Полимеры и методы их идентификации

Термины и определения, принятые в области химии высокомолекулярных соединений. Свойства и отличительные признаки полимеров и олигомеров, используемых в деревообработке, и в частности, при производстве мебели. Оперативные способы их идентификации.

Рубрика Химия
Вид учебное пособие
Язык русский
Дата добавления 15.01.2012
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Поливинилхлорид - это крупнотоннажный полимер, второй по объемам производства, который применяется с 1927 года и называется универсальным пластиком. Это достаточно дешевый полимер.

Винилхлорид поливинилхлорид

Внешние признаки поливинилхлорида. ПВХ тяжелее воды. Это - трудногорючий полимер. При удалении из пламени самозатухает. При горении сильно коптит, по периметру горящего образца можно наблюдать зеленоватую кайму (свечение). Запах дыма очень резкий, острый. При сгорании образуется черное, углеподобное вещество, которое легко растирается между пальцами в сажу.

Основные свойства ПВХ - термопласт. Плотность - 1350-1400 кг/м3. В отсутствие пластификаторов представляет собой твердый, жесткий, атмосферо-, водо-, химически стойкий полимер. Хорошо сваривается, окрашивается, совмещается с бетоном, деревом, металлами, не имеет запаха. Растворим в четыреххлористом углероде, дихлорэтане. Хороший диэлектрик.

Недостаток ПВХ в том, что при нагревании ~ до 1400С он начинает разлагаться и выделяет газ - хлористый водород НСl, который обладает резким запахом, раздражает слизистые оболочки глаз и дыхательных путей. Для устранения этого недостатка в поливинилхлорид всегда вводят стабилизаторы.

На основе ПВХ производят три вида материалов: жесткий ПВХ (винипласт; пластифицированный ПВХ (кабельный пластикат и вязкие пасты и пластизоли (смотри схему ниже).

Еще один недостаток ПВХ в том, что обладает плохими клеящими свойствами. Для повышения адгезионных свойств поливинилхлорид дополнительно хлорируют и повышают содержание атомов хлора в полимере с 56 до 65%. Хлорированный ПВХ называется перхлорвинил. Он идет на изготовление перхлорвиниловых клеев, клеев, совмещенных с фенолоформальдегидными смолами, с эпоксидными смолами (клей «Марс»). Клеи используют для приклеивания полозков, фурнитуры, направляющих из ПВХ. Перхлорвиниловые лаки и эмали применяют для пропитки и окраски деревянных изделий.

5.6 Полимеры на основе акриловой и метакриловой кислот

Полиметилметакрилат (ПММА)

Внешние признаки полиметилметакрилата Это прозрачный стекловидный твердый полимер. В процессе эксплуатации на воздухе мутнеет. «стареет». Легко подвергается царапанию. При ударе издает глухой звук в отличие от полистирола.

Основные свойства ПММА. Это термопластичный, в основном аморфный полимер с плотностью 1170 - 1190 кг/ м3. Оптически прозрачен, т.к. пропускает ~73.5% ультрафиолетовых лучей. Основное применение ПММА - производство оргстекла.

Полимер хорошо совмещается с пластификаторами, имеет хорошую адгезию к другим полимерам. Растворяется в ацетоне, уксусной кислоте, хлоруглеводородах, толуоле и др. растворителях.

В мебельной промышленности в небольших количествах применяют полиакрилатные клеи и дисперсии (латексы).

Клеи готовят растворением полимера (10-35%) в мономере (90-65%) и наносят на склеиваемые поверхности. Под действием ИНИЦИАТОРОВ (окислительно-восстановительных систем), входящих в состав клеев, происходит полимеризация, загустевание, твердение клеевого слоя.

Полиакриловые дисперсии (латексы) - это водные коллоидные системы с концентрацией полимера > 30% с добавкой загустителей. Латексы негорючи. В качестве полимерной основы латексов используют сополимеры ММА, метакриловой кислоты (МАК), и бутилакрилата (БА). Полиакриловые дисперсии применяют для приклеивания поливинилхлоридной пленки, синтетического шпона, декоративного бумажно-слоистого пластика, искусственной кожи к древесине, для склеивания мягких элементов мебели, губчатой резины, поролона.

Кроме этого полиакриловые дисперсии используют в качестве особо светлых свето- и атмосферостойких лаков, ярких эмалей и красок при отделке фанеры, ДВП и др материалов.

Полиакрилонитрил (ПАН)

Мировое производство полиакрилонитрила - более 2,3 млн. тонн в год. Производят и гомополимер и сополимеры полиакрилонитрила с содержанием ПАН 85-90%. Получают ПАН цепной полимеризацией из мономера акрилонитрила в среде органического растворителя или в воде:

Внешние признаки полиакрилонитрила. ПАН - аморфное вещество белого цвета. Не размягчается и не разрушается при нагреве до 150-1800С. Прочный как полиамиды (капрон, нейлон). Немного тяжелее воды.

Основные свойства ПАН - термопласт. Плотность ПАН - 1140 - 1150 кг/м3. Не растворяется и не набухает в обычных растворителях: спиртах, ацетоне, эфирах, хлорированных углеводородах, которые используют в химической чистке одежды. Растворяется только в сильно полярных растворителях, таких как диметилформамид (ДМФА), диметилсульфоксид (ДМСО), концентрированных серной и азотной кислотах. Из раствора ПАН в диметилформамиде получают волокна «Нитрон», "Акрилан" и др. с высокой прочностью, термической и химической стойкостью.

Применение полиакрилонитрила. Волокна ПАН по свойствам близки к шерсти, устойчивы к свету и другим атмосферным агентам, кислотам, слабым щелочам, органическим растворителям. Из полиакрилонитрильного волокна изготовляют верхний и бельевой трикотаж, ковры, ткани. Основные торговые названия: нитрон, орлон, акрилан, кашмилон, куртель, дралон, вольпрюла.

В производстве мебели ПАН в основном используют в качестве наполнителя слоистых пластиков, для изготовления сеток. Ткани на основе нитрона используют для обивки мягкой мебели, кресел и стульев.

5.7 Каучуки

Основные свойства. Каучуки - это гибкие, эластичные полимеры плотностью 900-1200 кг/м3. Нижняя температура эксплуатации до -55...-900С. Удлиняются при растяжении на 500-600%. Синтетический каучук бутадиен-нитрильный (СКН) и синтетический каучук бутадиен-стирольный (СКС) стойки к старению, маслам и бензину. Синтетический каучук хлоропреновый (наирит) негорючий, масло-, бензо-, свето-, озоностоек.

Каучуки применяются как:

1. Основа резиновых клеев. Резиновый клей готовят растворением каучука в растворителе - этилацетате или в смеси этилацетата с бензином.

2. Основа каучуко - латексных клеев. Латексный клей - это дисперсия каучука в воде с добавками загустителей, стабилизаторов дисперсии и др. добавок. Каучуко- латексные клеи менее токсичны. Наиритовые клеи - лучшие латексные клеи. Клеи применяют для склеивания элементов мягкой мебели, для приклеивания покровных материалов к элементам мягкой мебели. Латексы синтетического каучука бутадиен-стирольного СКС идут на изготовление пенорезины.

3. Герметики.

4. Сырье для производства резин, искусственных кож, обуви, шин, покрышек.

5. Сырье в производстве ударопрочного полистирола, эбонита и др. материалов

6. Изоляция проводов

6. ВНЕШНИЕ ПРИЗНАКИ И КРАТКАЯ ХАРАКТЕРИСТИКА ПОЛИМЕРОВ, ПОЛУЧАЕМЫХ МЕТОДОМ ПОЛИКОНДЕНСАЦИИ 4-11,15

6.1 Карбамидоформальдегидные смолы (КФС)

Сырьем для производства КФС являются карбамид (мочевина) и формальдегид. Карбамидоформальдегидные смолы иначе называют мочевиноформальдегидными смолами (МФС) или олигомерами (КФО, МФО).

Карбамид Формальдегид

Формальдегид применяют в виде водного раствора с концентрацией 36ч37%. Такой раствор называют формалин. Синтез КФС проводят в несколько стадий при мольном избытке формальдегида по сравнению с карбамидом. Чем меньше избыток формальдегида, тем меньше токсичность смолы и изделий (мебели) на ее основе.

Карбамидоформальдегидные смолы имеют разветвленную структуру и содержат небольшое количество циклов:

Внешние признаки и свойства КФС: Это вязкие водные дисперсии белого или серовато-кремового цвета. Содержание основного вещества (карбамидоформальдегидного олигомера) составляет 45-70%. Плотность КФС 1240 ч1270 кг/м3. Молекулярная масса невелика и составляет 200ч400 г/моль. КФС - реактопласты. Пожаро-, взрывобезопасны, не имеют запаха, дешевы. При нагревании до температуры 120ч1400С в кислой среде КФС отверждаются, т.е. превращаются в твердые, сетчатые, нерастворимые и неплавкие полимеры следующей структуры:

Процесс, при котором жидкие реакционноспособные олигомеры низкой молекулярной массы необратимо превращаются в твёрдые, нерастворимые и неплавкие сетчатые полимеры, называется отверждением олигомеров.

При отверждении КФС дают усадку. Покрытия, пленки, клеевые слои после отверждения КФС бесцветные, полупрозрачные, светостойкие, устойчивые к органическим растворителям, маслам, но имеют трещины, становятся хрупкими и обладают средней стойкостью к воде.

Для повышения эластичности, водостойкости, термостойкости и стойкости к микроорганизмам КФС модифицируют меламином, фенолом, ПВА, спиртами и др. соединениями. Для снижения усадки в КФС вводят наполнители, такие как древесная мука, мел, аэросил, крахмал, поливиниловый спирт и др.

КФС имеют высокую адгезию к древесине, материалам на ее основе, хлопчатобумажным, льняным, вискозным тканям. По механическим и электроизоляционным свойствам КФС уступают фенолоформальдегидным смолам ФФС.

Достоинство КФС в том, что они достаточно дешевы, устойчивы к гниению и после пропитки или нанесения их на древесину натуральный цвет древесины не изменяется.

Применение КФС:

1. Основа связующих веществ в производстве древесностружечных плит ДСтП. Стружку смешивают со связующим и прессуют при повышенной температуре и давлении.

2. Основа клеев для древесных материалов. Клеи используют в производстве фанеры при сборке мебели, музыкальных инструментов, для приклеивания шпона к пласти и т.д.

3. Основа лаков и эмалей. Они идут на отделку мебели, паркетных полов, спортинвентаря, музыкальных инструментов и т.д.

4. Основа пропиточных смол. Такими водно-дисперсионными смолами пропитывают бумагу, сушат и получают синтетический шпон или ламинат. Кроме этого из нескольких слоев пропитанной бумаги собирают пакет, прессуют и получают многослойный декоративный бумажно-слоистый пластик ДБСП. Такой пластик используют для облицовки кухонной мебели и мебели медицинского назначения.

5. Производство пенопласта - мипоры. Мипора - это легкий вспененный материал с высокими тепло-, и звукоизоляционными свойствами.

6. Производство пресс-порошков, называемых аминопластами. Из аминопластов изготовляют детские игрушки, галантерейные изделия, канцелярские изделия, посуду, корпуса небольших бытовых приборов (бритв) и др.

В промышленности выпускают следующие марки клеящих карбамидоформальдегидных смол:

· КФ-О- смола общего назначения для производства фанеры, склеивания деталей мебели и др.

· КФ-Ж - смола повышенной жизнеспособности, т.е. длительного хранения. Применяется для производства фанеры, склеивания деталей мебели, приклеивания шпона и т.д.

· КФ-Б - смола быстроотверждающаяся

· КФМТ-15 - малотоксичная смола в производстве ДСтП, которые предназначены для изготовления малотоксичной мебели, фанеры и др. изделий.

Кроме того выпускаются пропиточные смолы марок ПМФ, МФПС-2, модифицированные меламином пропиточные смолы марки СПМФ, ММ-54 и др.

6.2 Фенолоформальдегидные смолы (ФФС)

В настоящее время выпускается в основном 2 вида ФФС: резольные и новолачные. В деревообработке преимущественно используют резольные фенолоформальдегидные смолы.

Резольные фенолоформальдегидные смолы (олигомеры)

Сырьем для производства ФФС служит кристаллический фенол и формальдегид в виде водного раствора - формалина.

Синтез резольных ФФС проводят в щелочной среде при температуре около 700С при мольном избытке формальдегида.

Молекулы резольных ФФС имеют разветвленное строение

Внешние признаки и свойства ФФС: Резольные ФФС (иначе резолы) чаще всего - это вязкие водные эмульсии, обладающие клейкостью. Цвет смол зависит от типа катализатора, применяемого при синтезе. Олигомеры (смолы), полученные в присутствии аммиачной воды (раствора аммиака NH4OH), гидроксида бария, имеют желтовато-коричневый цвет. ФФС, полученные в присутствии едкого натра NаОН или едкого кали КОН, имеют красновато-коричневый (часто вишневый) цвет. Плотность резольных ФФС - 1100ч1300 кг/м3.

Резольные ФФС хорошо растворяются в спиртах, ацетоне, сложных эфирах (этилацетате, бутилацетате) и в растворах щелочей. ФФС обладают хорошей адгезией (клеящей способностью). Резолы не стабильны при хранении. Максимальный срок их хранения - 3 недели. При длительном хранении у резолов возрастает вязкость, понижается текучесть и растворимость.

При нагревании до 170ч1800С происходит отверждение резольных ФФС, молекулы резольных ФФС взаимодействуют друг с другом и образуют полимер сетчатого строения, который называется резит.

Резиты не растворяются в органических растворителях, не плавятся.

Отверждение (сшивание) обычно проводят в момент изготовления готового изделия: в ходе прессования древесностружечных плит ДСтП, древесно-слоистых пластиков, древесноволокнистых плит ДВП, фанеры, гнутоклееных изделий, в период сушки , пропитанных бумаг, лаковых покрытий и клеевых слоев.

Резиты стойки к воде, органическим растворителям, кислотам (за исключением серной Н24, азотной Н23). Набухают и разрушаются в растворах щелочей, особенно при нагревании. Резиты атмосферостойкие, механически прочные, устойчивы при нагревании до температуры 2000С. Резиты обладают хорошими диэлектрическими (электроизоляционными) свойствами.

Применение резольных ФФС:

Основные направления использования резольных ФФС приведены ниже на схеме 6.

У новолачных ФФС в отличие от резольных молекулы имеют линейное строение.

Новолачные ФФС получают в кислой среде при небольшом избытке фенола. Новолачные ФФС - это твердые стекловидные полупрозрачные чешуйчатые вещества, которые хорошо растворяются в органических растворителях. Долго хранятся в сухих помещениях. Отверждаются только после добавки отвердителей (параформ или уротропин). Основное применение новолачных ФФС - приготовление лаков и пресс-порошков, производство пенопластов и абразивных материалов.

Фенолоформальдегидные олигомеры, выпускаемые промышленностью, условно обозначают буквами «СФ» - смолы фенольные. Если смолы выпускают в жидком агрегатном состоянии (например, водоэмульсионные), то добавляют букву «Ж» (СФЖ - смолы фенольные жидкие). После буквенного обозначения указывается марка смолы, например: СФЖ-3013, СФЖ-3014, СФЖ-3011, СФ-010, СФ-010А, СФ-301 и др.

Если смолы новолачные, то число из первых двух цифр слева < 30.

Если смолы резольные, то число из первых двух цифр слева 30.

Следовательно, такие смолы как СФЖ-3013, СФЖ-3014, СФЖ-3011, СФ-301 - резольные, а смолы СФ-010, СФ-010А - новолачные.

Такие смолы как СФЖ-3013, СФЖ-3014, СФЖ-3011, СФЖ-Т, СФН-Н являются основой клеев горячего отверждения, а смолы марок СФЖ-3015, СФЖ-3016, СФЖ-323, СФЖ-309 - основой клеев холодного отверждения.

Растворением резольных фенолоформальдегидных олигомеров в спирте получают лаки, в частности лаки марок ЛБС- 1, ЛБС- 2, ЛБС- 3 (лаки бакелитовые спиртовые), СБС-1 (спирторастворимая бакелитовая смола) и др.

Самостоятельное применение имеют фенолоспирты - продукты первичной конденсации фенола с формальдегидом в щелочной среде в виде водных растворов с концентрацией олигомера 45-55 %. Их обозначают буквами «ФС». Выпускают фенолоспирты марок ФС-А. ФС-Б, ФС-Д. и др. Фенолоспирты применяют как связующее в производстве абразивных материалов (например, шлифовальных кругов) и в производстве теплоизоляционных материалов.

Покрытия, клеевые швы на основе ФФО имеют более высокую водостойкость по сравнению с карбамидоформальдегидными олигомерами. Однако ФФО имеют коричневый цвет и изменяют естественный цвет древесины.

6.3 Насыщенные и ненасыщенные полиэфиры

Полиэфирами называются такие полимеры, в цепях макромолекул которых имеются кислород содержащие простые эфирные группы вида - С - О - С - или сложноэфирные группы вида

Первый тип полиэфиров называется простые полиэфиры, а второй тип - сложные полиэфиры. В деревообработке сложные поли- или олигоэфиры применяются в значительных объемах.

Сложные поли- или олигоэфиры подразделяют на насыщенные и ненасыщенные.

В цепях молекул насыщенных поли- или олигоэфиров нет кратных двойных связей. Насыщенные полиэфиры получают поликонденсацией насыщенных двухосновных кислот (или их ангидридов) с двух- или трехатомными спиртами.

Насыщенные олигоэфиры, полученные в присутствии растительных масел, называются алкидными смолами.

Насыщенный олигоэфир на основе двухатомного спирта этиленгликоля и адипиновой кислоты имеет следующее строение:

Ненасыщенные полиэфиры получают поликонденсацией непредельных (ненасыщенных) двухосновных кислот (или их ангидридов) с двух- или трехатомными спиртами, поэтому в цепочках молекул получаемых олигомеров или полимеров имеется реакционноспособная двойная связь - R - СН = СН - R -.

Ненасыщенный полиэфир на основе непредельного малеинового ангидрида и двухатомного спирта этиленгликоля имеет вид:

В деревообработке широко используются следующие полиэфирные смолы:

· насыщенные алкидные олигоэфиры (глифтали и пентафтали), а также

· ненасыщенные полиэфирмалеинаты или полиэфиракрилаты.

Алкидные глифталевые смолы синтезируют конденсацией глицерина с фталевым ангидридом в присутствии жирных кислот растительных масел в расплаве при температуре 220-240 0С. Получают олигомеры следующего строения:

В результате конденсации образуются линейные и разветвленные термореактивные олигомеры, которые впоследствии медленно отверждаются за счет взаимодействия оставшихся реакционноспособных гидроксильных - ОН и карбоксильных групп - СООН и образуют сетчатые нерастворимые и неплавкие покрытия.

Внешние признаки глифталей. Это высоковязкие липкие полупрозрачные вещества. Цвет глифталей от светло-желтого до желто-коричневого.

Основные свойства. Глифтали имеют молекулярную массу от 1500 до 5000. Они растворяются в толуоле, спирте, ксилоле, уайт-спирите. Обычно глифтали сразу растворяют в органических растворителях и получают растворы с концентрацией олигомера (глифталя) 4060%. Плотность растворов 900 - 1050 кг/м3.

Глифтали - реактопласты и при комнатной температуре медленно отверждаются или как обычно говорят "высыхают". В отсутствие растительных масел при отверждении наблюдается значительная усадка материала и после "высыхания" образуются хрупкие покрытия.

Для снижения усадки, ускорения отверждения и повышения эластичности покрытий глифтали модифицируют растительными маслами.

В зависимости от количества добавленного масла различают следующие виды глифталей:

· Сверхтощие ГФ. В них содержание масла менее 34%.

· Тощие глифтали с содержанием масла от 34% до 45%.

· Средние ГФ, в которых растительного масла от 46% до 55%.

· Жирные глифтали содержат от 56% до 70%.

· И очень жирные глифтали, в которых масла может быть более 70%.

Температура эксплуатации отвержденных покрытий на основе глифталей от -- 200С до + 1001500С.

Применение глифталей. Глифталевые смолы (олигомеры) преимущественно используют:

как основной компонент (основу) лакокрасочных (отделочных) материалов, таких как лаки, эмали, краски, грунтовки

как основу клеев,

как связующее в производстве стеклопластиков,

для пропитки текстурных и кроющих бумаг в производстве бумажных смоляных пленок для облицовки мебели.

Более 70 % всего объема выпускаемых алкидных полиэфирных смол идет на изготовление лаков и эмалей. Покрытия или клеевые швы после отверждения глифталей обладают антикоррозионными свойствами, приятным внешним видом, хорошей атмосферостойкостью и термостойкостью до 150 0С.

Помимо масел для ускоренного отверждения в глифтали добавляют ускорители - сиккативы, в основном, нафтенаты или резинаты кобальта и марганца.

Пентафтали (ПФ)

Алкидные пентафталевые смолы получают так же как глифталевые, только вместо глицерина используют четырехатомный спирт - пентаэритрит. Получают олигомеры следующего строения:

В результате конденсации сначала образуются разветвленные термореактивные олигомеры, которые впоследствии отверждаются за счет взаимодействия оставшихся реакционноспособных гидроксильных - ОН и карбоксильных групп - СООН и образуют сетчатые нерастворимые и неплавкие покрытия. Реакционная способность пентаэритрита выше, чем у глицерина, поэтому отверждение пентафталей происходит быстрее и легче.

Внешние признаки пентафталей такие же, как у глифталей.

Основные свойства и области применения пентафталей похожи на те, которые свойственны глифталям.

В ходе отверждения пентафталевых алкидных смол также получаются хрупкие покрытия и наблюдается усадка материала, поэтому алкидные пентафталевые смолы модифицируют маслами, мочевиноформальдегидными олигомерами, кремнийорганическими жидкостями, нитроцеллюлозой и др. реагентами. Для ускорения «высыхания» покрытий в пентафтали также вводят сиккативы.

После модификации скорость отверждения пентафталей возрастает. Отвержденные покрытия на основе пентафталей имеют большую механическую прочность, срок службы и температурные границы эксплуатации, чем покрытия на основе глифталей.

Изделия, защищенные покрытиями на основе алкидных смол, могут эксплуатироваться на открытом воздухе. Алкидными лаками, эмалями (например, эмалью ПФ-115) , грунтовками, шпатлевками покрывают кузова автомобилей, вагоны метро, сельскохозяйственную технику, корпуса холодильников, паркетные полы, оконные рамы, детали мебели, лыжи и др. изделия.

Материалы на основе глифталевых алкидных смол маркируют буквами ГФ, на основе пентафталевых смол - буквами ПФ.

Полиэтилентерефталат (ПЭТФ или ПЭТ)

Полиэтилентерефталат также относится к группе насыщенных полиэфиров.

Насыщенный полиэфир на основе двухатомного спирта этиленгликоля и терефталевой кислоты имеет следующее строение:

Внешние признаки полиэтилентерефталата. Кристаллический ПЭТФ - белое твердое и прочное вещество без запаха. Аморфный ПЭТФ - прозрачный бесцветный полимер. Тяжелее воды. При температуре выше 100°C полиэтилентерефталат гидролизуется (разрушается) растворами щелочей, а при 200°C - даже водой.

Основные свойства. ПЭТФ - термопласт, имеющий плотность 1380 - 1400 кг/м3 и температуру плавления ~ 255 - 2650С. Температура размягчения ~ 245 - 2480С. Обладает высокой химической стойкостью; на холоду не растворяется в воде, в традиционных органических растворителях, в разбавленных растворах кислот и щелочей. Устойчив в растворах отбеливающих агентов. Растворяется только при нагревании до 40 - 1500С в ароматических (подобных по строению) углеводородах, таких как фенол, крезол, в спиртобензольной смеси. Устойчив к действию моли и микроорганизмов, хороший диэлектрик. Полиэтилентерефталат характеризуется высокой прочностью, устойчивостью к истиранию и многократным деформациям при растяжении и изгибе; устойчив к действию световых, рентгеновских, -лучей. Температурный интервал эксплуатации от - 600С до + 170 0С.

Применение полиэтилентерефталата. Около 80% всего выпускаемого ПЭТФ идет на изготовление волокна типа «лавсан». Другие торговые названия волокна - терилен, дакрон, тетерон, элан, тергаль, тесил. Волокна не сминаются, имеют высокую прочность, эластичность, стойки к действию света, к истиранию. По свойствам близки к ацетатным волокнам. Модифицированные волокна хорошо окрашиваются.

Из волокон ПЭТФ изготавливают ткани технического назначения для спецодежды, брезента, рыболовных сетей, канатов, пожарных шлангов, ремней. Кроме того из волокон ПЭТФ производят мебельные и драпировочные ткани для обивки мягкой мебели.

Около 20% выпускаемого ПЭТФ идет на изготовление пленки. Пленки прозрачные, прочные, не пропускают пары воды, кислород, азот и пары растворителей. В связи с этим их применяют для упаковки пищевых продуктов, для изготовления бутылей для газированных напитков и соков. Кроме того пленки используют в качестве подложки различных лент для аудио- и звукозаписи, в производстве кино- и фотопленки.

Ненасыщенные олиго- и полиэфиры

Среди ненасыщенных полиэфиров наиболее распространены продукты конденсации малеинового ангидрида с этиленгликолем, которые называют олигоэфирмалеинаты и имеют следующее строение:

Получаемые олигоэфирмалеинаты содержат ненасыщенную связь - R - СН2 = СН2 - R -, которая способна легко отверждаться при комнатной температуре без выделения низкомолекулярных побочных продуктов.

Внешние признаки олигоэфирмалеинатов. Это прозрачные бесцветные жидкости невысокой вязкости. Пропускают 92 % солнечного света. Не изменяют естественного цвета древесины.

Основные свойства. Олигоэфирмалеинаты - реактопласты плотностью 1100-1500 кг/см3; имеют молекулярная массу от 300 до 3000 и хорошо растворяются в органических растворителях и в мономерах. Растворы олигоэфирмалеинатов имеют невысокую вязкость, прозрачны и не изменяют естественного цвета древесины. Отличаются хорошей адгезией к стекловолокну, бумаге и металлам. При «высыхании», т.е. отверждении с образованием прочного полимера сетчатой структуры, наблюдается минимальная усадка покрытий.

Как правило, ненасыщенные олигоэфиры растворяют при Т = 700С в мономере (чаще всего в стироле) и получают 60-75 %-ные растворы. Эти растворы называют ненасыщенными полиэфирными смолами НПС. Они служат основой связующих в производстве стеклопластиков, применяются для пропитки бумаг и для изготовления лаков, эмалей и грунтовок.

Ускоренное отверждение покрытий проводят либо при нагревании, либо под действием ультрафиолетовых (УФ) или инфракрасных лучей (ИК), либо под воздействием пучка ускоренных электронов (ПУЭ). Отверждение (сшивание) молекул происходит за счет раскрытия двойных связей в молекулах олигоэфиров и в молекулах мономера стирола, в результате чего молекулы олигоэфира сшиваются «мостиками» из молекул стирола.

Для устранения хрупкости, повышения эластичности и механической прочности покрытий ненасыщенные олиго- (поли)эфиры модифицируют насыщенными кислотами (адипиновая, себациновая, фталевая). Покрытия на основе модифицированных полиэфиров твердые, механически прочные, обладают блеском, хорошими электроизоляционными свойствами и стойки к действию воды, бензина, масел и разбавленных кислот. Покрытия устойчивы до температуры +80 - +1000С.

Применение ненасыщенных поли- и олигоэфиров. Из них получают изоляцию в электро- и радиотехнике, цементы, наливные полы, а также стеклопластики. Стеклопластики используются для изготовления кузовов, бамперов, тюнинговых деталей автомобилей. Из стеклоткани, пропитанной ненасыщенным полиэфиром, формуют корпуса лодок и катеров, устраняют повреждения на кузовах автомобилей, лодок и катеров. Ненасыщенные полиэфирные смолы дешевле и удобнее, чем эпоксидные. Они менее вязки, легко наносятся и быстро отверждаются при обычных условиях. Ненасыщенные полиэфирные смолы хорошо совмещаются с различными пигментами, красителями, пластификаторами и сухими сыпучими наполнителями (мел, тальк, песок, каолин и т.д.) Из них методом заливки в формы изготавливаются изделия декоративного назначения: фурнитура, статуэтки, пуговицы и др. галантерейные изделия, полимербетоны и искусственный камень (столешницы мебели, подоконники, плинтуса, облицовка каминов, раковины, ванны, мойки, плитка).

Лаки и грунтовки на основе ненасыщенных полиэфиров условно обозначают буквами ПЭ, ПН, НПС. Лаки применяют для отделки мебели по высшему классу, для отделки теле- и радиоаппаратуры (например, лак холодной сушки марки ПЭ-265).

Полиэфирными клеями склеивают между собой асбоцементные и древесноволокнистые плиты, сотопласты и др. материалы.

6.4 Полиуретаны (ПУ)

Полиуретанами называют полимеры, макромолекулы которых содержат в основной цепи уретановую группу вида.

Внешние признаки полиуретанов. Внешний вид и свойства полиуретанов изменяются и зависят от природы и длины участков цепи между уретановыми группировками, от структуры цепей (линейная или сетчатая), от молекулярной массы и др. Полиуретаны могут быть вязкими жидкостями или твёрдыми продуктами -- от высокоэластичных мягких резин до жёстких пластиков.

Основные свойства Полиуретаны могут быть линейные и сшитые. Плотность - 1100-1220 кг/м3. Хорошие диэлектрики. Не растворяются в воде и традиционных растворителях.

Линейные ПУ обладают высокой адгезией к дереву, бумаге, тканям, металлам, стеклу, штукатурке, поэтому их применяют как основу полиуретановых лаков для мебели, эмалей и клеев. Растворяются только в сильнополярных растворителях, таких как диметилформамид.

Полиуретановые покрытия имеют матовый цвет, эластичны, устойчивы к действию кислот, минеральных и органических масел, бензина, окислителей, теплостойкие. Недостаток жидких ПУ - их горючесть и токсичность вследствие токсичности исходных мономеров-изоцианатов. Маркировка полиуретановых лаков обычно начинается с буквенного обозначения УР, а полиуретановых клеев - ПУ, ВК и др.

Применение полиуретанов. Сшитые полиуретаны могут быть эластичные и жесткие. Около 80-90% всех выпускаемых ПУ составляют вспененные пенополиуретаны. Вспенивание полиуретанов происходит в момент отверждения и изготовления готового изделия. Эластичные пенополиуретаны называют поролоном. Из поролона изготовляют блоки и отдельные элементы мягкой мебели, сиденья, подлокотники, подголовники для всех видов транспорта и др. изделия

.

Из жесткого ПУ изготовляют каркасы кресел, решетки радиаторов для автомобилей, мебельные ручки, мебельные пуговицы, карнизы, декоративные элементы (потолочные розетки), емкости и др. изделия (смотри фото). Жесткий вспененный полиуретан используется в качестве теплоизоляционного материала.. Стойкость против старения у полиуретановых эластомеров в несколько сотен раз выше, чем у натурального и искусственного каучуков.

Полиуретановые клеи дороги, но обеспечивают очень высокую прочность склейки, поэтому их применяют в космической технике, для приклеивания верха обуви к подошвам. Температурный интервал эксплуатации ПУ изделий о т - 50 0С до + 130 0С.

6.5 Полиамиды (ПА)

Полиамидами называются полимеры, содержащие амидную группу в основной цепи макромолекул.

В деревообработке нашли применение полиамиды: ПА-6, ПА-66 (смотри формулу ниже), ПА-610 и смешанный полиамид ПА-54. Цифры 6, 10 и др. в условном обозначении полиамидов указывают на количество атомов углерода в составе исходных мономеров. Другие названия полиамидов - найлон, капрон, Chemlon, перлон, зайтел и др.

Полиамид ПА-66

Внешние признаки полиамидов. Это твердые, рогоподобные вещества от белого до светло-кремового цвета. В ходе переработки и эксплуатации немного темнеют. В тонком слое прозрачные. При горении имеют запах жженого рога или горелых растений. Немного тяжелее воды.

Основные свойства. Полиамиды - термопластичные полимеры невысокой молекулярной массы - 8 000 - 25 000. Имеют плотность 1140 - 1170 кг/м3 и температуру плавления ТПЛ = 215-290 0С. Отличительные свойства полиамидов - высокая твердость, прочность на изгиб, износоустойчивость, т.е. высокая стойкость к истиранию, устойчивость к действию воды, масел и растворителей, хорошая совместимость с металлами.

Применение полиамидов. Благодаря этому полиамиды применяют для производства трущихся деталей (шестерни, подшипники), крепежной фурнитуры (мебельные стяжки, петли, дюбели, полкодержатели, опоры и колесики для мебели небольших размеров) и металлопластовой фурнитуры (мебельные ручки), а также при изготовлении нагруженных деталей офисных кресел.

Полиамиды используют для производства износостойких, эластичных волокон, из которых изготовляют прочные ткани для обивки мебели, сетки для стульев, качалок и кресел. На основе полиамидов выпускают клеевые нити, искусственную кожу, меха и ковры.

Клеевые нити применяют для соединения листов натурального шпона "встык". Отдельные листы шпона закрепляют клеевыми нитями швом "зигзаг" (смотри рисунок)

полимер олигомер высокомолекулярный идентификация

7. ИСКУССТВЕННЫЕ ПОЛИМЕРЫ

7.1 Нитроцеллюлоза (НЦ)

Нитроцеллюлозу или нитраты целлюлозы получают нитрованием целлюлозы смесью азотной и серной кислот (нитрующей смесью) при невысокой температуре (30-35 0С). Для нитрования используют длинноволокнистый хлопок ручной сборки, в котором содержание целлюлозы составляет 99%.

Внешние признаки нитроцеллюлозы. Это белая волокнистая рыхлая масса, очень напоминающая целлюлозу. В пламени сгорает мгновенно без дыма и остатка. При быстром нагревании нитроцеллюлоза разрушается , что может закончиться вспышкой и взрывом. Хороший растворитель для НЦ - ацетон 5-8,15.

Основные свойства. Нитроцеллюлоза - термопласт и имеет плотность 1580--1650 кг/м3. Растворителем для всех видов НЦ служит ацетон. НЦ не растворима в воде и неполярных растворителях (например, в бензоле, четырёххлористом углероде, бензине); но она не стойка к действию слабых кислот и щелочей; разбавленные минеральные кислоты вызывают медленный гидролиз, а щелочи омыляют и разрушают их. НЦ обладает низкой атмосферо- и термостойкостью. При нагревании она начинает разлагаться уже при 40--600С, причём при быстром нагревании распад НЦ может закончиться вспышкой и взрывом.

Для повышения атмосферо- и химстойкости, для увеличения термостойкости в НЦ вводят стабилизаторы: дифениламин, КФО, канифоль. Эти добавки обеспечивают также красивый блеск покрытиям из НЦ лаков.

Применение нитроцеллюлозы. Если в нитроцеллюлозе достигается содержание азота 12,4-13,6 %, то продукт нитрования называют пироксилин. Он применяется для получения бездымного пороха, динамита и др. взрывчатых веществ, а также в качестве быстросгорающих предметов в реквизите артистов-фокусников.

Если нитроцеллюлоза содержит 10-12,3% азота, то продукт нитрования называют коллоксилин. Он используется в производстве целлулоида, кино- и фотопленки, галантерейных (линейки) и др. изделий, для изготовления шариков для настольного тенниса. Коллоксилины с невысокой молекулярной массой (от 12 000 до 60 000) идут на изготовление нитроцеллюлозных лаков, эмалей и грунтовок с маркировкой НЦ.

Нитроцеллюлозные лаки широко используются для открытопористой отделки мебели. У них хорошая адгезия к дереву, высыхаемость, декоративные свойства. Эти лаки дешевы и доступны. Нитролаки подчеркивают узор древесины и придают дереву особую теплоту.

Недостатком нитроцеллюлозных лаков является невысокая хим-, атмосферо- и термостойкость, а также токсичность и горючесть вследствие применения легковоспламеняющихся и токсичных растворителей (ацетона, бутилацетата и др). Для устранения этих недостатков и обеспечения блеска покрытиям нитроцеллюлозные лаки модифицируют другими смолами (КФО, алкидными), канифолью и др. Изделия, окрашенные нитролаками, преимущественно используются для работы внутри помещений, хотя могут быть получены и покрытия, способные противостоять атмосферным воздействиям.

В последние годы выпускают водные эмульсии нитролаков (нитроводные эмульсии), которые негорючи. В них соотношение воды и лака = ~ 50:50.

Хорошая совместимость нитроцеллюлозы с пластификаторами и пигментами делает ее излюбленным пленкообразующим веществом в лаках для дерева, для искуственной кожи и печатных красок. Кроме того, на базе НЦ выпускают лаки для ногтей.

7.2 Ацетаты целлюлозы (Ац)

Ацетаты целлюлозы получают обработкой целлюлозы уксусным ангидридом при невысокой температуре.

Получают триацетат целлюлозы, который плохо растворяется в органических растворителях. Он представляет собой порошок белого или светло-желтого цвета. Триацетат гидролизуют до получения диацетата целлюлозы, в котором содержание ацетатных групп составляет 50-55 %.

Из диацетата целлюлозы изготовляют ацетатные волокна и ткани (ацетатный шелк). Ацетатные волокна вдвое превосходят вискозные волокна по эластичности; поэтому ткани из них отличаются пониженной сминаемостью. Кроме того, ацетатные волокна приятны на ощупь, мягки, обладают способностью пропускать ультрафиолетовые лучи. Ацетатное штапельное волокно применяют для производства белья, для частичной замены шерсти при изготовлении тонких сукон и некоторых трикотажных изделий. Ацетатные ткани в небольших количествах применяют как покровный материал в производстве мягкой детской мебели, матрацов и др. изделий.

Из ацетатов целлюлозы производят негорючие лаки и негорючую кино- и фотопленку. В последние годы снова возрос спрос на очковые оправы из ацетата целлюлозы. Сейчас 50 % пластиковых оправ производится из ацетата целлюлозы.

8. ПОЛИМЕРНЫЕ КОМПОЗИЦИИ

Полимеры в чистом виде как однокомпонентные материалы практически не применяются 4, 6,7,15. Для достижения определенного сочетания свойств изделий, а также для снижения их стоимости в полимеры вводят целевые добавки, т.е. готовят полимерные композиции. Если добавки (отвердители, пластификаторы, стабилизаторы, антипирены и др.) образуют с полимером однофазную систему, то такие материалы обычно называют полимерными материалами. Если полимер или олигомер с добавкой (наполнителем, пигментом, порообразователем, гидрофобизатором и др,) образует двух-, трехфазную (и более) систему, то такие материалы называют полимерными композиционными материалами или полимерными композитами.

Добавки к полимерам выполняют различные функции. Выбор добавок зависит от дальнейшей области использования полимерной композиции и изделий на ее основе, а также от совместимости добавки с полимером и условий последующей переработки полимерной композиции в изделия.

Основным компонентом полимерной композиции является полимер или олигомер. Наряду с ним в состав композиций могут входить: наполнители, отвердители, пластификаторы, мягчители, стабилизаторы, красители, пигменты, антипирены, антистатики, порофоры (газообразователи), загустители, ускорители (сиккативы), инициаторы, гидрофобизаторы, растворители, разбавители и др.

Комплекс основных физико-химических и механических свойств изделий на основе полимерных композиций зависит в основном от свойств самого полимера или олигомера и наполнителя. Поэтому названия изделий из полимерных композиций зачастую исторически сформировались либо по названию полимера (полиамидный клей, поливинилацетатная дисперсия, глифталевые лаки и др.), либо по названию наполнителя: текстолит (изделие с тканевым наполнителем), стекловолокнит (изделие с наполнителем в виде стекловолокна), древолит (изделие, в котором наполнителем является древесный шпон).

Наполнители вводят в композиции для улучшения внешнего вида изделий, достижения определенных физико-механических свойств, снижения стоимости изделий. Среди наполнителей наиболее распространены твердые наполнители. По своей форме и распределению в полимере наполнители делятся на

- порошкообразные (мел, аэросил, древесная мука, сажа, тальк, порошковые лигносульфонаты и др.);

- волокнистые. Это обрезь натуральных (льняных, хлопковых, штапельных, асбестовых), синтетических (капрона, нейлона, лавсана, полиакрила, нитрона) и искусственных волокон (ацетатных, вискозных), обрезь стекловолокна, древесного волокна;

- крошкообразные (стружка, обрезь шпона, бумаги, опил, чешуйки слюды);

- слоистые (древесный шпон, бумага, стеклоткань и другие ткани).

По происхождению наполнители могут быть минеральные (слюда, тальк, мел, кварц, каолин, стекловолокно, стеклоткань и др.) и органические (бумага, целлюлозные волокна и ткани, древесный шпон, мука , стружка и опил, синтетические волокна и др.)

По характеру влияния на физико-механические свойства наполнители могут являться инертными и усиливающими. Инертные не оказывают влияния на свойства изделий, но снижают их стоимость и облегчают переработку композиции в изделия. Усиливающие повышают прочность, твердость, теплостойкость материалов, стойкость к истиранию и т.д.

В лакокрасочных материалах наполнители улучшают заполнение пор древесины, облегчают равномерное растекание пленкообразующего вещества по поверхности, а также предотвращают стекание лакокрасочного покрытия с подложки. Наполнители, которые не дают лакокрасочному слою стекать с поверхности изделия, называют тиксотропными добавками. В качестве такой добавки часто используют аэросил (высокодисперсный порошок диоксида кремния SiO2).

Отвердители - вещества, молекулы которых реагируют с функциональными группами олигомеров, обеспечивают протекание реакции сшивания (отверждения), т.е. переводят олигомер в пространственно-сшитый полимер. Молекулы отвердителей входят в структуру образующегося сшитого полимера. В качестве отвердителей используют параформ, уротропин (для отверждения новолаков), диамины и полиамины (для отверждения эпоксидных олигомеров), дикарбоновые кислоты, растительные («высыхающие») масла (для отверждения алкидных смол), мономеры ( стирол для отверждения ненасыщенных полиэфирных смол).

Инициаторы отверждения - вещества, под действием которых начинается сшивание, т.е. образование поперечных связей между молекулами олигомеров или полимеров по механизму полимеризации. Такими веществами служат пероксиды, гидропероксиды (ГИПЕРИЗ), азосоединения и др. инициаторы радикальной полимеризации.

Ускорители - вещества, ускоряющие действие инициаторов и, следовательно, ускоряющее отверждение, в частности, ускоряющие «высыхание» лаковых покрытий, отверждение клеевых швов. Это соли металлов переменной валентности: FeCl2, соли кобальта, свинца, марганца, ванадия и высших кислот (нафтенаты кобальта, резинаты кобальта и др.). В лакокрасочной отрасли ускорители отверждения называют сиккативы.

Ускорители отверждения под действием УФ-лучей называются сенсибилизаторы.

Соединения, добавки которых в композиции изменяют кислотность (т.е. рН ) среды, и ускоряют отверждение олигомеров, называются катализаторами отверждения. Они чаще всего применяются для ускорения отверждения жидких олигомеров. Катализаторами отверждения служат кислоты (соляная, серная, фосфорная, уксусная и др.), щелочи (едкий натр, едкое кали, аммиак и др.). Мягким (латентным) катализатором отверждения карбамидоформальдегидных смол является хлорид аммония. Катализаторы отверждения в отличие от инициаторов не входят в состав отвержденного полимера.

Пластификаторы - вещества, введение которых в полимерные композиции повышает эластичность, морозоустойчивость материала и облегчает его переработку в изделия. Молекулы пластификаторов проникают в фазу полимера, ослабляют межмолекулярное взаимодействие внутри полимера (ослабляют сцепление, т.е. когезию), повышают гибкость макромолекулярных цепей. Благодаря этому полимер переходит в размягченное состояние и затем в расплав при более низких температурах. (т.е снижаются температуры стеклования и текучести Тс и Тт ).

Пластификаторы должны хорошо совмещаться с полимером, должны быть нетоксичными, химически инертными по отношению к полимеру, без запаха, должны иметь высокую температуру кипения, чтобы длительное время не улетучиваться из изделия. В качестве пластификаторов используют высококипящие жидкости (дибутилфталат, диоктилфталат, соли фосфорной кислоты-фосфаты, простые и сложные эфиры гликолей и др.), модифицированные растительные масла (касторовое, соевое и др.), а также низкомолекулярные фракции полимеров (каучуки, ПВС и др.).

Мягчители - добавки инертного характера, действующие как разбавители, повышающие мягкость, гибкость и эластичность полимеров. Одновременно мягчители могут играть роль смазывающих добавок (смазок), предотвращающих прилипание полимерных композиций к оборудованию. В качестве мягчителей используют масла, канифоль, мазут, битумы. В качестве смазок применяют стеарин, парафин, олеиновую кислоту, мыла и др.

Стабилизаторы - добавки, повышающие устойчивость полимеров к действию кислорода воздуха, УФ-излучения, тепла, радиационного излучения, механического и других воздействий. Стабилизаторы замедляют старение полимеров и удлиняют сроки их эксплуатации. Количество вводимых стабилизаторов колеблется от десятых долей % до 3-5 %.

Стабилизаторы в зависимости от вида предотвращаемого старения ( окислительного, термического, УФ- или радиационного) подразделяют соответственно на антиоксиданты, светостабилизаторы, термостабилизаторы и антирады. Хорошими антиоксидантами и термостабилизаторами полимеров являются многоатомные фенолы, ароматические амины и серусодержащие соединения. Эффективными светостабилизаторами служат сажа, неорганические пигменты (ТiО2, сульфид цинка) и др. Для повышения радиацинной стойкости вводят ароматические соединения, такие как нафталин, антрацен и др.

Красители - добавки, вводимые в композиции для окраски и улучшения внешнего вида изделий. Данные добавки подразделяются на собственно красители и пигменты. Красители- вещества, которые расворяются в полимерной композиии; пигменты - мелкодисперсные порошки, которые только механически распределяются в композиции, образуя двухфазную систему с полимером. В лакокрасочных материалах чаще используют пигменты. Красители должны быть устойчивы к окислению, нагреванию и действию света. В деревообработке в основном используют красители и пигменты, имеющие оттенки различных пород древесины.

Антипирены - вещества, снижающие горючесть полимеров. В качестве антипиренов используют хлорированные парафины, аммонийные соли фосфорной кислоты, борную кислоту и ее соли, трехокись сурьмы, фосфорорганические соединения в совокупности с веществами, выделяющими аммиак и др.

Антистатики - соединения, введение которых в полимерные композиции уменьшает электризацию полимеров в процессе переработки и эксплуатации изделий. Действие антистатиков основано на повышении проводимости материалов и обеспечении утечки (стекания) зарядов статического электричества. Обычно антистатиками служат поверхностно-активные вещества и электропроводящие наполнители (сажа, графит, порошки металлов). Введение антистатиков осуществляют пропиткой материала, распылением антистатика или смешением компонентов в процессе приготовления композиции.

Порофоры - вещества, которые после введения в полимер при нагревании выделяют газообразные соединения (углекислый газ СО2, аммиак NН3, азот N2 и др.) в результате протекающих при нагревании химических реакций. Выделяющиеся газы вспенивают полимерный материал и создают в нем ячеистую структуру. Порофоры могут быть твердыми (карбонаты натрия и аммония Na2CO3, (NH4)2CO3, азосоединения), жидкими низкокипящими веществами (изопентан, фреоны, ацетон, эфиры ) и газообразными (воздух, углекислый газ, азот). Если ячейки вспененного материала изолированы и разделены друг от друга тонкими стенками, то материал называется пенопласт. Если ячейки сообщаются друг с другом, то материал называется поропласт. Плотность пенопластов ниже (=0,03-0,3 г/см3), чем поропластов (>0,3 г/см3).

В лакокрасочные материалы часто в композиции добавляют так называемые всплывающие добавки, чаще всего парафин. Пленка парафина на поверхности отверждаемого слоя защищает слой от тормозящего действия кислорода воздуха на процессы отверждения. Парафин, вводимый в полимерные композиции, играет также роль гидрофобизатора, т.е. вещества, повышающего стойкость материала к действию воды.

Загустители- вещества, введение которых в композиции повышает их вязкость, предотвращает стекание лакокрасочных материалов с подложки. В роли загустителей используют продукты модификации целлюлозы: коллоксилин, карбоксиметилцеллюлозу, а также минеральную добавку- аэросил.

Для растворения или разбавления пленкообразующих полимерных материалов служат растворители и разбавители. Чаще всего их применяют в виде многокомпонентных систем. В такие многокомпонентные растворители в различных соотношениях входят следующие соединения (таблица 9):

Таблица 9.

Растворители и разбавители, используемые для приготовления лакокрасочных материалов

Растворитель

Формула молекулы растворителя

Температура кипения растворителя, 0С

Ацетон

56

Этилацетат

70-80

Бутилацетат

112-135

Амилацетат

115-150

Этанол

78

Бутанол

114-118

Бензин ”калоша”

80-120

Бензин лаковый(уайт-спирит)

Смесь углеводородов

165-200

Ксилол

136-143

Толуол

109-111

Скипидар

Смесь терпенов, получаемых при отгонке живицы.

150-170

9. МЕТОДЫ ИДЕНТИФИКАЦИИ ПОЛИМЕРОВ

Вспомним еще раз, что идентификация полимеров (или олигомеров) - это установление тождества распознаваемого полимера (или олигомера) с известным соединением по достаточному числу признаков.

Идентификацию полимеров и олигомеров проводят в 2 этапа.

I этап - первичное предварительное установление природы вещества;


Подобные документы

  • Распространение в природе поверхностно-активных полимеров. Способы конструирования ПАВ. Полимеры с гидрофильной основной цепью и гидрофобными боковыми цепями. Уникальные свойства высокомолекулярных поверхностно-активных веществ.

    реферат [1,6 M], добавлен 16.09.2009

  • Общее понятие о полимерах. Процесс получения высокомолекулярных соединений. Биосовместимые материалы и устройства. Органические, элементоорганические, неорганические полимеры. Природные органические полимеры. Применение биоклеев в неинвазивной терапии.

    реферат [85,6 K], добавлен 23.04.2013

  • История развития науки о полимерах - высокомолекулярных соединений, веществ с большой молекулярной массой. Классификация и свойства органических пластических материалов. Примеры использования полимеров в медицине, сельском хозяйстве, машиностроении, быту.

    презентация [753,4 K], добавлен 09.12.2013

  • Основные исторические этапы развития высокомолекулярных соединений, вклад русских ученых в зарождение и развитие науки о полимерах. Термодинамические исследования свойств растворов полимеров. Основы теории поликонденсации. Молекулярная масса олигомеров.

    реферат [34,4 K], добавлен 11.12.2010

  • Общая характеристика, распространение и физико-химические свойства фенолгликозидов. Способы получения фенольных соединений из растительного сырья этанолом и метанолом. Методы выделения идентификации, качественное определение и распространение вещества.

    презентация [1,5 M], добавлен 27.02.2015

  • Понятие растворов высокомолекулярных соединений (ВМС). Процесс набухания ВМС: его стадии, причины, давление и степень. Вязкость дисперсных систем и растворов ВМС, методы ее измерения. Структурная и относительная вязкость. Коагуляционные структуры.

    реферат [52,4 K], добавлен 22.01.2009

  • Синтез и свойства N,S,О-содержащих макрогетероциклов на основе первичных и ароматических аминов с участием Sm-содержащих катализаторов. Гетероциклические соединения, их применение. Методы идентификации органических соединений ЯМР- и масс-спектроскопией.

    дипломная работа [767,1 K], добавлен 22.12.2014

  • Кремнийорганические полимеры: линейные; разветвленные; циклолинейные (лестничные); сшитые (в т.ч. циклосетчатые). Силиконовые масла и каучуки. Методы получения полиорганосилоксаны. Основные физические и химические свойства кремнийорганических полимеров.

    реферат [28,0 K], добавлен 16.12.2010

  • Производные пантоевой кислоты. Соли 4 (5Н) – оксазолония, их синтез и свойства. Методы синтеза и очистки исходных соединений, анализа и идентификации синтезированных соединений. Порядок проведения экспериментов и исследование полученных результатов.

    дипломная работа [237,2 K], добавлен 28.01.2014

  • Классификация высокомолекулярных соединений по происхождению: синтетические и природные (неорганические и органические). Кинетика процесса поликонденсации. Концепция аморфно-кристаллической структуры полимеров. Получение и применение полимерных кислот.

    контрольная работа [90,8 K], добавлен 26.08.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.