [1,4 M], добавлен 02.12.2014

  • Общая характеристика систем дистанционного управления двигателем дизеля фирмы Sulzer марки 6RTA58. Технологическая последовательность управления системой: запуск, остановка, реверсирование, управление скоростью, задание программы разогрева - охлаждение.

    курсовая работа [53,2 K], добавлен 25.01.2011

  • Тепловой расчет двигателя внутреннего сгорания. Расчет рабочего цикла двигателя, определение индикаторных и эффективных показателей рабочего цикла. Параметры цилиндра и тепловой баланс двигателя. Расчет и построение внешней скоростной характеристики.

    курсовая работа [220,0 K], добавлен 10.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.