Параметры и силы, влияющие на вагон при движении
Определение собственных частот колебаний вагона. Расчет параметров гасителей. Проверка рессорного подвешивания на отсутствие "валкости". Расчет динамических боковых и рамных сил при вписывании вагона в кривых участках пути. Расчет запасов устойчивости.
Рубрика | Транспорт |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 04.01.2011 |
Размер файла | 74,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Московский Государственный институт путей сообщения
(МИИТ)
Воронежский филиал
Контрольная работа
по дисциплине: «Динамика вагонов»
Воронеж 2010
СОДЕРЖАНИЕ
Часть 1
1. Определение собственных частот колебаний вагона
2. Расчет параметров гасителей колебаний
3. Проверка рессорного подвешивания на отсутствие «валкости»
4. Составление дифференциального уравнения вынужденных колебаний подпрыгивания вагона и нахождение аналитического выражения описывающего процесс вынужденных колебаний подпрыгивания вагона
Часть 2
1. Расчет динамических боковых и рамных сил при вписывании вагона в кривых участках пути
2. Расчет наибольших боковых и рамных сил возникающих при извилистом движении вагона в прямых участках пути и при выходе его в кривую
3. Расчет наибольших сил инерции необрессоренных масс вагона при проходе колесом стыка и движении колеса с ползунами на поверхности катания
Часть 3
1. Расчет запасов устойчивости вагона и устойчивости сдвигу рельсошпальной решетки и от схода колес вагона с рельса при действии продольных сил в поезде
Исходные данные
Тип вагона |
Хоппер грузоподъемностью 50 т |
|
Тара вагона Gтар, т |
21 |
|
Грузоподъемность Gгр, т |
50 |
|
База вагона L, м |
5,081 |
|
Длинна вагона Lв, м |
10,03 |
|
Боковая поверхность кузова вагона (площадь ветрового «паруса») F, м |
25 |
|
Высота центра ветровой поверхности кузова относительно центра колеса hв, м |
1,87 |
|
Условное обозначение и тип тележки |
1 |
|
База тележки lт, |
1,8 |
|
Вес тележки Gтел, Н |
45,70 |
|
Вес необрессоренных частей, приходящихся на колесо q, Н |
9,75 |
|
Наибольший прогиб рессорного комплекта с1, кН/м |
10000 |
|
Полярный момент инерции тележки, относительно вертикальной оси, проходящей через центр I0, Н*м*с2 |
0,595*105 |
|
Тип гасителя колебаний |
Fгас=-FтрsignZ |
|
Использование грузоподъемности вагона , % |
0 |
|
Высота центра тяжести кузова с грузом над уровнем рессорного подвешивания hц, м |
1.1 |
|
Момент инерции вагона с грузом относительно оси, проходящей в плоскости верха рессор и направленной: а) параллельно оси пути Ix, Н*м*с2* 104 б) перпендикулярно оси пути Iy, Н*м*с2*104 |
5.9 14.9 |
|
Скорость движения вагона v, км/ч |
50 |
|
Длина периода неровности пути lн, см |
1250 |
|
Радиус круговой кривой R, м |
800 |
|
Длина переходной кривой lн, м |
75 |
|
Амплитуда неровностей пути h, см |
0.95 |
|
Угол, образуемый концами рельсов в стыке при перекатывании колеса через стык , рад |
0,021 |
|
Длина ползуна на колесе а, мм |
22 |
|
Масса пути, взаимодействующая с колесом при ударе ползуна m, Н*с/м*103 |
0,09 |
|
Боковая жесткость пути сп, 106 H/м |
28,9 |
|
Величина сжимающего продольного усилия в поезде S, кН |
200 |
|
Разность высот автосцепок у соседних вагонов hа, мм |
100 |
ЧАСТЬ 1
1. Определение собственных частот колебаний вагона
Круговая частота собственных колебаний вагона определяем по формуле:
(1)
где g = 9, 81 м/с2 - ускорение свободного падения;
fст - статический прогиб рессор.
Статический прогиб рессор определяем по формуле:
(2)
где G - вес кузова вагона;
с1 - жесткость одного рессорного комплекта.
Вес кузова вагона определяем по формуле:
где Gтар - тара вагона;
Gгр - грузоподъемность вагона;
- доля использования грузоподъемности вагона;
Gтел - вес тележки.
G = 210000+0*50-2*45,70 = 209908,6 Н
fст = 209908,6/4*1000000 = 0,052 м
(3)
Тогда период колебаний подпрыгивания будет равен:
(4)
Угловую частоту собственных колебаний галопирования кузова вагона находим по формуле:
(5)
где l1 +l2 = L - база вагона;
h - высота центра тяжести вагона с грузом над уровнем рессорного подвешивания
Iy - момент инерции вагона с грузом относительно оси, проходящей в плоскости верха рессор и направленной перпендикулярно оси пути.
Тогда
(6)
Из формулы 7 следует, что чем меньше жесткость рессорного подвешивания с1, чем больше момент инерции кузова Iy и выше центр тяжести h, тем меньше частота собственных колебаний галопирования гал и тем больше период галопирования Tгал.
Колебания боковой качки могут быть рассмотрены с помощью той же схемы, приняв в ней вместо l1 и l2 величины b1 и b2 и вместо момента инерции кузова вагона Iy (относительно оси y) - момент инерции кузова вагона относительно оси x - Ix
Тогда период колебаний будет равен
Линейные частоты колебаний кузова определяются по формуле:
Тогда
Следовательно, чем больше величина частоты, тем больше плавность хода вагона.
2. Расчет параметров гасителей колебаний
Задан гаситель с постоянной силой трения
где Nтр - нормальная сила (нажатие) в трущейся паре гасителя;
- коэффициент трения частей пары.
3. Проверка рессорного подвешивания на отсутствие «валкости»
Для определения высоты метоцентра рассмотрим вагон, вес кузова которого G и жесткость рессоры с. Тогда, реакции рессорных комплектов при наклоне кузова на угол составят:
Момент реакции рессор относительно точки О1
Заменим действие силы R1 и R2 их равнодействующей R, а точку пересечения равнодействующей в наклонной осью вагона назовем метацентром вагона. Момент равнодействующей R относительно точки O1
где hМ - высота метацентра от пола вагона.
Поскольку угол мал, то tg0, т.е. M0=RhM, где R = R1 + R2 = Q, то приравнивая момент силы R1 и R2 моменту от их равнодействующей R, получим hMG = 2b2c, отсюда
где fст - статический прогиб рессорного подвешивания вагона;
b - половина базы тележки.
Высота метацентра выше центра тяжести вагона более чем на 2 м, следовательно вагон устойчив.
4. Составление дифференциального уравнения вынужденных колебаний подпрыгивания вагона и нахождение аналитического выражения описывающего процесс вынужденных колебаний подпрыгивания вагона
Решение дифференциального уравнения = 2/Т является аналитическим выражением процесса вынужденных колебаний подпрыгивания вагона при движении его по регулярным неровностям вида z = hcost.
Это решение имеет вид:
где - скорость движения вагона;
lн - длинна периода неровностей;
2h - высота неровностей;
- круговая частота собственных колебаний
Для колеса вагона номер i возмущение функции имеет вид:
где li - расстояние от первого до i-го колеса.
Амплитуда вынужденных колебаний подпрыгивания кузова вагона будет иметь вид:
Для заданного вагона
Аналитическое выражение описывающее процесс вынужденных колебаний будет иметь вид:
Для построения графика определяем зависимость z от t
При t=1 сек
Для других значений t
ЧАСТЬ II
1. Расчет динамических боковых и рамных сил при вписывании вагона в кривых участках пути
Наибольшие боковые силы возникают тогда, когда при движении вагона наибольшее допустимое непогашенное ускорение на вагон достигает 0,7 м/с2. Это возможно при минимально допустимом для этой кривой возвышении наружного рельса. Его можно определить используя формулу:
Величина действующей на одну тележку поперечной горизонтальной силы:
где m - масса вагона;
анет - непогашенное поперечное ускорение;
Hв - сила ветра, действующая на вагон и направленная поперек пути
Принимая aнет = 0,8 м/с2, получим
При действии на вагон продольных сил S, которые могут возникнуть, например при рекуперативном напряжении на шкворень тележки действуют дополнительная сила Hторм которая приближенно равна:
Наибольший угол можно определить по формуле:
Общее усилие на шкворень в этом случае
где S - продольное усилие в поезде;
2k - расстояние между клиновыми отверстиями автосцепок.
Поскольку, в своем движении по кривой тележка непрерывно вращается вокруг полюса поворота, то образующийся от силы H0брт момент относительно точки О уравновешивается направляющим усилием Y (давление гребня набегающего колеса первой оси тележки на боковую поверхность) поперечными силами трения колес по рельсам.
где P - вертикальная нагрузка, передаваемая колесом рельсу;
- коэффициент трения колесом по рельсу (принимаем = 0,25).
Уравнение проекций этих сил имеет вид:
Положение центра поворота в общем случае находим методом попыток. Для двухосной тележки по графику [2] определяем расстояние от шкворня до точки О в зависимости от отношения . Из рисунка 4 видно, что
где s1 = 1,6 м - расстояние между осями рельсов;
lТ - база тележки (180 см).
Определим направляющее усилие Y
Боковая сила определяется из уравнения
а рамная сила
где
2. Расчет наибольших боковых и рамных сил возникающих при извилистом движении вагона в прямых участках пути и при выходе его в кривую
Наибольшую величину боковой силы Y при извилистом движении в прямом участке определяют по формуле:
где =40 мм - зазор между рабочими гребнями колес и рельсами;
J0 = 0,595*104 - полярный момент инерции тележки относительно вертикальной оси проходящей через центр;
n = 1/20 - наклон образующей конуса и оси;
Сn = 19,1*106 кгс/м - боковая жесткость пути;
= 0,25 - коэффициент трения поверхности обода по рельсу.
Рамная сила:
Определим боковую силу при входе вагона в кривые участки пути
где
Параметр переходной кривой Cпер следует рассчитывать по заданному радиусу R круговой кривой и l0 - длине переходной кривой и до ближайшего числа кратного 5000 м2
Рамная сила
3. Расчет наибольших сил инерции необрессореных масс вагона при проходе колесом стыка и движении колеса с ползунами на поверхности катания
Наибольшая величина силы инерции необрессореных масс вагона рассчитывается по формуле:
где vk - cкорость удара колеса о рельс;
Cк = 5*105 кгс/см - контактная жесткость;
mn = 100 кгс/g - масса пути.
Необходимо предварительно определить скорость удара колес по рельсу. Она равна при движении колес с ползуном
При прохождении стыка, в котором рельсы при прогибе образуют угол
Часть III
Расчеты запасов устойчивости вагона и устойчивости сдвигу рельсошпальной решетки и от схода колес вагона с рельса при действии продольных сил в поезде
Для расчета устойчивости движения колес по рельсу следует определить величины нагрузок, передаваемых на шейки колесной пары P1 и Р2.
Кроме статической нагрузки на шейке колесной пары передаются усилия вызванные колебаниями надрессорного строения. Наиболее выгодным положением с точки зрения устойчивости колеса на рельс будет случай, когда в целом колесная пара разгружается колебаниями галопирования и подпрыгивания, а в колебаниях боковой качки обезгружено колесо, набегающее на наружный рельс кривой.
Если общий динамический коэффициент колебаний надрессорного строения равен KДО = 0,277, в боковой качки Кбк = 0,09
где q = 975 кгс - необрессоренный вес, приходящийся на одно колесо;
PСТ - нагрузка от колеса на рельс.
Кроме того, за счет действия непогашенного ускорения и ветровой нагрузки произойдет перегрузка шейки колеса идущего по наружной грани нити и разгрузка шейки колеса, идущего по внутренней нитке. Если центр тяжести кузова находится на hц от головки рельса, а центр ветровой поверхности на высоте hв от головки рельса, то момент опрокидывающих сил будет равен:
Момент удерживающих сил
где b - расстояние между серединами шеек колесной пары (203,6 см)
P1 - величина нагрузки колеса, идущего по наружному рельсу, или величина разгрузки колеса, идущего по внутреннему рельсу
При разности высот автосцепок у соседних вагонов ha=75 мм и при действии на вагон продольных сил S происходит разгрузка тележки, которая равна
Если разница в высоте автосцепок соседних вагонов равна hа, то
где Lв - длинна вагона
k - 6,365 м - половина расстояния между клиновыми отверстиями автосцепок
Так как разгрузки Р1 и Р2 распределяются на четыре колеса тележки, то
Зная Р1, Р2 и Yр можно определить коэффициент запаса устойчивости колесной пары по вползанию гребня колеса на рельс
С учетом размеров колесной пары b1 = 0,228 м; b2 = 1,808 м; R = 0,475 м; r = 0,075 м
Определение устойчивости пути поперечному сдвигу.
Для определения устойчивости рельсовой решетки поперечному сдвигу при заданных расчетных данных следует применять условие , где
Условие 52279 т 210000т соблюдается. Рельсовая решетка устойчива поперечному сдвигу.
Подобные документы
Размещение ходовых частей под консольной частью вагона и вписывание вагона в габарит 1-Т. Расчет вертикальной жёсткости рессорного подвешивания и оси колесной пары вероятностным методом. Проверка кинематических параметров автосцепного оборудования.
дипломная работа [1,6 M], добавлен 06.02.2013Конструкция крытого вагона модели 11–066, расчет геометрических параметров сечения. Предварительный анализ прочности вагона на вертикальные нагрузки без учета других видов нагрузок. Особенности применения метода сил для расчета вагона на прочность.
курсовая работа [667,7 K], добавлен 18.04.2014Разработка новой конструкции грузового вагона со сниженной тарой вагона и повышенной грузоподъемностью. Вписывание вагона в габарит подвижного состава. Определение вертикальных нагрузок, расчет устойчивости движения колесной пары по рельсовой колее.
курсовая работа [180,4 K], добавлен 06.11.2011Выбор параметров универсального крытого вагона, эффективность проекта. Проверка вписывания вагона в габарит 1-ВМ. Расчёт оси колёсной пары условным методом. Расчёт подшипников качения на долговечность. Проверка устойчивости вагона против схода с рельсов.
курсовая работа [1,3 M], добавлен 18.07.2014Оценка влияния величины загрузки кузова на изменение частоты свободных колебаний вагона как динамической системы. Расчет характеристик жесткости связей колесной пары с конструкцией тележки. Вынужденные колебания вагона с вязким трением в подвешивании.
контрольная работа [2,1 M], добавлен 14.02.2012Расчет кузова вагона на прочность. Расчетная схема и основные силы, действующие на кузов. Материалы и допускаемые напряжения. Определение основных размеров колесной пары. Расчет оси и колеса. Выбор буксовых подшипников. Вписывание вагона в габарит.
курсовая работа [4,2 M], добавлен 26.07.2013Выбор основных технико-экономических параметров вагона. Определение горизонтальных размеров строительного очертания вагона. Построение габаритной горизонтальной рамки. Устойчивость колесной пары против схода с рельсов. Расчет подшипника на долговечность.
курсовая работа [423,2 K], добавлен 10.06.2012Выбор основных параметров тележки 18-100 для вагона самосвала. Проверка вписывания тележки в габарит 02-ВМ. Расчет на прочность надрессорной балки грузового вагона. Вычисление оси колесной пары вероятностным методом. Себестоимость изготовления тележки.
дипломная работа [2,2 M], добавлен 04.10.2012Выбор параметров хоппера для перевозки цемента в ходе проектирования. Анализ конструкции грузового вагона, расчет колесной пары с осевой нагрузкой в 245 кН. Проверка вписывания вагона в габарит 1-Т согласно требованиям эксплуатации. Экономический расчет.
курсовая работа [1,3 M], добавлен 03.05.2021Технико-эксплуатационные параметры колесного фронтального погрузчика. Определение оптимальной схемы и эффективности загрузки вагона. Расчет коэффициента использования грузоподъемности и площади пола вагона. Подбор погрузчика по грузоподъёмности.
контрольная работа [515,6 K], добавлен 05.04.2011