Захоплення на базі екскаватора одноковшового

Огляд конструкції машини і технології виконання робіт. Розрахунок екскаватора ЕО-4321 з робочим обладнанням захват. Об'ємний гідропривід екскаватора. Небезпечні та шкідливі виробничі фактори на робочому місці. Розрахунок річного економічного ефекту.

Рубрика Транспорт
Вид дипломная работа
Язык украинский
Дата добавления 28.11.2008
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

де, Fгц - зусилля в гідроциліндрі, Н; Fзах - зусилля затискач, Н;

rгц= 0,65 м; rзах= 0,78 м - плечі зусиль.

Fзах= Qf,

де Q = 15000Н - вантажопідйомність екскаватора;

f= 0,2 - коефіцієнт тертя;

Fзах= 15000•0,2= 3000 Н;

Fгц= 0,78•3000/0,65= 3600 Н.

б) Руйнування бетону.

Як і у випадку а) знаходимо суму моментів щодо точки О.

?M0= 0, тоді

Fгц rгц - Fр rр = 0,

де, Fр - зусилля необхідне для руйнування бетону, Н;

rр= 0,78 м - плече зусилля руйнування;

rгц= 0,65 м;

Fгц=Fрrр/rгц;

Rск - розрахунковий опір сколюванню матеріалу, Мпа; [1].

F - площа перетину, руйнованого матеріалу, м;

Rск = 2Rbt,

де Rbt = 1Мпа - розрахунковий опір розтягуванню для бетону.[2]

Площа перетину, руйнованого матеріалу:

F= рD2/4,

де D= 0,7м - діаметр перетину;

F = 3,14 (0,7)2/4= 0,385 м;

Fр= 0,385•2•10=770000 Н;

Fгц= 770000 0,78/0,65= 924000 Н.

Діаметр гідроциліндра:

Dru =,

де g= 25Мпа - тиск в гідросистемі;

Dгц=

Вибираємо гідроциліндр з кріпленням на провушині, з діаметром поршня D= 220 мм; діаметром штока d= 110 мм; діаметром провушини do= 80 мм.

3.3.2 Визначення зусиль в поворотному механізмі

Знайдемо крутний момент, що розвивається гідродвигуном:

Мкр.= N/щ,

де, N - потужність, Вт;

щ - кутова швидкість, рад/с;

щ= р n/30,

де, щ= 3,14•50/30= рад/с

n - частота обертання, n = 50 об/с = 3000 об/мин.

N=P V,

де, Р - необхідне зусилля, Н;

V - лінійна швидкість, V= 0,5 м/с;

P= (Gобр + Gгр)f,

де, Gобр, Gгр - відповідно вага устаткування і вага вантажу, Н;

fск= 0,2 - коефіцієнт ковзання.

Р= (18000+15000)•0,2= 6600 Н;

N= 6600•0,5= 3300 Вт;

Мкр= 3300/5,23= 631 Нм.

Рис. 3.2 До розрахунку моменту, що крутить, що розвивається гідродвигуном

3.4 Розрахунок елементів робочого устаткування на міцність

3.4.1 Розрахунок осі повороту рухомого ножа

Знайдемо діаметр осі:

у=Мизг/W, де W=0,ld3

у=Мизг/0,1 d3, звідси

d=

де, у =250 Мпа - межа міцності для металу.

Мізг= Fгцrгц= 924000•0,65= 600600 Н;

Приймаємо d=140 мм.

4. Об'ємний гідропривід екскаватора

4.1 Опис гідросистеми екскаватора

Привід всіх рухів на екскаваторі, за винятком приводу гідронасоса, гідравлічний.

Максимальний робочий тиск в гідросистемі р= 25±1,6 Мпа (250±16 кгс/см2).

Гідросистема включає:

- бак робочої рідини Б;

- гідронасоси НА, НШ1,НШ2 з приводом від двигуна внутрішнього згорання моделі СМД-17Н або СМД-15Н;

- контрольну і розподільну апаратуру;

- апаратуру фільтрації робочої рідини;

- систему сервокерування;

- гідросистему рулюючи, трубопроводи і приєднувальні елементи;

- систему охолоджування робочої рідини.

Бак робочої рідини, насосна установка, розподільна і клапанна апаратура, гидромотор повороту встановлені на поворотній платформі. Всі виконавчі механізми знаходяться безпосередньо коло робочих органів, що приводяться ними в рух.

Джерелом руху в гідроприводі робочих рухів екскаватора служить здвоєний аксіальний - поршневий насос 4НА. З метою економічного використовування потужності двигуна в насосах цієї моделі застосований спеціальний механізм - регулятор потужності, автоматично змінюючий кут нахилу поворотних корпусів.

Область рухів, в якій працює регулятор потужності 12 ... 25Мпа (120 ... 250 кгс/см2). При тиску 12Мпа (120 кгс/см2) подач кожного насоса складає Q = 120 дм/мин. У міру зростання руху вона знижується, доходячи при русі 25 ± 1,6Мпа (250 ± 16 кгс/см2) до Q = 60 дм/мин.

На кожній нагнітальній лінії насоса встановлені запобіжні клапани КП1 і КП2 для захисту системи і насосів від перевантажень. У корпусах клапанів є отвору для установки контрольних манометрів.

Розподіл робочої рідини здійснюють три гидророзподілювача Р 1, Р2, Р3.

У кожному гидророзподілювачі знаходиться три золотники.

Управління золотниками пружинно-гідравлічне здійснюється від гідронасоса НШ2. Від цього ж насоса за допомогою блоку управління БVl включаються гідроциліндри редукторів задніх коліс Ц8, Ц9. Запобіжний клапан ЗН2 служить для підтримки тиску в магістралі сервокерування.

Від секції А гідронасоса НА робоча рідина поступає до гидророзподілювачу Р 1, управляючому роботою гідромотора повороту платформи М3 (золотник Пп), гідромоторами переднього моста Мl, М2 (золотник Хп) і гідродвигуном затискач Дl (золотник Пз). При нейтральному положенні всіх цих золотників потік робочої рідини проходить через гідророзподілювач Р 1 і поступає в гідророзподілювач Р2, управляючий роботою циліндра бульдозера Цl (золотник Би), циліндрами опорних черевиків Ц2; Ц3 (золотник Про) і Гідромоторамі заднього моста М4, М5 (золотник Хз).

Секція б насоса НА підключена до золотника Хз гідророзподілювача Р2.

При нейтральному положенні золотників гідророзподілювача Р 1 і золотників Би і Об гідророзподілювача Р2 потік робочої рідини, що нагнітається обома секціями насоса НА поступає на золотник Хз і далі, в - випадку знаходження золотника Хз в нейтральному положенні, до гідророзподілювачу Р3, управляючому роботою циліндрів стріли Ц4, Ц5 (золотник С), циліндром зіву ЦБ (золотник Зв) і циліндром затискач Ц7 (золотник 3).

Таким чином, виконавські органи, керовані золотниками Пз, Хп, Пп,Б, Про (назвемо їх групою 1) харчуються продуктивністю однієї секції насоса, а виконавські органи керовані золотниками Хз, З, Зв, 3 (назвемо їх групою 2), при нейтральному положенні золотників 1 групи харчуються від двох секцій насоса НА.

Гідросистема екскаватора дозволяє суміщати один робочий рух групи 1 з одним робочим рухом групи 2.

З метою отримання можливості поєднання рухів бульдозера з роботою гідромоторів переднього моста золотники Хз і б сполучені між собою додатковим трубопроводом. Для поєднання роботи стріли і ковша робоча рідина до розподільного блоку РЗ підводиться через золотники З і Зв.

Якщо ж всі золотники знаходяться в нейтральному положенні або всі золотники розподільних блоків Р 1, Р2· зміщені з нейтрального положення, потік обох секцій прямує в бак Б. Прі цьому зливний потік залежно від температури робочої рідини прямує в бак через апарат теплообмінний АТ або безпосередньо в бак.

Для управління зливним потоком в системі передбачений кран перемикання зливу КПС. Якщо золотники розподільного блоку Р3 Зміщені з нейтрального положення, то злив робочої рідини здійснюється в бак, минувши апарат теплообмінний. Перш ніж повертатися в бак, робоча рідина проходить через зливний фільтр Ф l, Ф2.

Для оберігання системи повороту платформи у момент гальмування в гідросистемі встановлений блок клапанний КДЗ; КД4.В системі ходу встановлені клапани перепускні КД5(l), КД6(1), КД5(2), КД6(2). Для захисту магістралей від реактивного тиску в лініях безштокових порожнин циліндрів ковша і рукояті і штокових порожнин циліндрів стріли встановлені завантажувальні клапани КР 1 і КР2.

Зв'язок між виконавськими органами, що знаходяться на ходовому візку і розподільною апаратурою здійснюється за допомогою центрального колектора КЦ.

Для підведення робочої рідини в гідросистему рульового керування служить гідронасос НШl, насос планетарний НП, золотник управління ЗУ, циліндр повороту коліс Ц10. Тиск в системі рульового управління ограничивается запобіжним клапаном ЗНl.

Підведення рідини до циліндрів опорних черевиків здійснюється через замочні клапани КЗ2, до циліндра бульдозера - через замочний клапан КЗ1, до циліндрів стріли, за допомогою трубопроводів і рукавів високого тиску. На штоковій магістралі циліндра рукоятки і поршневий циліндра стріли встановлені дроселі ДРl, ДР2.6.

4.2 Розрахунок гідроциліндра ножа

Початковими даними для гідравлічного розрахунку гідроциліндра. Ножа є зусилля, необхідне для руйнування бетону F=924 кH. Приймаємо механічний ККД=0,93. Гідроциліндр з поршневою робочою порожниною А (рис. 4.1). Визначимо діаметр гідроциліндра:

де Р= 25 МПа - тиск в гідросистемі екскаватора.

.

Приймаємо стандартний діаметр D= 250 мм.

Рис. 4.1 Гідроциліндр ножа.

Визначимо діаметр штока гідроциліндра; D=кD де к=0,5.

Тоді: D=0,5•250=125 мм.

Цей діаметр відповідає стандартному ряду діаметрів.

Визначимо швидкість руху поршня:

,

де Qн=240 л/хв - подача насоса,

зоб= 1 - об'ємний ККД гідропривода.

Знайдемо мінімальний діаметр отвору, що підводить:

де, Vо= 5м/с - середня швидкість масла в цьому отворі;

Q= 240 л/хв - витрата масла.

.

Визначимо тиск в робочій порожнині при зусиллі F = 924 кН;

Визначимо максимальне зусилля, що розвивається гідроциліндром при робочому і зворотному ходу поршня і при максимальному тиску Р=25Мпа.

а) При робочому ходу:

Fo=pрD2зм/4=25•1063,14•0,252•0,93/4=11407034 Н;

б) При холостому ходу:

Fox=pр(D2-d2м/4=25•106•3,14•(0,252-0,112)•0,93/4=919863 Н.

4.3 Розрахунок шиберного поворотного гідродвигуна (ШПД)

Початкові дані для розрахунку: максимальний крутний момент М= 631 Нм, приймаємо механічний ККД зм=0,8. Визначимо діаметр суцільного валу:

де с= 25мм - добавка на ступінчасту конструкцію валу ШПД, (рис.4.2);

{tkp}= 50 МПа - напруга, що допускається, на кручення суцільного вала ШПД.

.

Приймаємо стандартний d= 80 мм.

Визначимо внутрішній діаметр:

D =md, де, m =1,5, тоді: D=80•1,5=120 мм.

Приймаємо стандартний діаметр D=125 мм.

Знайдемо ширину шибера ШПД: прийнявши р=16 МПа - тиск в гідросистемі ШПД, pпр= 0,5 Мпа - протіводавленіє, k= 1.

Пінімаєм ширину шибера ШПД В= 45мм.

Перевіримо на дотримання умов:

0,5 ? (D - d)/2•В ? 1.5,

0,5 ? (125 - 80)/2•45 ? 1.5,

0,5=0,5, тобто умова дотримується.

Визначимо мінімальний діаметр отвору, що підводить, прийнявши середню швидкість руху масла = 5м/с:

де GH=240 л/хв - подача насоса.

.

Визначимо максимальну кутову швидкість повороту затискач:

де зоб - об'ємний ККД, зоб=1, Q=240;

Визначимо крутить момент, що розвивається ШПД при робочому тиску Р=16 Мпа і прийнятій ширині шибера В = 45мм; (7)

Ммах=(Р-Рпр)•(D2-d2)Вкзм/8=(16-0,5)•106(1252-802)•10-6•45•10-3•1•0,8/8=643,5 Нм.

Рис.4.2. Поворотний гідродвигун повороту затискач.

5. Охорона праці

5.1 Небезпечні і шкідливі виробничі чинники, супроводжуючі роботу машиніста екскаватора

Охорона праці - це система законодавчих актів і відповідних їм соціально-економічних, гігієнічних і організаційних заходів, що забезпечують безпеку, збереження здоров'я і працездатності людини в процесі праці.

Задача охорони праці - звести до мінімальної вірогідності поразку або захворювання працюючого з одночасним забезпеченням комфорту при максимальній продуктивності праці. [8]

Небезпечний виробничий чинник - це виробничий чинник, дія якого на працюючого в певних умовах приводить до травми або іншого раптового погіршення здоров'я.

Шкідливий виробничий фактор - це виробничий чинник, дія якого на працюючого в певних умовах приводить до захворювання або зниження работоспособности.[9]

Всі небезпечні і шкідливі виробничі чинники, супроводжуючі роботу машиніста приведені в таблиці 5.1.

1) Перекидання екскаватора. Згідно теоремі Варіньена, тверде тіло може знаходиться в рівновазі, якщо сума моментів всіх сил щодо можливої опори перекидання Про буде рівна нулю, тобто Мо=0. З цього рівняння виходить, що момент сил перекидання щодо опори О, прагнучої перекинути машину, повинен рівний утримуючому моменту сил Муд. щодо тієї ж опори, тобто Мопр.уд.

Перекидаючі моменти в будівельних машинах складаються з дії різних сил: реакції грунту на ріжучі грані робочих органів землерийних машин, маси вантажів динамічних навантажень, дія вітру, сил інерції, мас вантажу і машини, сил, що виникають від ухилу або підйому шляху, і ін.

Таблиця 5.1

Небезпечні і шкідливі виробничі чинники, діючі на

машиніста екскаватора.

№ п/п

Робоче місце

Небезпечні і

шкідливі виробничі чинники.

Характеристика небезпечних і

шкідливих виробничих

чинників.

Законодавчі акти регламентуючі безпечні і нешкідливі умови праці.

1

Кабіна машиніста

Перекидання екскаватора

Впливає на перекидання екскаватора

перекидаючий момент (маса робочого устаткування, маса вантажу, що піднімається);

ухилом або підйомом,

поперечним креном.

ГОСТ 12.3.003-84

2

Безпосередньо у робочій зоні

Попадання людини в зону роботи.

Погана огорожа небезпечної зони; не проведений інструктаж з робітником, що знаходиться в робочій зоні.

ГОСТ 12.3.009-76 ГОСТ 23407-78

3

Кабіна машиніста

Підвищений рівень шуму

Перевищення шуму (більше 85 д.БА); погана звукоізоляція кабіни; відсутність або несправний стан аеродинамічних показників.

ГОСТ 12.1.003-83

4

Кабіна машиніста

Підвищена вібрація.

Відображається на вестибулярному апараті, серцево-судинній системі і викликають синдром заколисування;

розладу шлунку, кишечника; погіршення зору, виникнення нудоти, блювоти.

ГОСТ 12.1.012-78

5

Кабіна машиніста

Запорошена

Професійні захворювання: силікоз, каніоз, алюмікоз.

ГОСТ 12.1.005-76

6

Кабіна машиніста

Освітлення

Неправильно виконане освітлення може з'явитися причиною травматизму; підвищує стомлюваність; знижує продуктивність. Не правильна експлуатація

СН 81-80 ГОСТ 12.1.046-85

Утримуючий, або поновлюючий, момент, який повертає машину в стійке положення рівноваги, є дією сил від мас цієї машини і противаги. У випадках застосування теореми Варіньона до стійкості будівельних машин допускається виключити дію на них цих Сил (у зв'язку з деформацією конструкцій машини і податливістю підстави фундаменту), на якому вона працює. У тих випадках, коли ця деформація велика, а податливість підстави може зростати, подібне допущення виключається.

Оскільки визначити точно величину перекидаючого моменту не представляється можливим через непередбачені, іноді аварійні навантаження, в практиці застосовуються коефіцієнт запасу стійкості, характеризуючий вірогідність перевантаження:

Ку. =Муд. / Мопр.

Коефіцієнт стійкості визначають для наступних станів машини: робочого, неробочого, монтажного і транспортного.

Бульдозери, грейфери, скрепери, екскаватори і інші машини можуть втратити стійкість у випадках пересування з неприпустимим подовжнім ухилом або підйомом, поперечним креном, а також в робочому стані при дії навантажень, несприятливих для рівноваги.

2) Попадання людини в зону роботи.

При організації будівельного майданчика, розміщення ділянок і робочих місць, проїздів, проходів необхідно встановити небезпечні для людей зони. Під небезпечною зоною розуміють частину простору, в якій діють постійно або виникають періодично чинники, що створюють загрозу життя і здоров'ю працюючих людей. Небезпечні зони забезпечуються знаками безпеки і написами встановленої форми. Всі небезпечні для людей зони розділяються на дві групи:

I) Зони з постійно діючими небезпечними і виробничими чинниками;

II) Зони з потенційно діючими небезпечними виробничими чинниками.

До першої зони можна віднести зони поблизу неізольованих токоведучих частин електроустановок, ліній електропередач (ЛЕП); місця переміщення машин і устаткування, їх частин і робочих органів; місця виділення шкідливих небезпечних речовин, що перевищують ПДК, зони дії шуму з інтенсивністю вищі допустимою і Т.д. Виробництво будівельно-монтажних робіт в цих зонах, як правило, не допускається.

До другої групи можна віднести ділянки простору поблизу будівель, що будуються (підлягаючих розбиранню), споруд, а також ділянки, території, над якими ведуться монтажні роботи. Зони з постійно діючими виробничими чинниками щоб уникнути доступу сторонніх осіб повинні бути захищені огорожами (ГОСТ 23407-78), що запобігають доступу людей в небезпечну зону. Зони з потенційно діючими небезпечними виробничими чинниками захищаються сигнальними огорожами, застережливими про межі ділянок з небезпечними і шкідливими чинниками.

При виробництві будівельно-монтажних робіт в небезпечних зонах забезпечення безпеки робіт - задача першочергова.

3) Підвищений рівень шуму.

На будівельних майданчиках і підприємствах будівельної індустрії багатьом технологічним процесам супроводять шум і вібрація. Джерелами інтенсивного шуму і вібрації є машини і механізми з неврівноваженими масами, що обертаються, в окремих кінематичних парах в яких виникають тертя і зіткнення, а також технологічні установки і апарати, в яких рух газів і рідин відбувається з великими швидкостями і супроводжується пульсацією. До таких джерел шуму і вібрації відносяться компресори, насоси, елементи вентиляційних систем, трубопроводи для переміщення рідин, газів і пилу, різних дробильні і млинові установки, газодувки, електродвигуни і інше технологічне устаткування. У ряді випадків підвищені рівні шуму і вібрації є слідством відсутності або неправильного проектування - вібро і шумозахистних пристроїв, порушень правил експлуатації механічного устаткування, недостатнього динамічного балансування деталей, що обертаються, і ін. Основні джерела шуму і вібрації в будівництві і на заводах залізобетонних виробів можна об'єднати в наступні групи:

пересувні будівельні машини - екскаватори, бульдозери, катки, баштові, мостові і автомобільні крани, копрові установки з дизель - молотами і електровібраторами, пересувні компресорні установки;

машини для приготування, розподілу і віброущильненя бетонної суміші - бетонозмішувачі, дозаторні пристрої, віброформування багато пустотних виробів, касетні установки з навісними вібраторами і др.;

ручний механізований інструмент з електро і пневмоприводом.

Одним з найсприятливіших типів підприємств по віброакустичному режиму виробничих приміщень є заводи збірних залізобетонних конструкцій, в яких умови праці іноді не відповідають санітарним вимогам, особливо формувальні цехи. Основним технологічним устаткуванням формувальних цехів є віброплощадки, які служать джерелами шуму і шкідливої вібрації. Встановлено, що збільшення шуму з 76 до 95 дБ знижує продуктивність фізичної праці на 20-22%, а розумового - більш ніж на 40%. На віброплощадках шум досягається 105-120 дБ, Тобто перевищує норми на 20-35 дБ.

Підвищення рівня шуму і вібрації на робочих місцях несприятливо позначається на організмі людини і результатах його діяльності

4) Підвищена вібрація.

Тіло працюючої людини умовно розглядають як своєрідну систему, що коливається, оскільки під впливом вібрації частини тіла людини переміщаються щодо один одного з амплітудами залежно від джерела коливання і маси органів. Відносні переміщення частин тіла приводять до напруг в зв'язках між частинами тіла і взаємному зіткненню і натисканню.

Тривалі коливання людини з частотою f=3 ... 5 Гц шкідливо відображаються на вестибулярному апараті, серцево-судинній системі і викликають розлади унаслідок резонансних коливань голови, шлунку, кишечника і зрештою всього тіла. При частоті коливань f=11 ... 45 Гц погіршується зір, виникають нудота, блювота, порушується Нормальна діяльність інших органів. Коливання з частотою f>45 Гц викликають пошкодження судин головного мозку, відбувається розлад циркуляції крові і вищої нервової діяльності з подальшим розвитком вібраційної хвороби.

На заводах металоконструкцій при багатьох технологічних процесах (шліфовка, заточування інструменту, зачистка швів, зварка, різання і ін.) виділяється пил, що забруднює повітряне середовище, яке негативно впливає на організм людини і в основному на їх органи дихання, оскільки дихальні органи є основними шляхами проникнення в організм людини пилу з повітряного середовища.

Пил - це найдрібніші тверді частинки, здатні знаходитися в перебігу деякого часу в повітрі в зваженому стані. Зважені в повітрі тверді частинки є дисперсною системою, в якій дисперсною фазою є тверді частинки, а дисперсійним середовищем - повітря. Дисперсну систему зважених твердих частинок в повітрі, тобто пил називають аерозоллю.

Для оцінки пилу сточування зору гігієни найважливішою ознакою є ступінь її дисперсності або розміри пилових частинок, оскільки з цим пов'язана тривалість перебування зваженої пилової частинки в повітряному середовищі. Від дисперсності пилових частинок залежить також глибина їх проникнення в дихальні шляхи.

Швидкість осадження пилу з повітря знаходиться залежно від розміру частинок. Крупні частинки (більш lO MKM) відносно швидко випадають в осад під дією сили тяжіння, дрібніші частинки падають з меншими швидкостями, долаючи опір повітряного середовища (50…10MKM), а найдрібніші (менше 5 мкм) високодисперсні частинки можуть тривалий час знаходитися в повітрі. У легенях людини при диханні затримуються частинки розміром від 0,23до 7 мкм.

Таким чином, постійна робота на запорошених робочих місцях з часом пов'язана з професійними захворюваннями, званими пневмоконіозамі (силікозамі, коніози, алюмікози і т.д.).

5) Освітлення

Виробниче освітлення, правильно спроектоване і виконане, сприяє продуктивності праці, і якості продукції, що випускається, підвищує безпека праці і знижує стомлюваність і травматизм на виробництві.

Неправильно виконане освітлення може з'явитися причиною травматизму в результаті погано освітлених небезпечних зон, сліпучого дії ламп і відблисків від них, різких тіней, які можуть викликати повну втрату орієнтації працюючих.

Неправильна експлуатація освітлювальних установок, а також помилки, допущені при їх проектуванні і установці в будівлях з пожежо - і вибухо - небезпечними виробництвами, можуть привести до вибуху, пожежі і нещасних випадків.

Враховуючи те, що світло забезпечує зв'язок організму із зовнішнім середовищем і володіє високою біологічною і тонізуючою дією, до сучасного промислового освітлення пред'являються високі вимоги як гігієнічного, так і техніко-економічного характеру. (10)

5.2 Розробка інженерних рішень по обмеженню впливу небезпечних виробничих чинників на машиніста екскаватора

5.2.1 Небезпека перекидання

Стійкість екскаватора перевіряється по трьох розрахункових схемах.

а) Перше розрахункове положення (pиc.5.1).

Екскаватор знаходиться на горизонтальному майданчику, платформа упоперек ходової рами, стріла, на повному вильоті виробляється затискач вантажу.

Момент сил, що утримують екскаватор від перекидання, щодо т.О:

Муд= Gnnrnn.+Gхч.rхч,

де Gnn. - вага поворотної платформи з механізмами;

Gхч. - вага ходової частини;

Муд.= 70720•2,75+61750•1,6= 293280 Нм.

5.1. Розрахунок стійкості при захопленні вантажу.

Момент перекидаючий:

Мопр= Gcrc.+Gисrис+Gизвrизв+ Gзrз+Gцзrцз;

де Gc - вага стріли; Gис - вага циліндра стріли; Gизв - вага циліндра затискач; Gз - вага затискач; Gцз - вага циліндра зіву.

Мопр=17900•1,5+1180•2•9,15+1180•4,25+18000•5,5+3900•6,5=156569 Нм.

Коефіцієнт стійкості:

К=Мудопр=293280/156569=1,87.

К>1, екскаватор в цьому положенні стійкий.

б) Друге розрахункове положення (рис 6.2.).

Відповідає повороту на вивантаження, платформа упоперек рами, затискач на вильоті найбільшого радіусу.

Момент утримуючих сил:

Муд=Gппrпп+Gхчrхч=70720•2,75+61750•1,6=293280 Нм;

Момент перекидаючий:

Мопр=Gcrc+Gисrис+Gизвrизв+Gзrз+Gизrиз+Gгrг,

де Gг - вага вантажу, що піднімається;

Мопр=17900•1,5+1180•2•0,15+1180•4,25+18000•6,85+3900•6,15+15000•7,25=262254 Нм.

Коефіцієнт стійкості:

К=Мудопр=293280/262254=1,118

К>1, тобто екскаватор стійкий.

Рис.5.2. Розрахунок стійкості при повороті на вивантаження.

в) Третє розрахункове положення (рис.5.3.).

Відповідає руху екскаватора під уклон (б= 22°), стріла піднята до межі, затискач підвернуте під стрілу, тиск вітру у бік ухилу Рв=250 Н/м2.

Момент утримуючий:

Муд=Gппrпп+Gхчrхч=70720•1,75+617501=195510 Нм.

Момент перекидаючий:

Мопр=Gисrис+Gcrc+Gизвrизв+Gзrз+Gизrизв,

де Мв - момент від сил вітру.

Мв = РвFg,

де F=7,975 м2 - площа підвітряна;

g=1,9 м - висота додатку сили вітру.

Мв=250•7,975•1,9=3788 Нм

Мопр=1180•2•1+17900•2,75+1180•5,5+18000•6+3900•6,75+3788=182188 Нм.

Коефіцієнт стійкості:

К=Мудопр=195510/182188= 1,07

К>1, значит екскаватор устойчив. [3]

Рис.5.3 Розрахунок стійкості при пересуванні.

5.2.2 Попадання людини в зону роботи

Для того, щоб запобігти попаданню людини в зону роботи необхідно будувати загороди, встановлювати звукові сирени. робітники, які безпосередньо знаходяться в цих зонах повинні бути про інструктовані по техніці безпеки. Для того, щоб уникнути травматизму необхідне хороше освітлення робочої зони в темний час доби. На будмайданчиках робітники повинні бути в спецодягу і касках.

5.3 Розробка інженерних рішень по обмеженню дій шкідливих виробничих чинників на машиніста екскаватора

5.3.1 Підвищений рівень шуму

У тих випадках, коли джерело шуму не може бути усунений, ослаблений або захищений звукоізоляційною перешкодою, для боротьби з шумом використовують засоби звукопоглинання.

Звукопоглинання дає найбільшу ефективність в зоні відображеного звуку. Зменшення рівня звуку за рахунок звукопоглинання збільшується із зменшенням об'єму приміщень.

Звукопоглинальні облицьовування розміщують на стелі і на верхніх частинах стін. Максимальне звукопоглинання досягається при облицьовуванні не менше 60% загальної площі захищаючих поверхонь приміщень.

Розрахуємо звукопоглинальне облицьовування кабіни машиніста.

Визначимо ефективність її застосування і рівня звукового тиску на робочому місці після акустичної обробки кабіни. Розміри кабіни 1,5х1,8х1,5 м; об'єм кабіни V= 4,05 м3; площі захищаючих поверхонь, м підлоги - 2,7 м, стін - 2 м, стелі - 2,7 м, загальна площа S = 7,4 м.

Розрахункова точка видалення від двигуна r = 3м.

,

де n= 1 - кількість джерел звуку (двигун);

В8000 - постійна приміщення на частоті 8000Гц.

В8000=B1000 µ8000=6V/ 20=6•4,05/20= 1/22

Розрахункова крапка знаходиться в зоні віддзеркалення, тобто r> rпр [11]

Аналіз спектру рівня звукового тиску на робочому місці показав, що вживаний матеріал повинен мати високий коефіцієнт звукопоглинання. Вибираємо для звукопоглинання плити «Вініпор» напівжорсткі (ТУ В-бб-70).

5.3.2 Вібрація

Буває два види захисту від вібрації: пасивна і активна віброізоляція.

Пасивна віброізоляція (віброзахист) - це віброізоляція, не використовуюча енергію додаткового джерела.

Розглянемо для прикладу віброїзоляцію сидіння водія. Сидіння в самохідних будівельне - дорожніх машинах, автомобілях і тракторах повинні забезпечувати санітарно - гігієнічні умови для тривалої - роботи водіїв. Сидіння повинне пом'якшувати поштовхи і удари і частину вібрації, перевищуючу гігієнічні характеристики і норми вібрації по ГОСТ 2.1.1012-78*.

Типова схема підресорювання сидіння водія (рис.5.2) складається з наступних елементів: направляючого механізму 1, корпусу водія, що складається з параллелограмних важелів і забезпечуючого стабільність вертикального положення, при коливанні машини. Направляючий механізм, що сполучає посадочне місце водія з рамою ходової частини ·машини, виконує роль кінематичного і силового зв'язку; пружини 3, знижуючої амплітуду коливань сидіння від коливання машини при пересуванні по нерівностях дорогі; регулювального гвинта 4 для зміни жорсткості пружини залежно від маси тіла водія; гидроамортизатора 2, поглинаючого коливання сидіння при пересуванні машини по нерівностях дорогі.

Під активною віброїзоляцією розуміють таку ізоляцію, для якої використовується енергія додаткового джерела.

Дослідження показали, що пасивна віброізоляція не дозволяє повністю захистити сидіння від вібрації, а дає можливість понизити тільки до 50%. Більш афектно понизити вібрацію можна методом противовібрації збуджуючи дії протифази, що задається сидінню сидячою системою. В цьому випадку вібраційний захист із зворотним зв'язком і додатковою енергією, що підводиться, називається активним віброізоляцією. Цей метод для самохідних машин знаходиться у стадії пошуку, має на меті понизити рівень коливань до заданих санітарних норм.

Активна віброізоляція, як правило, заснована на замкнутій системі автоматичного управління. Подібна система підресорювання сидіння показана на рис.5.3. Сидіння водія 1 під впливом коливання його підстави переміщається на величину х. Це переміщення за допомогою акселерометра 2 перетвориться в прискорення х. Поступаючий від акселерометра сигнал за допомогою золотника 3 фіксує зсув акселерометра щодо сидіння, а гідронасос 4 і гідроциліндр 5 впливають на сидінні, притягаючи або відштовхуючи його від підстави. При активній віброізоляції сидіння енергії витрачається 5 ... 6 кВт.

5.3.3. Запорошена. Методи очищення повітря від пилу

Для очищення повітря від пилу застосовують пиловловлювачі і фільтри.

До фільтрів відносяться пристрої, в яких відділення пилових частинок від повітря виробляється шляхом фільтрації через пористі матеріали. Апарати, засновані на інших принципах запалі відділення, прийнято називати пиловловлювачами.

Залежно від природи сил, діючих на зважені в газі пилові частинки для їх відділення від газового потоку, використовують наступні типи пиловловлюючих апаратів: сухі механічні пиловловлювачі (зважені частинки відділяються від газу за допомогою зовнішньої механічної сили); мокрі пиловловлювачі - (частинки відділяються від газу шляхом промивки його рідиною, захоплюючою ці частинки); електричні пиловловлювачі (частинки пилу відділяються від газового потоку під дією електричних сил); комбіновані пиловловлювачі (використовуються одночасно різні принципи очищення).

Рис. 5.2 Схема підресореного сидіння

По функціональному призначенню пиловловлююче устаткування підрозділяється на два види:

для очищення повітря приточування в системах вентиляція і кондиціонування;

для очищення повітря і газів, що викидаються в атмосферу системами промислової вентиляції.

При виборі засобів індивідуального захисту необхідно керуватися довідником - каталогом «Спецодяг, спецвзуття, засоби індивідуального захисту» ВЦНІІОТ.

Спецодяг повинен оберігати тіло працюючого від несприятливої дії механічних, фізичних і хімічних чинників зовнішнього середовища. Спецодяг, надійно захищає тіло від виробничих шкідливих речовин, повинен разом з тим забезпечувати свободу рухів, нормальну терморегуляцію організму і добре очищатися від забруднень, не змінюючи після цього своїх властивостей.

У будівництві найшкідливішими є пилові процеси при роботі з цементом, вапном і іншими. матеріалами, що порошать. Для захисту органів дихання застосовують різні види індивідуальних засобів захисту типу респіраторів. Респіратор є фільтром, розташованим на напівмасці, щільно прилеглим до особи і відділяючим від запорошеного середовища тільки органи дихання.

5.3 Схема активної віброїзоляциії

При виробництві будівельно-монтажних робіт, пов'язаних із значним запалі освітою, рекомендується застосовувати фільтруючі респіратори.

Для захисту органів дихання від вапняного, цементного і азбестового пилу застосовують респіратори типа PH-19. Для захисту від нетоксичного пилу використовують респіратори типа ШБ-l і ПPБ-l. Для захисту очей від пилу слід застосовувати спеціальні протипилові захисні окуляри.

5.3.4 Освітленість

Штучне електричне освітлення будівельних майданчиків і місць виробництва будівельних і монтажних робіт передбачається у тому випадку, коли недосить природного світла, або для освітлення в той годинник діб, коли природне світло відсутнє.

По конструктивному виконанню штучне освітлення може бути двох видів: загальне і комбіноване, коли до загального освітлення додається місцеве, що концентрує світловий потік безпосередньо на робочих місцях.

Загальне освітлення підрозділяється на загальне рівномірне освітлення (коли весь будівельний майданчик або приміщення освітлюється однотипними світильниками, рівномірно розташованими над поверхнею освітлюваного простору і забезпеченими лампами однакової потужності) і загальне локалізоване освітлення (при розподілі світлового потоку з урахуванням розташування робочих місць).

Застосування одного місцевого освітлення на будівельному майданчику і усередині виробничого приміщення не допускається.

Вибір системи освітлення залежить від вимог технологічного процесу, розмірів об'єктів розрізнення і характеру зорових робіт.

Для будівельних майданчиків і ділянок робіт необхідно передбачати загальне рівномірне освітлення. При цьому освітленість повинна бути не менше 2 лк незалежно від вживаних джерел світла. Для ділянок робіт, де нормовані рівні освітленості повинні бути більше 2 лк, на додаток до загального рівномірного освітлення слід передбачати загальне локалізоване, яке виконують освітлювальними приладами, встановлюваними на будівлях, конструкціях і щоглах загального рівномірного освітлення (рис.5.4).

Загальне локалізоване освітлення створюється освітлювальними приладами - фарами, прожекторами або світильниками, встановлюваними на машинах і механізмах. По функціональному призначенню електричне освітлення будівельних майданчиків і ділянок підрозділяється на робоче, аварійне, евакуаційне і спеціальне.

5.4 Інверторная прожекторна щогла

Спроектуємо загальне рівномірне освітлення для будівельного майданчика, що має розміри 200х150.

Відповідно до ГОСТ 12.1.046-85. Ен=2 лк.; к=1,7. Беремо прожектор ПЗС-45 з лампою ДРЛ-700, Imax= 30000; вВ= 2; в1= 100; Рл= 700

Тоді N= m•Ен•А/Рл = 0,13*1,7*2*30000/700 = 18,9 шт.

А - освітлювальний майданчик, м2 А= 30000. Приймаємо число прожекторів N= 20 шт. Максимальна висота установки прожекторів:

Нmin=

Число прожекторів на одній щоглі приймаємо 5 шт. Кут нахилу рівний И=15°.

Кожну прожекторну щоглу встановлюємо посередині сторін майданчика.[ll]

5.4 Віддзеркалення питань ергономіки при розробці робочого місця машиніста екскаватора

Ергономіка - наукова дисципліна, що вивчає функціональні можливості людини у важких процесах, виявляє можливості і закономірності створення оптимальних умов для високопродуктивної праці і забезпечення необхідних зручностей, сприяючих розвитку здібностей людини. Її предметом є трудова діяльність, а об'єктом дослідження - системи «людина - знаряддя - предмет праці - виробниче середовище». Оптимізація названих систем розглядається як знаходження якнайкращого, зі всіх можливих для певних умов і способу, функціонування систем, ефективність яких оцінюється не тільки з техніко-економічною, але і з погляду збереження здоров'я працюючого.

Оптимізація трудової діяльності і умови здійснення створює необхідні передумови для збереження здоров'я працюючих, дозволяє добитися підвищення ефективності і надійності діяльності людини.

Ергономіка - це наука про пристосування умов праці до людини. вона так чи інакше пов'язана зі всіма науками, предметом дослідження яких є людина. За природою своєї ергономіка займається профілактикою охорони праці. Комплексний підхід, характерний для ергономіки, дозволяє одержати всестороннє уявлення про трудовий процес. Саме ця сторона ергономічних досліджень є цінністю для наукової організації праці.

Ергономіка вирішує також ряд проблем, поставлених в будівництві: оцінка надійності, точності і стабільності роботи оператора, дослідження впливу психічної напруженості, ступеня стомлюваності, емоційних чинників і особливостей нервнопсихічної організації оператора на ефективність його діяльності в системі «людина-машина», вивчення приспособлювальних і творчих можливостей людини.

У сучасному будівельному виробництві, оснащеному технічними системами, до людини пред'являються різко збільшені вимоги, що вимушують його працювати на межі психофізіологічних можливостей і в украй ускладнених умовах. Можливості будівників розширяються за рахунок розвитку будівельної техніки. З розвитком техніки виникла задача узгодження конструкцій машин і умов їх функціонування з характеристиками працюючої людини, технічний прогрес поставив проблему «людина-машина».

Ергономіка дозволила відповісти на практичні питання, що виникають. при організації спільної роботи людини, з одного боку, і механізмом елементів матеріальної сфери - з іншою. Ця наука вивчає суперечності, що виникають між людиною і матеріальними «партнерами» в праці, причому ці суперечності є результатом взаємної непристосовності машин і механізмів до людини і людини до них.

Ергономіка органічно пов'язана з художнім конструюванням (дизайном), метою якого є формування гармонійного і наочного середовища, що відповідає матеріальним і духовним особливостям людини.

5.5 Протипожежна безпека

У звичних умовах горіння є процесом окислення або з'єднання гарячої речовини і кисню повітря. Проте відомо, що деякі речовини, наприклад стислий ацетилен, хлористий азот, вибухові речовини можуть горіти, вибухати без кисню з результатом не тільки реакції з'єднання, але розкладання.

Горінням називають швидко протікаючу хімічну реакцію, що супроводжується виділенням великої кількості тепла і звично свіченням. Залежно від швидкості процесу горіння може відбуватися у формі власне горіння, вибуху і детонації.

Найбільша швидкість горіння спостерігається в чистому кисні, якнайменша - при змісті в повітрі 14-15% (про.) кисню. При подальшому зменшенні змісту кисню горіння більшої частини речовин - припиняється. Воно відбувається тим швидше, чим більше питома поверхня речовин; при ретельному зсуві горючої речовини і кисню (окислювача) збільшується швидкість горіння.

Всяку пожежу найлегше ліквідовувати в його початковій стадії, вживши заходи до локалізації вогнища, щоб не допускати збільшення площі горіння. Успіх швидкої локалізації і ліквідації пожежі в його початковій стадії залежить від наявних відповідних вогнегасних засобів, уміння користуватися ними всіма працюючими, а також від засобів пожежного зв'язку і сигналізації для виклику пожежної допомоги і приведення в дію автоматичних і ручних вогнегасних засобів.

Огнетушащие властивості води. Вода в порівнянні з іншими вогнегасними речовинами має найбільшу теплоємність і придатна для гасіння більшості горючих речовин: 1л води при нагріванні від 0 до 100 °З поглинає 419 кДж теплоти, а при випаровуванні - 2260 кДж. Вода володіє достатньою термічною стійкістю (понад 17000 З), що перевищує стійкість багатьох інших вогнегасних речовин. Крім того, вода володіє трьома властивостями вогнетушіння: охолоджує зону горіння або речовини, що горять, розбавляє реагуючі речовини в зоні горіння і ізолює гарячі речовини від зони горіння.

Огнетушащие піни. Для гасіння легкозаймистих рідин застосовують піну - суміш газу з рідиною.

Піна є системою, в якій дисперсною фазою завжди є газ. Міхури газу можуть утворюватися усередині рідини в результаті хімічних процесів або механічного зсуву газу (повітря з рідиною). Чим менше розміри міхурів газу і поверхнева напруга плівки рідини, тим більше стійка піна (менша можливість руйнування плівки).

При невеликій густині (0.1-0.2 г/см) піна розтікається по поверхні горючої рідини, ізолює її від полум'я, і надходження пари в зону горіння припиняється; одночасно охолоджується поверхня рідини.

6. Розрахунок річного економічного ефекту

6.1 Виявлення призначення і області застосування нової техніки

Нова техніка - гідравлічний екскаватор ЕО-4321 з робочим устаткуванням затискач. Ця техніка призначена для виконання відновних робіт. До цих робіт відноситься розчищання завалів будівель, руйнування стін, що залишилися, з подальшим вантаженням в транспортний засіб. Тобто дана машина використовується при надзвичайних ситуаціях. [12]

6.2 Вибір базового варіанту

Вибираємо базову техніку Е0-4321 з робочим устаткуванням гідромолот, для порівняння з новою технікою.

6.3 Виявлення конструктивне - експлуатаційних особливостей техніки

До конструктивно - експлутаційним особливостям нової техніки відносяться: здатність роботи екскаватора в обмежених умовах за рахунок повороту затискач в діапазоні 0° ... 180°, тобто поворотна платформа нерухома; для руйнування дорожніх покриттів, стін, перекриттів гідромолот необхідно вдавлювати в руйнований предмет, а нова техніка руйнує без цих додаткових навантажень; здатність виконувати навантажувально-розвантажувальні роботи.

6.4 Опис програми «Ефект-М»

6.4.1 Ідентифікатори для опису початкової інформації до програми «Ефект - М»

Таблиця 6.1

Ідентифікатори для опису початкової інформації до програми

«Ефект - М»

№ п/п

Параметри

Од. вим.

Програм. ідентиф.

1

2

3

4

1

Ціна техніки

грн

СС

2

Маса техніки

Т

G

3

Річна експлуатаційна продуктивність

Кг/рік

У

4

Термін служби техніки

років

TCL

5

Тариф на залізничні перевезення

Грн/т

GP

6

Норма амортизаційних відрахувань

Часток

BNAO

7

Коефіцієнт, що враховує витрати на зміст дорогий

KSD

8

Коефіцієнт, що враховує доплати

KG

9

Кількість відпрацьованого годинника в рік

година

TE

10

Годинна тарифна ставка всього екіпажа

Грн/година

SUMCT

11

Коефіцієнт накладних витрат від решти статі витрат на експлуатацію машини

KHII

12

Ціна палива

Грн/кг

СТОІІ

13

Нормальна потужність ДВС

кВт

BNEH

14

Питома витрата палива

г/кВт*час

GEN

15

Коефіцієнт, що враховує зміну витрати палива від ступеня використовування двигуна по потужності

KN

16

Коефіцієнт використовування машини по потужності

KDM

17

Коефіцієнт використовування машини за часом

KDV

18

Стійка потужність електродвигунів

кВт

BNM

19

ККД мережі

KPS

20

ККД двигуна

21

Тариф на електроенергію

Грн/кВт•год

22

Коефіцієнт, що враховує витрати на змащувальні і обтиральні матеріали

КОМ

23

Міжремонтний цикл

Маш. год.

ТC

24

Коефіцієнт накладних витрат від основної зарплати екіпажа

KHZ

25

Коефіцієнт, що враховує премії ремонтних робітників

LAMP

26

Середня тарифна ставка робітників по ремонту машин

Грн

СР

27

Кількість ТР за МРЦ

АТ

28

Кількість ТЕ-3 за МРЦ

АТО3

29

Кількість ТЕ-2 за МРЦ

АТО2

30

Кількість ТЕ-1 за МРЦ

АТО1

31

Трудомісткість ТР

Чел*ч

RTP

32

Трудомісткість ТЕ-3

Чел*ч

RTО3

33

Трудомісткість ТЕ-2

Чел*ч

RTО2

34

Трудомісткість ТЕ-1

Чел*ч

RTО1

35

Коефіцієнт переходу від зарплати до витрат на ТЕ і ТР

КЕР

36

Оптова ціна шини

Грн

OCS

37

Кількість шин (без запасних)

Шт.

BNS

38

Термін служби шини

Годин

TS

39

Місткість гідросистеми

Літрів

VG

40

Об'ємна маса в гідросистемі

Кг/дм

GAM

41

Оптова ціна масла для гідросистеми

Грн/кг

СМ

42

Коефіцієнт доливань масла в гідросистему

BKDL

43

Періодичність зміни масла в гідросистемі

годин

TMG

44

Частки відрахувань від балансової вартості на реновацію техніки

Р

45

Нормативний коефіцієнт економічної ефективності

EN

6.4.2 Ідентифікатори для опису розрахункових величин

Таблиця 6.2.

Ідентифікатори ДЛЯ опису розрахункових величі

№ п/п

Параметри

Одиниця вимірювання

Програмний ідентифікатор

1

2

3

4

1

Одноразові витрати

Грн

ES

2

Амортизаційні відрахування на капремонт

Грн

АМК

3

Річні поточні експлуатаційні витрати

Грн

ТР

4

Заробітна платня робітників, що управляють машиною

Грн

SZII

5

Вартість палива

Грн

ST

6

Годинна витрата палива

Г/час

WT

7

Вартість електроенергії

Грн

SE

8

Вартість обтиральних і змащувальних матеріалів

Грн

SCM

9

Витрати на ТЕ і ТР

Грн

SEP

10

Витрати на зарплату ремонтних робітників

Грн

SEPZ

11

Витрати на матеріали і витрати

Грн

SEPM

12

Вартість змінного оснащення

Грн

SCO

13

Витрати на масло для гідросистеми

Грн

SMG

14

Річні експлуатаційні витрати споживачу

Грн

U

15

Річний економічний ефект

Грн

EG

6.4.3 Блок - схема програми «Еффект - М»

Початкові дані для розрахунку.

Базова машина.

СС

121000

G

19,76

У

12563,2

TCL

8

BNAO

0,03

TG

2080

Стоп

1,12

BNEN

70

QEH

252

BNМ

0

ТE

0

ТС

5760

СР

310

АТ

8

АТО3

0

АТ02

18

АТ01

72

RTP

610

RT03

0

RT02

9

RTOl

4

OCS

1098

BNS

6

TS

7000

VG

150

BКDL

1,5

TMG

1500

Р

0,08

GP

30

SUМCT

2,8

GAМ

0,86

CM

1,55

Нова машина

СС

120000

G

19,76

V

19385,6

TCL

8

BNAO

0,03

TG

2080

Стоп

1,12

BNEN

70

QEH

252

BNМ

0

ТІ

0

ТС

5760

СР

310

АТ

8

АТО3

0

АТ02

18

АТ01

72

RTP

610

RT03

0

RT02

9

RT01

4

OCS

1098

BNS

6

TS

7000

VG

150

BКDL

1,5

TMG

1500

Р

0,08

GP

30

SUМCT

2,8

GAМ

0,86

СМ

1 55

Висновок:

В результаті упровадження нової техніки одержали річний економічний ефект рівний 66840,7 гривень. Тобто використовувати робоче устаткування затискач на базі гідравлічного екскаватора Э0 - 4321 економічно вигідніше, ніж гідромолот.

Роздрук з кафедри економіки.

Висновки

В результаті дипломного проекту був розроблений робочий орган затискач для гідравлічного екскаватора Э0-4321, на підставі чого можна зробити ряд висновків.

В даний час відносне мало робітників органів для гідравлічних екскаваторів, які дозволяють виробляти роботи в обмежених умовах, тобто виконувати поставлену задачу без повороту поворотної платформи, а тільки за допомогою робочого органу.

Достатня простота конструкції забезпечує розширення можливостей екскаватора. Затискач дозволяє виконувати наступні операції:

Розчищання завалів, як на рівні стоянки екскаватора, так і нижче за рівень;

Руйнування бетонних і цегляних стін будівель з подальшим вантаженням частин в транспортний засіб;

Маніпулювання вантажем.

При достатньо широкій номенклатурі виконуваних робіт і частої їх повторюваності, коли потрібне швидке переналагодження робочого устаткування з одного функціонального типу в іншій. Тобто адаптація до різних видів робіт і властивостей середовища, екскаватори, оснащення робочим органом затискач, володіють істотними перевагами в порівнянні з устаткуванням традиційного типу.

У дипломному проекті виконані розрахунки: металоконструкцій робочого органу; гідроприводу; річного економічного ефекту; охорона праці.

Застосування робочого органу затискач на екскаватор ЕО-4321, для виконання різних видів робіт дає можливість підвищити продуктивність екскаватора з 12563,2 м/рік і дало річний економічний ефект в розмірі: 66840,7 гривень.

Список використаної літератури

1.А.Б. Голышев, В.Я. Бачинский «Проектирование железобетонных конструкций», - Киев: Строитель, 1985. - 496с.

2.ЦНИИСК им. В.А. Кучеренко Госстрой СССР СниП ІІ - 22-81. Строительные нормы проектирования. Чсть ІІ. Нормы проектирования. Глава 22. Каменные и армокаменные конструкции. - М.: Стройиздат, 1983. - 39с.

Л.А. Хмара, М.И. Деревенчук, И.А. Кулик. Методические указания к выполнению курсового проекта «Одноковшовые гидравлические экскаваторы» по дисциплине «Машины для земляных работ» для студентов механических специальностей. - Днепропетровск: ДИСИ. 1989. - 64с.

В.Д. Шевченко. Проектирование металлических конструкций строительных и дорожных машин. К: Вища школа, 1982. - 166 с.

А.В. Александров, В.Д, Потапов, Б.П. Державин. Сопротивление материалов. - М: высшая школа, 1995. - 560 с.

6. Гидравлический экскаватор Э0-4321. Техническое описание и инструкция по эксплуатации. - М: Machinoexport. - 222с.

7. А.В. Перекрёстов. Методические указания к выполнениюгидроприводы» для студентов специальности 15.04 заочной формы обучения. - Днепропетровск: ДИСИ, 1990. - 44с.

8. Г.Г. Орлов. Охрана труда в строительстве. - М: Высшая Школа, 1984. - 343с.

9. В.В. Сафонов, Л.М. Диденко. Охрана труда при изготовлении металлических конструкций. - Ленинград: Стройиздат, 1990. - 285с.

10. Б.И. Филиппов. Охрана труда при эксплуатации строительных машин. - М: Высшая школа, 1984. - 247с.

11. В.И. Русин, Г.Г. Орлов, Н.М. Неделько и др. Охрана труда в строительстве. Инженерные решения. - К: Будiвельник, 1990. - 208 с.

12. К.А. Иванов, С.В. Петров. Инструктивные материалы для выполнения расчетов на IBM в лабораторных работах и экономической части дипломных проектов студентам специальностей 15.04 и 21.03. - Днепропетровск: ДИСИ, 1989. - 18с.

13. Спецификации.


Подобные документы

  • Розрахунок тривалості робочого циклу екскаватора, міцності зубів ковша. Уточнення величини коефіцієнта використання землерийної машини в часі. Визначення глибини, сил різання і копання ґрунту ковшем та оптимального терміну заміни його зношених зубів.

    курсовая работа [1,6 M], добавлен 09.11.2014

  • Визначення лінійних розмірів та мас вузлів екскаватора. Сутність дотичних зусиль в нерухомих гідроциліндрах та максимальних навантажень на робоче обладнання. Аналіз продуктивності і собівартості розробки. Вибір привідного двигуна та насосної установки.

    курсовая работа [1,1 M], добавлен 07.01.2014

  • Загальна будова та призначення одноківшового екскаватора. Основні особливості його конструкції. Опис основних вузлів і механізмів - робочого обладнання прямої лопати, драглайна або крана, поворотної платформи з механізмами та пневматичної системи.

    реферат [354,6 K], добавлен 30.03.2014

  • Ознайомлення із будовою та принципом дії механізму повороту екскаватора ЕО-5123 та роликового опорно-поворотного кола. Розгляд конструкції та напрямків застосування механізму пересування машини. Розрахунок економічної ефективності будівельних машин.

    реферат [5,1 M], добавлен 04.09.2010

  • Розрахунок річних режимів роботи машини. Визначення величини простоїв через організаційні (непередбачені) причини. Розрахунок річної кількості і трудомісткості робіт технічного обслуговування та ремонту. Види стаціонарних і пересувних засобів ремонту.

    курсовая работа [159,7 K], добавлен 01.04.2009

  • Конструктивні особливості, загальна будова та технічні характеристики екскаватора, його робочий цикл та обладнання. Поворотна платформа з механізмами. Лебідка підйому стріли. Ходовий та поворотний механізм. Охорона праці при роботі в екскаваторі.

    дипломная работа [645,3 K], добавлен 01.03.2014

  • Схема роботи екскаваторів з обладнанням зворотної та прямої лопати. Навантажувальне устаткування екскаватора, схема забою при роботі навантажувачем. Обладнання та схема роботи устаткування грейфера. Можливі несправності та способи їхнього усунення.

    реферат [3,1 M], добавлен 10.09.2010

  • Конструкції й технології виробництва генераторів вітчизняних та закордонних автомобілів. Розрахунок затрат на діагностику та технічне обслуговування генераторної установки машини. Основні розміри статора. Розрахунок магнітного ланцюга генератора.

    дипломная работа [2,1 M], добавлен 13.06.2014

  • Розрахунок параметрів стрічкового конвеєра з безперервним рухом, який використовується у КОПі для транспортування комплектів білизни. Опис пральної машини HS 235. Охорона праці при виконанні робіт на стрічковому конвеєрі та при роботі з обладнанням.

    курсовая работа [244,6 K], добавлен 12.01.2012

  • Характеристика етапів монтажу робочого обладнання екскаватора, який призначений для механізації земляних і навантажувальних робіт. Особливості підготовки та порядку роботи, регулювання й налагодження. Вимірювання параметрів і перевірка технічного стану.

    реферат [5,0 M], добавлен 09.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.