Тюнинг автомобиля

Понятие и содержание тюнинга автомобилей, его разновидности, стадии и особенности реализации, история возникновения и развития. Цели и особенности доводки легковых автомобилей. Разработка курса "современные направления в тюнинге легковых автомобилей".

Рубрика Транспорт
Вид дипломная работа
Язык русский
Дата добавления 17.04.2010
Размер файла 6,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рабочий объем. Один из основных вариантов - увеличение рабочего объема цилиндров настолько, на сколько это возможно. В разумных пределах, конечно. Для дорожного автомобиля этот подход наиболее правильный, потому что, увеличив объем, при этом не изменяя распредвал, т.е. оставив моментную кривую в том же диапазоне оборотов, в котором она и была, мы не заставим водителя переучиваться манере вождения. А на выходе получим искомое - более динамичный автомобиль.

Рабочий объем можно увеличить двумя способами - заменив стандартный коленвал на коленвал с большим эксцентриситетом или расточив цилиндры под поршни большего диаметра. Логично поинтересоваться - что более эффективно и что менее затратно. Ведь что такое объем двигателя: это есть произведение площади поршня на его ход. Увеличив, условно говоря, в два раза диаметр, мы в четыре раза увеличиваем площадь. Потому что в квадрате. А увеличив в два раза ход, мы лишь в два раза увеличиваем объем. Вот такая математика. Теперь об экономике вопроса. На первый взгляд кажется, что замена кривошипного механизма менее затратна, нежели расточка блока в больший размер. Нюанс в том, что коленвал с большим эксцентриситетом еще найти надо. Делают их на заказ редкие фирмы, производство дорогостоящее и сложное. Разумно в этом случае уповать на стандартизацию производителя. Поэтому логично купить серийное изделие, в нашем случае коленвал, и уже под него подбирать поршневую группу. Конечно, понадобятся другие поршни и шатуны. Это сложно, но подобрать можно. Вопрос в другом. Конструктивно такой ход закладывает некие дополнительные механические потери в работе двигателя, виновниками которых станут более короткие шатуны. В чем их минус и почему? Чем короче шатун, тем с большим углом он «переламывается», тем с большим усилием он прижимает поршень к стенке цилиндра. А чем больше усилие прижима, при том же коэффициенте трения, тем больше величина сопротивления движения. И этот фактор следует рассматривать не только с точки зрения механических потерь, но и с точки зрения надежности, т. к. короткие шатуны подвергаются большим нагрузкам. В тюнинге, как правило, такими «мелочами» пренебрегают. Очевидный выигрыш в плане минимизации затрат - увеличение рабочего объема за счет увеличения диаметра цилиндра. Как правило, все двигатели имеют достаточно толстую стенку цилиндра, запас по прочности. Если, скажем, на два миллиметра увеличить диаметр, то можно получить дополнительный объем. При толщине стенки 7-8 мм одним миллиметром можно пожертвовать. И достаточно часто можно обойтись серийными поршнями. Ведь все поршни круглые. И механика всех двигателей диктует примерно одни и те же пропорции. Правда, однозначно заявлять, что увеличение диаметра цилиндров дешевле, нежели замена коленчатого вала, нельзя. Каждый из этих двух способов разумно рассматривать в ракурсе специфики отдельно взятого двигателя.

Семейство турбированных двигателей интересно для тюнинга своими конструктивными особенностями, серьезно упрощающими настройку мотора. В нашем случае можно получить больший момент, опять-таки не трогая ни моментную кривую, ни объем и даже не разбирая двигатель, лишь незначительно изменив величину наддува. В чем особенность конструкции наддувных двигателей? Прежде всего, в особенностях управления компрессором, будь то турбина или механический компрессор. Привод и первого, и второго зависит от количества оборотов двигателя. Чем больше оборотов, тем выше давление. Но увеличивать его можно только до определенной величины. За этим следит некий блок управления, стравливая лишнее давление. Изменив характеристику, т.е. слегка подняв планку этого самого стравливания, мы увеличим давление, с которым топливовоздушная смесь «забивается» в объем цилиндра. И «забивает» реально больший объем, нежели в случае «щадящих» параметров у серийного двигателя. Работы по увеличению давления не безболезненны - у серийных двигателей есть некий запас по механическим и тепловым нагрузкам, по детонационной стойкости. В разумных пределах увеличить наддув возможно. Но если перешагнуть, то мы или сломаем двигатель, или придется выполнить дополнительные меры - увеличение объема камеры сгорания, другая система охлаждения, дополнительный радиатор, дополнительные дыры, воздухозаборники, промежуточный охладитель воздуха. Наверное придется чугунный коленчатый вал заменить на стальной, подобрать более прочные поршни и обеспечить им охлаждение.

Изменения газодинамики. Суть понятна - для того чтобы получить больший момент, надо увеличить заряд топливовоздушной смеси. Для этого нужно убрать некие дефекты серийной сборки - сделать впускные и выпускные каналы более гладкими и ровными, убрать в камере сгорания непродуваемые зоны, модифицировать сами клапаны… Работа эта сложная, но гарантии не дает. Аэродинамика - вещь непростая. Математически описать процессы, проистекающие в двигателе, сложно. Порой результат прямо противоположный ожидаемому или никакой. Ради справедливости надо сказать, что в аэродинамике есть резервы. Но извлечь их гарантированно можно, только выполнив ряд экспериментов, продувая пластилиновые макеты каналов на специальной установке, подбирая форму в соответствии с требованиями новых условий работы двигателя.

Способ 2. Переносим момент в зону высоких оборотов.

Что такое мощность? Это произведение крутящего момента на скорость вращения двигателя. Таким образом, сместив стандартную характеристику момента в зону высоких оборотов, мы получим искомую прибавку мощности. Минусы, прежде всего, те, о которых мы говорили выше - на низах мотор плохо «едет». Любой газораспределительный механизм (без механизма изменяемых фаз) позволяет хорошо наполнять цилиндры только в своем диапазоне оборотов. И как только мы перемещаем вращающий момент в область более высоких оборотов, мы тут же потеряем его внизу. На низких он будет плохо продуваться, а для обычного дорожного автомобиля это плохо - давим на газ, а он не едет. Водитель должен держать стрелку в зоне высоких оборотов. Трогаться с места - сцепление жечь. Поэтому все серийные двигатели имеют максимальный момент где-то в области разумных 2-3 тысяч, чтобы внизу ничего не провалилось.

Конечно, современные двигатели с изменяемыми фазами газораспределения такими провалами не страдают. На низких оборотах с помощью некоего механизма фазы становятся узкими, перекрытие маленьким, и на низких оборотах происходит хорошее наполнение цилиндров. Как только этот двигатель забирается в зону высоких оборотов, переключается в другой режим механизм газораспределения, фазы расширяются, появляется большая фаза перекрытия, цилиндры начинают хорошо продуваться на высоких оборотах, и мы имеем хороший вращающий момент.

Итак, если у нас традиционный мотор (без изменяемых фаз), мы можем отказаться от низких оборотов, поставив широкофазный распредвал в двигатель, тем самым позволяем иметь хорошее наполнение в зоне высоких оборотов. Правда, маловероятно, что мы получим большой вращающий момент, скорее всего, мы его по абсолютной величине получим такой же, как у серийного, только в зоне высоких оборотов. Но произведение его на обороты, на которых он достигается, будет существенно больше, чем у серийного мотора, следовательно, и мощность выше. Двигатель будет иметь ярко выраженный спортивный характер. Использовать таким образом полученную мощность можно, только подогнав передаточные числа в трансмиссии. Это тот путь, который применяется в спорте.

Тюнинг выпускных систем. Выхлопная система стандартного автомобиля служит для отвода отработавших газов из камеры сгорания мотора. Попутно решается задача глушения звука выхлопа. Движение отработавших газов в выпускной трубе представляет собой колебательный процесс, который может быть согласован экспериментально с колебательным процессом движения горючей смеси во всасывающем тракте с таким расчетом, чтобы улучшить очистку цилиндра от отработавших газов и его наполнение свежей смесью. В выпускной системе ДВС присутствуют два процесса. Первый - сдемпфированное в той или иной степени истечение газа по трубам. Второй - распространение ударных волн (звука) в газовой среде. Оба процесса оказывают влияние на коэффициент наполнения цилиндров. С первым всё просто и понятно. Большое сопротивление потоку газов (заткните выхлопную трубу!) вызовет снижение качества продувки и потерю мощности. Совершенно понятно, что чем короче и большего диаметра труба, тем меньше её сопротивление потоку. В реальной жизни для полуторалитрового мотора, работающего на оборотах не выше 8000 достаточно диаметра 45-50 мм при длине 3-3,5 метра. Дальнейшее увеличение диаметра не вызывает существенного уменьшения динамического сопротивления. Если в выпускной системе построить на некотором расстоянии от клапана отражатель, который называют резонатором, то на определённых оборотах улучшится продувка цилиндров, что поднимет вращающий момент двигателя. Это явление называется «настроенный выхлоп» и используется для корректировки моментной кривой. Если задача стоит повысить мощность, как для спортивного мотора, то резонатор настраивают на падающий после максимума участок. Таким образом, продлевают момент на большие обороты. Мощность, как известно, произведение угловой скорости на вращающий момент. Если мы хотим получить более «тяговитый» мотор на низах, то настраиваем на растущий участок до максимума. Что касается шума, то этим занимается глушитель, расположенный как можно дальше, для того, чтобы снизить его влияние на резонансные свойства. Задача глушителя - только погасить звук многократным отражением в лабиринте или направить его в звукопоглощающий материал (стекловату, например), оказав как можно меньшее сопротивление потоку газов. Если обратиться к зарубежной практике, то выясняется, что специалисты в области выхлопных систем могут получить прибавку в мощности более 12-15 лошадиных сил. Эта солидная прибавка мощности получается заменой всех частей выхлопной системы («штаны», катализатор, резонатор, оконечная часть).

Далеко не последнее место среди наиболее тюнингуемых деталей занимает система выпуска отработавших газов. Является ли основной целью доводки автомобиля только украшение внешнего вида или же, наоборот, только улучшение мощностных и ходовых характеристик - в любом случае владелец сталкивается с тем, что надо также менять и выхлоп: в одном случае для того, что бы мотор, получивший дополнительную порцию лошадей, не задыхался в стандартной выхлопной системе, в другом случае только для лучшего «вида сзади», в третьем для получения хорошего звука из глушителя, что тоже является, в своём роде, украшением. А в большинстве случаев и первое, и второе, и третье вместе взятое. Для тех, кому внешний образ своего автомобиля без красивых выхлопных труб, благородно выглядывающих из под бампера, кажется незаконченным, а вкладываться в замену всего глушителя видится нецелесообразным, предлагаются различные насадки глушителя из нержавеющей полированной стали любого типа: круглые, овальные, квадратные, сдвоенные и т.д. и даже с подсветкой. Можно подрезать бампер соответственно форме насадок, можно развести выхлопной тракт так, чтобы насадки стояли с обоих сторон бампера, а можно и вывести 2-3-4-5-6 насадок по центру. Покупателю нужно определиться в предпочтениях - хочет ли он вороненую сталь, никелировку или тусклый белый металл, прямые, загнутые вверх или вниз трубы, с вылетом или без. При желании поменять заднюю часть глушителя с целью не только облагородить внешний вид автомобиля, но и получить благородный рык, устанавливаются прямоточные глушители, изготовленные из нержавеющей стали.

Если же кто-то после замены глушителя рассчитывает получить заметное увеличение мощностных характеристик, то в таком случае требуется более серьёзное вмешательство в стандартную систему выпуска. Одной заменой катализатора на пламегаситель (пламегаситель прямоточного типа - резонатор, способный выдерживать максимальные температурные и механические нагрузки, устанавливаемый в передней части выхлопного тракта и, как правило, вместо катализатора) и установкой прямоточного глушителя здесь не обойтись. Необходимо менять полностью весь выпускной тракт, с установкой настроенного коллектора (паука) и системы выпуска прямоточного типа с увеличенным проходным сечением. Большая часть потерь на выпуске приходится на выпускной коллектор. В спорте и тюнинге штатный заменяют на так называемый «паук» - отличается формой и порядком соединения приемных труб с выпускными окнами.

Подведение итогов: Что вы усвоили на данном уроке? Если непонятно то, что именно?

Занятие окончено. До свидания.

План-конспект занятия по теме: «Чип-тюнинг двигателя»

Тема: чип-тюнинг двигателя

Цели:

a) образовательная - дать начальное представление о чип-тюнинге двигателя;

b) развивающая - развивать внимание, умение анализировать и техническое мышление;

c) воспитательная - воспитывать познавательный интерес.

Оснащение урока:

Методическое оснащение: план-конспект урока по теме «Чип-тюнинг двигателя».

Дидактическое оснащение: схема системы управления впрыском топлива.

Материально-техническое оснащение: компьютер, проектор.

Структура занятия:

1. Орг. момент (2 мин.).

2. Сообщение темы и цели занятия. Мотивация учебной деятельности (5 мин.).

3. Изложение нового материала (75 мин.).

4. Подведение итогов (8 мин.).

Ход урока:

Организационный момент: преподаватель приветствует учащихся, проверяет посещаемость.

Постановка темы и цели занятия перед учащимися:

Педагог: Темой нашего занятия сегодня является «Чип-тюнинг двигателя». Целью занятия является дать начальное представление о способах тюнинга системы впрыска двигателя. (Педагог даёт время чтобы учащиеся записали тему).

Актуализация знаний: преподаватель задает вопрос: Как вы думаете в чем заключается суть чип-тюнинга? (В изменении программы управления впрыском топлива.)

Изложение нового материала:

Чип-тюнинг - это настройка режимов работы электронных контроллеров путем коррекции внутренних управляющих программ (firmware). В основном понятие применяется для обозначения коррекции программы блока управления двигателем автомобиля с целью увеличения мощности. Кроме указанного к чип-тюнингу иногда относят и применение дополнительных электронных модулей для решения схожих задач.

Основные задачи чип-тюнинга.

Как уже упоминалось выше, наиболее часто преследуемая цель - повышение мощности. Реже к чип-тюнингу обращаются для снижения расхода топлива. Еще реже - для коррекции программы блока управления двигателем в связи с изменением режима работы, параметров или комплектации механических и / или электронных компонентов двигателя автомобиля. Например, это может быть замена форсунок на другие, с отличающейся производительностью, установка нагнетателя воздуха, переход на другой вид топлива и др.

Процесс чип-тюнинга. Все работы по чип-тюнингу можно условно разделить на три этапа:

1) Считывание оригинальной программы (прошивки) из контроллера (блока управления).

2) Коррекция считанной прошивки и коррекция контрольных сумм в ней.

3) Запись откорректированной прошивки в контроллер.

Первый и последний этапы процессуально схожи между собой и могут выполняться несколькими разными способами. Выбор способа зависит от типа и возможностей блока управления, который подвергается тюнингу, а также от технических возможностей специалиста. Наиболее популярна возможность считывания / записи программы через диагностический разъем автомобиля, не доставая самого блока управления. Эта возможность поддерживается большинством блоков управления двигателем начиная примерно с 1997 г., когда большинство автопроизводителей начало массово внедрять в контроллерах применение электрически перепрограммируемой флэш-памяти. Для чтения программы через диагностический разъем используются специальные аппаратные интерфейсы и программное обеспечение, обычно достаточно простые в использовании и не требующие от персонала специальных знаний, что важно для распространения чип-тюнинга.

В большинстве контроллеров, выпущенных до указанного срока, программа хранится в микросхемах ПЗУ с ультрафиолетовым стиранием, а для ее считывания / записи требуется демонтаж микросхемы памяти (обычно выпаиванием) и программатор для микросхем данного типа. Данный способ предполагает наличие достаточно высокой квалификации у персонала.

Еще одним способом чтения / записи программы является достаточно молодой интерфейс BDM (on-Board Debug Mode - режим внутрисхемной отладки), предложенный фирмой Motorola и использующийся в режиме внутрисхемного программатора. Данный интерфейс присутствует, естественно, только в контроллерах, собранных на базе процессора Motorola и предполагает наличие специального оборудования и навыков у персонала.

В отдельных случаях для перезаписи программ, так же используется Boot-режим процессора, несколько сходный с BDM.

Редактирование программ контроллеров - это ключевой момент чип-тюнинга, как бизнеса. Подавляющее большинство тюнинговых фирм сами не редактируют считанные файлы, а отправляют их в фирмы, специализирующиеся именно на их редакции. Именно от того, насколько хорошо специалист, занимающийся редакцией программы, понимает работу мотора, знает его резервы и слабые места, зависит результат чип-тюнинга. Для редактирования программ контроллеров обычно применяется специальное программное обеспечение, позволяющее найти и представить в графическом виде таблицы калибровочных данных. Обычно одновременно с редактированием калибровочных данных пересчитываются контрольные суммы программы, использующиеся для контроля ее целостности. Реже для этого применяют специальные калькуляторы контрольных сумм. Следует отметить, что программное обеспечение позволяющее производить визуальный поиск калибровочных таблиц, имеет ряд существенных недостатков:

1. Невозможность поиска калибровочных констант.

2. Вероятность ошибки в идентификации калибровочных таблиц (например, таблица, внешне похожая на угол опережения зажигания (УОЗ), совсем не обязательно отвечает именно за УОЗ).

По указанным выше причинам на рынке ПО имеются альтернативные продукты, представляющие собой специализированные редакторы, умеющие в графическом виде отображать только достоверно известные калибровочные константы и таблицы для данной прошивки. Такое ПО содержит базу данных известных прошивок и карт калибровок к ним. Карты калибровок составляются разработчиком ПО, при этом как правило используется реверс-инжиниринг прошивок с целью изучения алгоритмов работы системы управления и поиска необходимых калибровочных данных. Коррекция контрольных сумм прошивок производится в таких редакторах автоматически при сохранении измененной прошивки в файл.

Результаты чип-тюнинга. Если рассматривать чип-тюнинг с точки зрения прибавки мощности, то она на наддувных и атмосферных моторах, безусловно, отличается, так, как при тюнинге используются разные резервы. Если при настройке режимов атмосферного мотора за счет коррекции характеристик зажигания и топливоподачи можно добиться прибавки крутящего момента и мощности в пределах, редко превышающих 5-7%, то на наддувных моторах прибавка достигается в основном за счет увеличения давления наддува и может составлять 20-30% от начального значения. Так же после коррекции программы контроллера, направленной на повышение мощности, обычно слегка уменьшается расход топлива, вопреки мнению, сложившемуся в результате деятельности малограмотных тюнингеров.

Влияние на ресурс двигателя.

Чип-тюнинг - не просто увеличение мощности и крутящего момента, а, как мы уже говорили, повышение КПД, достигаемое за счет снижения внутренних потерь, которые и вызывают износ движущихся частей двигателя. Однако надо учитывать, что после чип-тюнинга мотор становится более требовательным к качеству топлива и исправности всех компонентов топливной системы. Особенно это относится к турбированным и турбодизельным двигателям. Поэтому мы настоятельно рекомендуем всем, кто решил «чиповать» свой автомобиль, привести его в порядок и своевременно производить весь комплекс работ по обслуживанию, рекомендованный производителем.

Реальные возможности чип-тюнинга.

Те, кто занимается чип-тюнингом (chip-tuning), обычно предлагают несколько вариантов доработки двигателя в целях улучшения конкретных характеристик - увеличения мощности и крутящего момента (на низких или высоких оборотах), легкого запуска двигателя в морозную погоду, снижения расхода топлива.

Например, мощность атмосферного бензинового двигателя можно увеличить на 8-12%, турбированного - на 20-25%. «Экономичный» чип снижает расход топлива на 5-15%. В случае с турбированными дизелями мощность удается повысить на 25-30%, а крутящий момент - на 20-25%. Стоит отметить, что увеличение мощности не всегда приводит к заметному улучшению динамики автомобиля. Как правило, максимальную мощность двигатель выдает на оборотах, близких к максимуму. Но вряд ли кто-то постоянно ездит, раскручивая мотор до 5500-6000 об/мин. Крутящий момент в большой степени влияет на динамические характеристики автомобиля.

Именно при его увеличении, особенно в зоне малых оборотов, двигатель становится более приемистым, т.е. способным быстрее разгонять автомобиль. Чип-тюнинг (chip-tuning) как раз и обеспечивает увеличение крутящего момента и смещение его максимальной величины в сторону низких оборотов.

Сегодня у специалистов по чип-тюнингу (chip-tuning) появилась возможность устанавливать в автомобиль систему выбора программы работы мотора. Ее особенность в том, что водитель может самостоятельно менять характеристики двигателя: нужно «погоняться» - переключил ЭБУ в спортивный режим работы, хочется спокойной, экономичной езды - включил режим «эконом» или «стандарт».

Подведение итогов: Что вы усвоили на данном уроке? Если непонятно то, что именно?

Занятие окончено. До свидания.

План-конспект занятия по теме: «Система подачи закиси азота и турбонаддув»

Тема: система подачи закиси азота и турбо-надув

Цели:

a) образовательная - дать начальное представление о системах подачи закиси азота и турбонаддува;

b) развивающая - развивать умение анализировать и обобщать полученные знания;

c) воспитательная - воспитывать интерес к новым технологиям.

Оснащение урока:

Методическое оснащение: план-конспект урока по теме «система подачи закиси азота и турбонаддув».

Дидактическое оснащение: рисунки системы впрыска закиси азота и турбонаддува.

Материально-техническое оснащение: компьютер, проектор.

Структура занятия:

1. Орг. момент (2 мин.).

2. Сообщение темы и цели занятия. Мотивация учебной деятельности (5 мин.).

3. Изложение нового материала (75 мин.).

4. Подведение итогов (8 мин.).

Ход урока:

Организационный момент: преподаватель приветствует учащихся, проверяет посещаемость.

Постановка темы и цели занятия перед учащимися:

Педагог: Темой нашего занятия сегодня является «система подачи закиси азота и турбонадув». Целью занятия является дать начальное представление о системе подачи закиси азота в двигатель и системе турбонадува. (Педагог даёт время чтобы учащиеся записали тему).

Актуализация знаний: преподаватель задает пару вопросов: Как вы думаете, что такое турбонаддув? (Подача большего объёма воздуха под давлением в цилиндры двигателя, для увеличения мощности.) А в чем суть системы подачи закиси азота? (Закись азота усиливает процесс горения и этим увеличивает мощность двигателя.)

Изложение нового материала:

1. Система подачи закиси азота

Кислород в топливно-воздушной смеси выступает в качестве катализатора. Когда свеча поджигает смесь, смесь расширяется и двигает поршни вниз по цилиндрам. Закись азота усиливает процесс горения - и увеличивает мощность двигателя - изменяя топливно-воздушную смесь тремя разными путями:

1. Закись азота увеличивает количество кислорода в смеси. Впрыскивая ее в двигатель, вы, по сути, добавляете в смесь концентрированный кислород. Ведь закись азота (N2O - вспомним уроки химии) состоит из двух атомов азота и одного атома кислорода. Попав в двигатель, молекулы закиси под действием высоких температур горения смеси распадаются на азот и кислород, и этот самый высвободившийся кислород позволяет бензину сгорать эффективнее. Система закиси азота, грубо говоря, позволяет мотору сжигать большие объемы топлива, поставляя ему большие объемы кислорода, поддерживающего это горение.

2. Закись азота улучшает распыление топлива, то есть процесс, при котором поступающее в двигатель топливо разделяется на множество мельчайших капелек. Это позволяет свечам зажигания быстрее и эффективнее поджигать его. Распыление необходимо, потому что для сжигания топлива оно должно превратиться практически в пар (по плотности, разумеется). Как и любая другая жидкость, чтобы перейти в газообразное состояние, бензин должен испариться. Тепло двигателя и распыление топлива - ключевые моменты в ускорении процесса испарения. За тепло отвечает процесс сгорания, а распыление берет на себя система закиси. Все это создает благоприятные условия для более быстрого испарения бензина и более быстрого сгорания смеси вкупе с увеличенным уровнем содержания кислорода.

3. Системы закиси азота увеличивают плотность топливно-воздушной смеси. При впрыске закиси азота она мгновенно меняет свое состояние с жидкого до состояния очень холодного газа. Пары азота охлаждают всасываемую смесь. А, как известно, более холодная и более плотная смесь лучше горит и производит больше мощности.

Очень важно развеять одно очень распространенное заблуждение о закиси азота: закись - это не топливо и она не увеличивает мощность сама по себе. Закись азота - великолепный способ добавить в двигатель больше кислорода и сжечь таким образом больше бензина, но сама по себе она не горит. Чтобы получить больше мощности, нужно добавить больше топлива. То, как именно вы будете его добавлять, зависит в большей степени от типа системы закиси, которую вы выберете.

Типы систем впрыска закиси азота

Когда вы решите купить систему закиси, вы обнаружите, что существует большой выбор разных типов систем для карбюраторных двигателей и двигателей с электронно управляемым впрыском топлива. Есть множество разновидностей систем впрыска закиси, но в итоге все они сводятся к трем основным: «мокрая», «сухая» и «директ-порт» (direct-port). Рассмотрим их поподробнее.

Сухая система

Сухая система - обычно самый легкий путь оборудовать системой закиси азота двигатель с впрыском топлива (см. рисунок 1.). Сухие системы работают с уже существующей топливной системой, «поставляя» ей необходимое количество топлива. Эта «поставка» идет двумя путями. Первый путь - это «обман» заводской системы впрыска топлива, в результате которого в двигатель начинает попадать большее его количество. В этом случае система закиси позволяет модифицировать настройки вашего автомобильного компьютера, изменяя объем впрыскиваемого бензина. Второй путь - это увеличение давления топлива, поступающего в двигатель через инжекторы, посредством давления закиси азота и управляющего соленоида при активации системы.

Рис. 1. «Сухая» система закиси азота

Мокрая система

Мокрые системы впрыска закиси азота оборудованы собственными топливными компонентами, предназначенными для введения дополнительного количества топлива во впускной коллектор (см. рисунок 2.). Этот тип систем включает отдельный топливный электромагнит и форсунку, которая распыляет топливо туда же, куда и закись азота. В большинстве карбюраторных систем топливо и закись азота вводятся за карбюратором, а в системах с впрыском топлива смесь распыляется до блока дроссельной заслонки. Это позволяет избегать появления детонации и достичь максимальных показателей для этого типа впрыска. Подача может осуществляться из дополнительного бака механически. Есть возможность использовать в качестве дополнительного топлива бензины, спирты и даже газы с более высоким октановым числом.

Рис. 2. «Мокрая» система закиси азота

Директ-порт

И, наконец, существует система директ-порт. Эта система считается самой совершенной. Она впрыскивает смесь топлива и закиси азота непосредственно в цилиндры двигателя (см. рисунок 3.). Обычно в таких системах и закись, и топливо попадают в двигатель через одну общую форсунку. Так как в каждом цилиндре установлены свои, индивидуальные форсунки, система директ-порт оказывается самой точной и дающей наибольшую мощность. Потенциал тюнинга у нее больше, чем у других типов систем закиси, потому что каждая форсунка может быть отрегулирована для более точного контроля за потоком закиси азота и топлива индивидуально к каждому цилиндру.

Недостатком системы директ-порт является сложность ее установки. Сложность заключается в том, что впускной коллектор нужно сверлить и вставлять в него форсунки. Поэтому директ-порт обычно используется на серьезных гоночных автомобилях.

Рис. 3. Система «директ-порт»

Подведем итоги. Закись азота - один из самых популярных способов получения прибавки в мощности для спортивных и околоспортивных автомобилей. Она обычно доступна по цене, проста в установке и дает ощутимый эффект, когда вам нужно, чтобы машина поехала быстрее, и позволяет эксплуатировать машину в нормальном режиме, когда вам хочется неспешной езды.

2. Турбонаддув

Принцип турбонадува был запатентован Альфредом Бюхи в 1911 году в патентном ведомстве США. История развития турбокомпрессоров началась примерно в то же время, что и постройка первых образцов двигателей внутреннего сгорания. В 1885-1896 г. Готлиб Даймлер и Рудольф Дизель проводили исследования в области повышения вырабатываемой мощности и снижения потребления топлива путем сжатия воздуха, нагнетаемого в камеру сгорания. В 1952 г. швейцарский инженер Альфред Бюхи впервые успешно осуществил нагнетание при помощи выхлопных газов, получив при этом увеличение мощности на 40%. Это событие положило начало постепенному развитию и внедрению в жизнь турботехнологий.

Принцип работы основан на использовании энергии отработавших газов. Поток выхлопных газов попадает на крыльчатку турбины (закреплённой на валу), тем самым раскручивая её и находящиеся на одном валу с нею лопасти компрессора, нагнетающего воздух в цилиндры двигателя (см. рисунок 4.).

Рис. 4. Принцип работы системы турбонаддува

Так как при использовании наддува воздух в цилиндры подаётся принудительно (под давлением), а не только за счёт разрежения, создаваемого поршнем (это разрежение способно взять только определённое количество смеси воздуха с топливом), то в двигатель попадает большая смесь воздуха с топливом. Как следствие, при сгорании увеличивается объём сгораемого топлива с воздухом, образовавшийся газ занимает больший объём и соответственно возникает больше давящей силы на поршень.

Как правило, у турбодвигателей меньше удельный эффективный расход топлива (грамм на киловатт-час, г/(кВт·ч)), и выше литровая мощность (мощность, снимаемая с единицы объёма двигателя - кВт/л), что даёт возможность увеличить мощность небольшого мотора без увеличения оборотов двигателя.

Рис. 5. Система охлаждения воздуха

Вследствие увеличения массы воздуха, сжимаемой в цилиндрах, температура в конце такта сжатия заметно увеличивается и возникает вероятность детонации. Поэтому, конструкцией турбодвигателей предусмотрена пониженная степень сжатия, применяются высокооктановые марки топлива, а также в системе предусмотрен промежуточный охладитель надувочного воздуха (интеркулер), представляющий собой радиатор для охлаждения воздуха (см. рисунок 5.).

Уменьшение температуры воздуха требуется также и для того, чтобы плотность его не снижалась вследствие нагрева от сжатия после турбины, иначе эффективность всей системы значительно упадёт. Особенно эффективен турбонаддув у дизельных двигателей тяжёлых грузовиков. Он повышает мощность и крутящий момент при незначительном увеличении расхода топлива. Находит применение турбонаддув с изменяемой геометрией лопаток турбины, в зависимости от режима работы двигателя.

Состав системы. Кроме турбокомпрессора и интеркулера в систему входят: регулировочный клапан (wastegate) (для поддержания заданного давления в системе), перепускной клапан (bypass valve - для отвода наддувочного воздуха обратно во впускные патрубки до турбины в случае закрытия дроссельной заслонки) и / или «стравливающий» клапан (blow-off valve - для сброса наддувочного воздуха в атмосферу в случае закрытия дроссельной заслонки), выпускной коллектор, совместимый с турбокомпрессором, а также герметичные патрубки: воздушные для подачи воздуха во впуск и масляные / тосольные для охлаждения турбокомпрессора.

Подведение итогов: Что вы усвоили на данном уроке? Если непонятно то, что именно?

Занятие окончено. До свидания.

2.6 Методический самоанализ разработанного занятия

Тема: система подачи закиси азота и турбонаддув.

Задачи:

1. Познакомить с конструкцией и принципом работы систем закиси азота и турбонадува.

2. Развивать умение анализировать и обобщать полученные знания.

3. Воспитывать интерес к новым технологиям.

Тип занятия - теоретический. По сводному тематическому планированию данное занятие проводится 16 и 17 в разделе «Тюнинг двигателя» спецкурса «Современные направления в тюнинге легковых автомобилей». Тип урока был определен как занятие сообщения нового материала (лекция, что соответствует методике обучения в СПО и ВПО, месте темы в курсе, содержанию материала и задачам занятия.

При подготовке к занятию были учтены:

§ особенности восприятия теоретического технического материала (применялись наглядные схемы),

§ особенности внимания и его устойчивость (преподаватель применял различные методы - рассказ, беседу, объяснение, демонстрацию, конспектирование, и целесообразно чередовал их),

§ особенности мышления учащихся (преподаватель опирался на наглядный и образный компонент мышления при демонстрации наглядных пособий, логику мышления - при объяснении принципов работы, абстрактное и пространственное мышление - объяснение устройства систем).

Структура занятия (орг. момент - актуализация знаний - сообщение нового материала - подведение итогов) соответствует типу занятия, его задачам и требованиям программы к содержанию материала.

При изложении материала преподаватель учитывал принципы наглядности, активности, посильности и научности, последовательности изложения. Методы применялись разнообразные, соответствующие задачам урока, типу урока, возрастным особенностям учащихся. Содержание тесно связано с жизнью и практикой, несмотря на его достаточно теоретическое обоснование.

Преподаватель обращал особое внимание на формирование новых понятий, актуализацию имеющихся знаний учащихся в области устройства автомобиля, целесообразно применял прием связи понятия с изученными ранее.

На занятии применялись как изобразительные наглядные пособия (рисунки и схемы) так и технические средства обучения (проектор, компьютер).

Темп, дикция и эмоциональность преподавателя были на достаточном уровне, педагог точно употреблял научную терминологию, имел контакт с аудиторией.

Активность учащихся и их работоспособность контролировались преподавателем. Для профилактики утомляемости педагог применял различные методы и чередовал формы работы (фронтальная, индивидуальная). Учащиеся участвовали в беседе, отвечали на вопросы преподавателя.

Санитарные требования оформление доски, освещение в аудитории, климат - соблюдались, как и правила техники безопасности при работе с ТСО.

От плана занятия были отклонений не было.

Поставленные задачи на занятии были решены. Недостатком занятия является отсутствие макетов турбокомпрессора и системы подачи закиси азота, иллюстрирующей устройство и принцип работы для снятия затруднений учащихся в пространственном представлении объекта.

Общая оценка занятия - 5 (отлично).

Таблица 3. Показатели успешности занятия

Показатели

Критерии успешности

Оценка в баллах

1

2

3

4

1

Оснащение занятия

Оформление доски

5

Наличие ТСО

4

Наличие дидактических средств (плакатов, карточек и т.д.)

5

Средняя оценка:

4,7

2

Содержание

занятия

Соответствие содержания занятия программе

5

Работа с формированием понятийного аппарата

5

Осуществление межпредметных связей

5

Средняя оценка:

5

3

Организация занятия

Начало занятия (своевременность, расход времени на организационную часть и т.д.)

5

Готовность учителя и учащихся к занятию

5

Оценка структуры занятия и целесообразности разбивки времени на каждый этап

5

Выполнение плана занятия

5

Достижение поставленных целей занятия

5

Своевременность окончания занятия

5

Средняя оценка:

5

4

Проведение занятия

Постановка целей и мотивация учащихся, разъяснение значимости изучаемого материала

5

Логика перехода от одного этапа к другому

5

Актуализация знаний учащихся, связь нового материала с ранее изученным и имеющимся опытом

5

Средняя оценка:

5

5

Реализация принципов обучения

Принцип сознательности и активности

5

Принцип научности

5

Принцип доступности обучения

5

Принцип наглядности

5

Принцип систематичности и последовательности

5

Характер познавательной деятельности учащихся (репродуктивный, творческий)

5

Принцип индивидуализации и дифференциации обучения

5

Средняя оценка:

5

6

Методы обучения

Методы активизации познавательной деятельности

5

Выбор методов в соответствии с целями и задачами урока

5

Учет возрастных особенностей учащихся

5

Методы развития самостоятельности и творческой активности

5

Методы воспитания учащихся

5

Методика инструктирования (вводный, текущий, заключительный)

5

Методы организации эффективного показа трудовых приемов (расчленение на отдельные действия, замедление темпа, сочетание с наглядностью и объяснением и т.п.)

5

Средняя оценка:

5

7

Поведение учителя на уроке

Внешний вид

5

Умение владеть классом

5

Речь учителя

5

Педагогический такт

5

Средняя оценка:

5

8

Работа учащихся

Активность

5

Организованность

5

Дисциплинированность

5

Средняя оценка:

5

Полученный график позволяет увидеть и оценить качество проектирования занятия, наглядно продемонстрировать успехи и недостатки выполненной разработки.

Средняя оценка

5

4

3

2

1

1 2 3 4 5 6 7 8 9 Показатели

Рис. 1 График показателей успешности занятия

Наиболее низкий балл получил показатель «содержание занятия». В частности недостаточную реализацию получило оснащение урока. При использовании недостающей наглядности успешность урока была бы выше.

3. Технологии, применяемые в доводке легковых автомобилей

3.1 Внешний тюнинг. Тонировка стёкол автомобиля

Как известно, тонировка придает автомобилю эстетичный вид, она очень актуальна в жаркое время года, потому что препятствует нагреву салона, так же бережет имущество, лишний раз не привлекая внимания воров и вандалов к содержимому салона. Но тонировка должна быть осуществлена в соответствии с нашим законодательством. Поэтому познакомимся с законом и правилами.

В нашей стране тонирование стекол автомобилей регулируется положениями ГОСТ 5727-88, с принятыми изменениями от 01.01. 2002. Этот государственный стандарт устанавливает нормы тонировки для лобового, заднего и боковых стекол машины. Для переднего лобового стекла норма светопропускания равна 75 процентам. Для передних боковых стекол - 70 процентам.

Разрешается в верхней части переднего ветрового стекла затонировать полосу до 14 сантиметров высотой.

Проще говоря, ограничения касаются переднего ветрового стекла, и половины передних боковых стекол. Все остальное - люк, боковые стекла в пассажирской части, и заднее стекло - можно затонировать любой пленкой, кроме зеркальной. Но, в таком случае, автомобиль должен быть оборудован двумя боковыми наружными зеркалами заднего вида. Иначе тонирование заднего ветрового стекла станет нарушением правил. Разумеется, о какой либо тонировке оптики и фар не может идти и речи.

Для успешного осуществления мероприятия нам потребуется: терпение и аккуратность, а также:

1. Тонировочная пленка.

2. Резиновый шпатель - в комплекте с пленкой часто идет пластмассовый скребок - тоже пойдет, но он оставляет микроцарапины.

3. Канцелярский нож.

4. Моющее средство или шампунь.

5. Чистая теплая вода (желательно дистиллированная).

6. Кусочек сухой мягкой ткани без ворса.

7. Пульверизатор.

Тонирование стекол рекомендуется производить вдвоем в непыльном помещении. Использование строительного, монтажного или хотя бы бытового фена для быстрой просушки уже затонированных окон приветствуется.

Для начала снимаем уплотнители и тщательно моем все предназначенные для тонировки стекла с применением моющего средства. Особенно хорошо промываем углы. Разводим и заливаем в пульверизатор мыльный раствор (шампунь или моющее средство и чистая теплая вода).

Опрыскиваем наружную сторону только что вымытого стекла мыльным раствором, прикладываем к ней тонировочную пленку темным слоем внутрь, следовательно, прозрачным слоем наружу. Очень важно не перепутать стороны! Чтобы легче ориентироваться, где какой слой, предлагаю чуть-чуть разделить пленку с одного угла.

Приложенную к стеклу пленку выравниваем и обрезаем, оставив со всех краев запас пленки в 1 см.

Обильно орошаем стекло мыльным раствором теперь уже с внутренней стороны (см. рисунок 2).

Далее оперативно (чтобы не успело высохнуть стекло!) отделяем темный слой пленки, параллельно смачивая его раствором из пульверизатора. Данную процедуру предпочтительно производить вдвоем: один крепко держит прозрачный слой, а второй - аккуратно тянет и опрыскивает темный слой.

Рис. 2. Опрыскивание стекла мыльным раствором

Прикладываем темный слой к мокрой внутренней стороне стекла. Снова обрабатываем его пульверизатором. Затем накладываем на него прозрачный слой (для защиты пленки от механических повреждений) и начинаем разглаживать резиновым шпателем по направлению от центра к краям. Избавляясь от воздушных пузырей, разглаживаем до тех пор, пока не начнет отпадать высохшая прозрачная пленка. Убрав ее, подрезаем выступающие края на тонировочной пленке, осторожно ведя острым ножом по кромке стекла.

Затем сушим строительным феном стекло по периметру и приступаем к следующему стеклу.

В течение двух дней рекомендуются уплотнители в двери не вставлять и не открывать затонированные стекла.

Тонируя задние стёкла автомобиля, из-за их кривизны необходимо, с помощью строительного фена, нагревать стекло с наружной стороны, одновременно приглаживая мягкой тканью складки. В случае сильного искривления пленка клеится полосами встык.

По желанию клиента современные тюнинг-центры предлагают следующие услуги: перетяжка салона кожей и другими материалами, изменение дизайна панели приборов, индивидуальная подгонка геометрии сиденья под водителя и пассажиров, изготовление подлокотников, изменение профиля дверных карт, монтирование подогрева сидений, расчет и установка Аудиосистем.

Рассмотрим перетяжку деталей салона автомобиля карпетом, на примере обшивок дверей.

Для этого необходимо:

1. Карпет в требуемом количестве.

2. Специальный аэрозольный клей.

3. Канцелярский или портной нож.

4. Ножницы.

5. Маскировочная лента.

6. Наждачная бумага с 230 абразивом.

Первое что нужно сделать - это снять обшивку двери и подготовить ее, зашкурив наждачной бумагой обтягиваемую поверхность (см. рисунок 3).

Рис. 3. Подготовка к обтяжке

Затем, маскируем лентой поверхности, которые останутся не перетянутыми во избежание попадания клея на них (см. рисунок 4).

Рис. 4. Маскировка поверхности

На подготовленную поверхность накладываем карпет и натягиваем по контуру обшивки двери. После этого руками прижимаем ткань вокруг выступающих частей обшивки, продолжая натягивать по контуру. Карпет принял нужную форму. Теперь нужно обрезать лишнюю ткань и можно наносить клей: сначала на панель двери, а потом на обратную сторону ткани. Выждав одну-две минуты, накладываем карпет и разглаживаем его руками от центра к краям. Подгибаем края карпета за обшивку.

Заключительным шагом будет прорезание отверстий под кнопки стеклоподъёмников и ручку открытия двери. Теперь можно производить сборку (см. рисунок 5).

Рис. 5. Готовая дверь

Будет описана шумовиброизоляция автомобиля на примере ВАЗ 2108, как одного из наиболее распространенных автомобилей в России.

Шумоизоляция очень важна, и пренебрежительно относиться к ней просто нельзя. Слушать хорошее звучание музыкальной системы сквозь массу посторонних звуков от двигателя, дороги и прочих раздражителей никто не хочет. Печальный факт - для отечественных автомобилей это особенно актуально. Более того, к традиционным шумам добавляются шумы, источником которых станет сама аудиосистема. Создаваемые ею колебания воздуха, особенно мощные волны от сабвуфера, приводят к тому, что начинают «голосить» обшивка и другие элементы интерьера, включая кузовные панели.

Шумо- и виброизоляция также направлена на то, чтобы создать акустическим системам и сабвуферу оптимальные условия работы, поскольку установка НЧ и НЧ/СЧ динамиков в дребезжащие монтажные поверхности без соблюдения герметичности приведет к плачевным результатам: панели начнут шуметь от вибрации, а про хороший бас можно забыть. Даже если соблюдено требование герметичности (т.е. отсутствие между динамиком и монтажной поверхностью каких-либо щелей, через которые возможна утечка воздуха), хлипкая монтажная поверхность приведет к плохому басу, ибо вместо того чтобы приводить в движение воздушные массы, динамик начнет колебаться сам.

Использованные материалы: вибропоглощающий материал «Вибропласт М2». Растворитель марки «646».

Необходимые инструменты: нож, шпатель, строительный фен, набор отверток.

Рис. 6. Снятие штатной шумоизоляции

Первое - полностью разбираем салон автомобиля. То есть снимаем обшивки с дверей и крыши, накладки боковин и другие декоративные панели. Второе (при необходимости) - это демонтаж заводской виброизоляции. Для этого подойдет обычный шпатель и для облегчения процесса - строительный фен (см. рисунок 6).

И третий этап - наклеивание шумовиброизоляции. Стараемся максимально обработать все выбранные поверхности. Начинаем с дверей. Сначала на метал клеится вибропоглощающий материал, который гасит колебания металла, а поверх него звукопоглощающий. В нашем случае будет использоваться только вибропоглощающий материал «вибропласт» так как он, не только гасит вибрации металла, но и очень хорошо глушит звук. Нарезаем кусками материал, с липкой стороны снимаем защитный слой и оклеиваем сначала внутреннюю полость (см. рисунок 7).

Рис. 7. Оклеивание внутренней полости двери

Рис. 8. Оклейка наружной панели двери

А наружную панель двери оклеиваем полностью, и делаем это с целью создания закрытого объема для фронтальных динамиков. Здесь мы уже оперируем целыми листами (см. рисунок 8).

Рис. 9. Шумовиброизоляция крыши автомобиля

Обработка крыши салона. Здесь действуем по такому же принципу, как и с дверьми (см. рисунок 9).

Последнее - багажный отсек. Так как колесные арки имеют поверхность сложной формы, для плотного склеивания необходимо делать диагональные надрезы, стараясь не повреждать краску (см. рисунок 10).

Рис. 10. Шумовиброизоляция колесных арок

Затем по этому же принципу оклеиваем все внутренние и внешние поверхности боковин, включая среднюю и заднюю стойки (см. рисунок 11).

Рис. 11. Оклеенный багажный отсек и стойки

Для закрепления полученного результата рекомендуем еще раз разгладить все наклеенные листы, предварительно разогрев их строительным феном.

Замена амортизаторов и пружин передней подвески на примере автомобиля ВАЗ 2110. Работу выполняем на смотровой яме или эстакаде, но можно и на ровной горизонтальной площадке.

Для замены пружин и амортизаторов передней подвески снимаем и разбираем направляющую пружинную стойку.

Существуют два варианта снятия направляющей пружинной стойки. В первом варианте ее можно демонтировать в сборе с поворотным кулаком и тормозным диском, не ослабляя гайки нижнего и верхнего (регулировочного) болтов крепления стойки к поворотному кулаку. Этот вариант удобен в том случае, если после выполнения работы не планируется регулировка углов установки передних колес. Но так как после замены амортизаторов и пружин углы установки колес отрегулировать необходимо, мы рассмотрим второй вариант.

Последовательность действий:

Вывешиваем и снимаем колесо со стороны снимаемой стойки. Поворачиваем рулевое колесо в противоположную сторону до упора. Вынимаем шплинт (см. рисунок 12).

Рис. 12. Вынимаем шплинт

Следующий шаг: после вынимания шплинта из пальца, с помощью ключа «на 19» отворачиваем гайку крепления пальца наконечника рулевой тяги к рычагу стойки (см. рисунок 13).

Рис. 13. Крепление наконечника рулевой тяги к рычагу стойки

Съемником выпрессовываем палец из рычага. При отсутствии съемника гайку отворачиваем не до конца, вставляем монтажную лопатку в распор между рулевой тягой и рычагом стойки и молотком наносим удары по торцу рычага стойки (см. рисунок 14).

Рис. 14. Выпрессовка пальца рулевого наконечника

Рис. 15. Муфта крепления тормозного шланга

Выводим муфту переднего тормозного шланга из держателя стойки (см. рисунок 15).

Снимаем резиновую заглушку верхней опоры направляющей стойки. Для отворачивания гайки штока амортизатора применяем специальный ключ, позволяющий удержать шток от проворачивания (см. рисунок 16).


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.