Радикальная сополимеризация акрилат- и метакрилатгуанидинов с виниловыми мономерами

Синтез новых сополимеров различного состава на основе акрилат- и метакрилатгуанидинов. Проведение радикальной полимеризации и сополимеризации водорастворимых мономеров: кинетические особенности реакций непредельных кислот в водных и органических средах.

Рубрика Химия
Вид диссертация
Язык русский
Дата добавления 27.12.2009
Размер файла 4,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Радикальная сополимеризация акрилат- и метакрилатгуанидинов с виниловыми мономерами

Введение

Развитие науки и техники выдвигает на современном этапе проблемы получения новых полимерных материалов с заданным комплексом свойств. Именно поэтому в последние десятилетия в области химии высокомолекулярных соединений интенсивное развитие получило создание и исследование синтетических полиэлектролитов. Они находят широкое применение в самых разных областях промышленности, техники, сельского хозяйства и медицины, и в дальнейшем их роль и значение, несомненно, будут возрастать.

Особый интерес представляет синтез новых сополимеров различного состава на основе акрилат- и метакрилатгуанидинов. Известно, что соединения, содержащие в своем составе гуанидиновую группу, обладают широким спектром бактерицидного действия и нередко используются в качестве лечебных препаратов, бактерицидов и фунгицидов. Введение гуанидиновой группы в полимерные продукты должно придавать им значительную биоцидную активность. Это особенно актуально для водных растворов флоккулянтов, в частности, полиакриламида, который в присутствии бактерий и плесени легко подвергается микробиологической деструкции.

При радикальной полимеризации и сополимеризации водорастворимых мономеров природа реакционной среды существенно влияет на кинетические параметры синтеза и характеристики образующихся сополимеров. Это обусловлено изменением реакционной способности реагирующих частиц вследствие их ионизации, сольватации, комплексообразования и межмолекулярных взаимодействий в реакционной среде. Поэтому осложнённый характер сополимеризации ионогенных мономеров также определяет актуальность изучения особенностей образования гуанидинсодержащих сополимеров с виниловыми мономерами.

Учитывая сказанное, синтез и исследование свойств новых гуанидинсодержащих сополимеров открывает новые возможности для синтеза полимеров с необходимым набором свойств для конкретной области применения. В связи с этим цель данной работы заключалась в исследовании возможности получения новых высокомолекулярных сополимеров на основе АГ и МАГ с акриламидом (АА) и мономалеинатом гуанидина (ММГ) в водных растворах и, с учетом этих результатов, направленном синтезе новых полимеров катионной природы с биоцидными свойствами, изучении механизма и кинетики особенностей этих реакций. Для достижения поставленной цели необходимо было решить следующие задачи:

1. Исследование возможности получения новых сополимеров на основе АГ и МАГ с АА и ММГ и синтеза на их основе новых катионных полиэлектролитов.

2. Установление основных кинетических закономерностей радикальной сополимеризации АГ и МАГ с АА и ММГ в водных растворах, определение констант сополимеризации и характеристической вязкости.

3. Изучение влияния строения и свойств полимеризующихся частиц на кинетику и механизм радикальной сополимеризации.

4. Исследование физико-химических, бактерицидных, токсикологических и флоккулирующих свойств синтезированных мономерных и полимерных продуктов.

ЛИТЕРАТУРНЫЙ ОБЗОР

Глава I. Кинетические особенности реакций радикальной полимеризации акриловой и мет-акриловой кислот в водных и органических растворителях

1.1 Водные растворы. Изменение рН растворов добавлением NaOH

К числу ранних работ, посвященных исследованию реакции полимеризации метакриловой кислоты (МАК) в водных растворах, относятся труды, выполненные в 50-е годы группой английских ученых [1, 2], в которых авторы выявили влияние рН реакционного раствора на общую скорость полимеризации МАК, где в качестве инициатора использовалась Н2О2. В указанных работах установлено, что в кислых средах при рН 2 скорость полимеризации МАК сильно уменьшается с увеличением рН (симбатно измененялись и молекулярные массы (ММ) образующихся полимеров), а при рН 5,5 полимеризация МАК не наблюдалась вообще.

Поскольку известно, что в исследованном диапазоне рН происходит увеличение степени ионизации мономера, Качальский и Блауэр высказали предположение [1, 2], что мономер МАК лишь в неионизованной форме способен участвовать в реакции роста цепей, т.е. «истинная» константа общей скорости полимеризации kр связана с наблюдаемой константой роста k соотношением kp = k/(1-), где - степень ионизации мономера. В других исследованиях [3, 4] авторы, использовавшие в качестве инициатора персульфат калия, показали, что полимеризация МАК в водных растворах происходит до высоких значений рН (около 13) [3]. Возможно, что Качальский и Блауэр не смогли установить это в более ранних работах вследствие того, что выбранный ими инициатор Н2О2 был неэффективен при более высоких (больше 6) значениях рН.

Выявив, что метакрилатанион легко сополимеризуется при pH = 7 с N,N-диэтиламино-2-этилметакрилатом и акрилонитрилом и основываясь на этих данных, Пиннер с сотрудниками пришли к выводу, что падение скорости полимеризации МАК с ростом pH в интервале pH = 2,5-6 можно объяснить сополимеризацией неионизованной МАК и метакрилатаниона, и связали наблюдаемое падение скорости полимеризации при увеличении pH с возрастанием содержания метакрилатаниона в исходной смеси [4].

В более поздних исследованиях Блауэр и сотр. [5, 6], измеряя кинетику полимеризации МАК, инициированной динитрилоазобисизомасляной кислотой (ДАК), показали, что при pH 6 полимеризация МАК также имеет место, и реакция при этом имеет первый порядок по концентрации мономера (при pH = 6; 9.5; 11). На основании этого авторы полагали, что первый порядок по мономеру сохраняется во всем интервале значений pH. Порядок скорости реакции по инициатору при pH = 10,6-11,6 оказался близким к 0,5. В щелочной области pH скорость полимеризации вначале несколько увеличивается с ростом pH, а затем снижается. Таким же образом изменяются и молекулярные массы полимеров. В этих работах впервые было установлено также, что при добавлении низкомолекулярных электролитов (нейтральных солей) в интервале pH = 6,8 - 9,6, скорость полимеризации ощутимо возрастает (табл. 1).

Таблица 1

Зависимость константы общей скорости полимеризации метакриловой кислоты от ионной силы раствора (61,4 С)

рН

Концентрация, моль/л

k105, сек-1

мономер

cоль (NaCl)

6,8

0,2

-

1,19

7,0

0,2

0,4

1,78

9,5

0,1

-

1,51

9,6

0,1

0,4

2,00

Для объяснения некоторого возрастания скорости полимеризации метакриловой кислоты в щелочной области Блауэр предположил, что с ростом рН уменьшается константа скорости бимолекулярного обрыва цепей из-за электростатического отталкивания заряженных макрорадикалов. Если это предположение верно, то увеличение ионной силы реакционных растворов при добавлении низкомолекулярных солей, способствуя столкновениям одноименно заряженных частиц, должно было бы привести к увеличению константы скорости бимолекулярного обрыва, т.е. к уменьшению общей скорости полимеризации. В то же время на опыте наблюдается обратное явление (табл. 1).

Кинетика полимеризации другой слабой непредельной кислоты - акриловой (АК) - в водных растворах изучалась японскими исследователями [7, 8]. И для этого мономера, как видно на (рис. 1), скорость полимеризации также зависит от рН реакционного раствора.

Авторами показано также, что увеличение ионной силы реакционного раствора при рН = 7,2, в результате добавления в него NaCl, как и в случае МАК, приводит к росту скорости полимеризации АК и увеличению ММ образующихся полимеров.

Наиболее полное и систематическое исследование кинетических особенностей и механизма реакций радикальной полимеризации АК и МАК в различных средах, в том числе в водных растворах, проводилось В.А. Кабановым, Д.А.Топчиевым и сотр. [9-21]. Ими было установлено, что в водных растворах во всем исследованном интервале рН (2,5-13,0) при использовании инициатора ДАК, как при полимеризации АК, так и для МАК, (рН раствора создавалось добавлением щелочи NaOH) сохраняется половинный порядок скорости реакции по концентрации инициатора, что свидетельствует о бимолекулярном механизме обрыва цепей. Первый порядок по концентрации мономера наблюдается при полимеризации МАК при рН 2,5. В случае же акриловой кислоты порядок по мономеру оказался равен 1,5. Аналогичные порядковые закономерности при полимеризации АК в водных растворах отмечались также и другими авторами [22, 23].

Детальное исследование кинетических особенностей и закономерностей радикальной полимеризации АК и МАК в водных растворах показало, что зависимость скоростей полимеризации указанных мономеров от рН реакционного раствора имеют вид, указанный на рис. 2.

Так, при полимеризации АК и МАК в водных средах, в интервале рН = = 2,5-7,0 наблюдается значительное падение скорости полимеризации соответствующих мономеров. Значения ММ образующихся полимеров изменяются симбатно. В соответствии со значением констант ионизации для АК рka= 4,2, а для МАК рka = 4,32 (эффективная константа ПАК рka = 6,4, ПМАК рka = 7,0), можно заключить, что в области pH 6 с увеличением pH реакционного раствора при полимеризации АК и МАК рост цепей происходит на незаряженных макрорадикалах поликислоты. В области рН 6 зависимость общей скорости полимеризации акрилат- и метакрилатанионов от рН, как было показано на рис. 2, носит экстремальный характер. С ростом рН в области рН = 7-11 и 7-12 соответственно, наблюдается возрастание общей скорости полимеризации и ММ образующихся полимеров. Важно, что скорость инициирования в интервале рН = 8-10 как в присутствии, так и в отсутствие низкомолекулярных неполимеризующихся солей, практически неизменна [15, 16].

Таким образом, наблюдаемое увеличение общей скорости полимеризации акрилат- и метакрилатанионов при возрастании рН в щелочной области или при увеличении ионной силы при фиксированном рН, как выяснилось, действительно вызвано возрастанием отношения констант скоростей элементарных реакций роста и обрыва цепей, т.е. величины kр/kо1/2.

На основании рассмотрения литературных и экспериментальных данных В.А.Кабанов и Д.А.Топчиев [14, 19-20], выдвинули гипотезу о кинетической роли ионных пар при радикальной полимеризации ионизирующихся мономеров. Для случаев полимеризации акрилат- и метакрилатанионов в водных растворах эта гипотеза была сформулирована и обоснована следующим образом. В водных растворах при рН 7 АК и МАК полностью

Рис. 1. Зависимость V/Vмин от рН при полимеризации АК в водных растворах.

[АК] = 0,5 моль/л; [I]=2,85 10-3 моль/л; 50 С

Рис. 2. Зависимость V/Vмин при полимеризации АК (1) и МАК (2) от рН

водного раствора, установленного добавлением NaOH. [АК] = 1,2 моль/л;

[ДАК] = 510-3 моль/л; Vмин = 410-6моль/лс; [МАК] = 0,92 моль/л;

[ДАК] = 510-4 моль/л; Vмин=1,1510-6 моль/лс; 60 С.

ионизованы, т.е. в реакционном растворе присутствуют только акрилат- и метакрилатанионы. ПАК и ПМАК в среднем значительно слабее соответствующих мономерных кислот и их ионизация с ростом рН происходит в щелочной области, т.е. наблюдаемым в этой области рН кинетическим эффектам сопутствует изменение химической природы растущих цепей. Возможность изменения эффективной реакционной способности макрорадикалов как раз и предусматривается данной гипотезой. Предполагается, что если ионизованные, т.е. отрицательно заряженные, макрорадикалы роста способны образовывать ионные пары с низкомолекулярными катионами, присутствующими в растворе, в частности, на концах растущих цепей, то это должно приводить к возрастанию скорости реакции роста цепи из-за снятия электростатического отталкивания между растущим радикалом и одноименно заряженным мономером. Тогда должно нивелироваться электростатическое отталкивание при сближении мономерных анионов с одноименно заряженными радикалами в актах роста цепи [19, 20].

Схема 1

С ростом рН должна увеличиваться вероятность образования ионных пар на концах растущих цепей, что в рамках гипотезы должно приводить к увеличению эффективной константы скорости роста kр. Действительно, в соответствии с данными работ [15, 16], повышение концентрации ионов Na+ при данной концентрации мономера и фиксированном значении рН раствора (рН 7) сопровождается увеличением общей скорости полимеризации [16]. (Понятие «ионная пара» используется в терминах Фуосса, т.е. предполагается непосредственный контакт сольватных оболочек противоположно заряженных ионов [20]).

Хорошо известно, что полианионы поликислот способны связывать низкомолекулярные противоионы в водных растворах [24]. Обычно сродство между противоположно заряженными низкомолекулярными ионами, например между Na+ и CH3COO-, в не слишком концентрированных водных растворах недостаточно для стабилизации ионных пар. Образование стабильных ионных пар наблюдается лишь в менее полярных органических растворителях. Однако в случае полиэлектролитов связыванию способствует электростатическое поле всего полииона. Поэтому при высоких степенях ионизации значительная часть противоионов оказывается иммобилизованной в полимерных клубках.

Характерно, что в условиях, когда растущие цепи не ионизованы, добавление низкомолекулярных солей, как показали кинетические исследования, не влияет на скорость полимеризации акрилат- и метакрилатанионов (табл. 2) [15, 16].

Таблица 2

Кинетические эффекты, наблюдаемые при добавлении низко-молекулярных солей при радикальной полимеризации акрилат- и метакрилатанионов (60 С)

Акрилатанион [М]=1,2 моль/л, [ДАК] = 510-3 моль/л

Метакрилатанион [М] = 0,92 моль/л, [ДАК] = 4,8510-4 моль/л

рН*

Низкомолеку-лярная соль

V105, моль/лсек

рН*

Низкомоле-кулярная соль

V105, моль/лсек

[]**

8,0

-

1,9

9,5

-

0,20

0,62

8,0

[NaCl]=2 моль/л

7,5

9.5

[КCl] = 0,9 моль/л

1,61

1,4

* рН установлен добавлением NaOH; ** в 0,02 N водном растворе NaOH.

Для получения прямой информации о влиянии рН и ионной силы раствора на константы скоростей элементарных стадий процесса, в работе [15] было проведено детальное кинетическое исследование фотополимеризации метакрилат- и акрилатанионов в водных растворах, рН которых устанавливали добавлением NaOH. Результаты проведеных исследований и измерений представлены в табл. 3 и 4.

Таблица 3

Константы скоростей элементарных реакций при полимеризации крилатаниона

рН

V106

моль/л с

Vин109

моль/л с

kp/k01/2, л1/2/моль1/2сек1/2

k010-8,

моль/л с

kр,

моль/л с

7,9

5,1

9,1

0,04

2,6

650

7,9*

25,0

9,1

0,20

2,6

3100

11,0

51,0

9,1

0,40

2,7

6600

13,6

21,0

9,1

0,17

2,8

2500

[М] = 1,2 моль/л; [ДАК] = 8,310-4 моль/л; 23 С.

*) 1,5 н р-р NaCl в воде

Таблица 4

Константы скоростей элементарных реакций при

полимеризации метакрилатаниона

рН

V106,

моль/л с

Vин109,

моль/л с

kp/k01/2, л1/2/моль1/2сек1/2

k010-8

л/моль с

kр,

л/моль с

8,0

4,2

8,9

0,046

2,1

670

13,6

12,0

8,9

0,130

2,3

1900

[М] = 0,92 моль/л; [ДАК] = 2,510-4 моль/л; 23 С.

Как видно из данных, представленных в этих таблицах, с повышением рН от 8 до 13,6 константа скорости роста kр возрастает примерно во столько же раз, во сколько и стационарная скорость процесса. Константа скорости обрыва при этом практически не изменяется, т.е. в согласии с гипотезой возрастание скорости полимеризации акрилат- и метакрилатанионов в щелочной области рН действительно вызвано увеличением константы скорости роста kр.

Практическое постоянство констант скорости бимолекулярного обрыва с ростом рН и при увеличении ионной силы раствора в щелочной области, установленное при полимеризации акрилат- и метакрилатанионов, можно объяснить, по мнению авторов, только допустив, что обрыв лимитируется диффузионными процессами. Поскольку гидродинамические размеры и, следовательно, скорость поступательной диффузии самих клубков заметно меняются в изученных интервалах изменения свойств реакционной среды, можно полагать, что лимитирующей стадией является диффузия друг к другу концевых звеньев двух макромолекулярных клубков, предварительно сблизившихся, согласно теории Норта [25, 26], на расстояние, меньше критического.

В кислой области (рН 6) при полимеризации АК и МАК рост цепей ведут незаряженные макрорадикалы поликислот и с ростом рН возрастает содержание ионизованного мономера - акрилат- и метакрилатаниона соответственно. Для выяснения причин наблюдаемого резкого падения общей скорости полимеризации МАК с ростом рН было оценено относительное изменение константы скорости роста цепи (использовали метод передачи цепи в присутствии меркаптоэтанола) и показано, что установленное падение общей скорости полимеризации обусловлено уменьшением константы скорости элементарной реакции роста цепи kр [21].

В результате измерений макроскопической вязкости модельных растворов, было установлено [21], что при изменении рН в интервале значений 2,5-5,5 гидродинамичекие размеры полимерных цепей, а, следовательно, и макрорадикалов не меняются заметным образом, следовательно не происходит изменения конформационного состояния растущих цепей в рассмотренном диапазоне рН. Вместе с тем, при повышении рН, в исследованных условиях, происходит ионизация МАК и меняется соотношение в исходном растворе двух, по существу различных мономеров: метакриловой кислоты и метакрилатаниона, способных присоединяться к неионизованным радикалам роста ПМАК. На основании данных, представленных в работе [27] (полученных при исследовании процесса сополимеризации МАК в водных растворах с другими сомономерами), известно, что МАК и метакрилатанион характеризуются различными значениями параметров реакционной способности Q и e. Поскольку концентрация метакрилатаниона в исследованном диапазоне рН увеличивается с ростом рН и считая (в соответствии с величиной константы ионизации МАК), что при рН 2,5 МАК полностью неионизована, а при рН 5,5 в реакционном растворе присутствует исключительно метакрилатанион, можно рассчитать отношение констант скоростей присоединения МАК и метакрилатаниона к неионизованному радикалу роста в рамках схемы Q-e :

,

где Q1 =2,34; e1 = 0,65 - константы для МАК.

Q2 = 1,36; e2 = -1,18 - для метакрилатаниона.

В действительности же, по данным работы [21], как видно, отношение констант равно лишь 0.5, а скорость полимеризации МАК в интервале рН = 2,5-5,5 падает примерно в 5 раз, т. е. экспериментальный результат не удается объяснить только различием классических параметров реакционной способности «сомономеров».

Причина наблюдаемого резкого уменьшения константы скорости роста цепей с увеличением рН от 2 до 6, как считают авторы [19-21], состоит в том, что по мере ионизации МАК концентрация сильно гидратированных метакрилат-анионов в относительно гидрофобных незаряженных клубках макрорадикалов ПМАК оказывается ниже их средней концентрации в растворе и, в то же время, в кислых средах можно ожидать преимущественной сорбции МАК в клубках ПМАК, т.е. повышения концентрации мономера в микрообластях, окружающих активные центры.

Интересные результаты о существенном влиянии природы катиона на эффективность константы сополимеризации в системе АК - акриламид в водных растворах приводились в работе Войнаровского и др. [28, 29], которые показали, что содержание звеньев акриловой кислоты в сополимере уменьшаются в ряду Li+ Na+ K+.

Обнаруженные эффекты авторы связали с электростатическими взаимодействиями заряженных макрорадикалов и противоионов (катионов металлов), отметив при этом, что чем сильнее заряженные макрорадикалы (звенья акрилатанионов) способны к связыванию с катионами металла, тем в меньшей степени электростатические отталкивания препятствуют присоединению акрилатанионов в актах роста цепей.

Ранее Крещенцев и др. [20] показали, что при связывании «мертвой» полиакриловой кислоты с ионами металлов степень ионного связывания изменяется в таком же порядке Li+ Na+ K+, уменьшаясь с возрастанием радиуса катиона.

Регулирование рН растворов добавлением аминов. Особый интерес представляют данные по изучению влияния на процесс полимеризации рассматриваемых мономеров различных нейтрализующих агентов, в том числе органических аминов, основность и строение которых можно широко варьировать.

Основные результаты исследования таких систем были получены в работах Топчиева, Кабанова и сотр. [9-20]. В качестве нейтрализующих агентов были выбраны при проведении кинетических исследований полимеризации МАК - изобутиламин (ИБА), этилендиамин (ЭДА), триэтиламин (ТЭА) и гидроокись аммония; при полимеризации АК - ТЭА и NH4OH. Было установлено, что во всех указанных системах сохраняется половинный порядок по инициатору (ДАК). По мономеру - при полимеризации МАК - установлен первый порядок, а полуторный порядок, при полимеризации АК. Было также показано, что скорость распада инициатора ДАК при полимеризации МАК не зависит от природы нейтрализующего агента и практически постоянна в исследованном интервале значений рН реакционных растворов [15].

Учитывая обнаруженную ранее особенность поведения акриловой кислоты, которая в отличие от МАК, характеризуется относительно высокой способностью к присоединению первичных и вторичных органических аминов по реакции Михаэля [30-32], при изучении полимеризации АК в воде в зависимости от рН был выбран ТЭА, влияние которого на кинетику полимеризации сравнивали с влиянием аммиака [15, 16, 19, 20].

Ход зависимости полимеризации АК и МАК от рН реакционного раствора имеет сложный характер. В области рН = 2-4,5 природа нейтрализующих агентов, как видно, практически не влияет на скорость полимеризации, и их роль, по мнению авторов [20], сводится только к ионизации мономера. С ростом рН происходит увеличение содержания метакрилат(акрилат)аниона (причины падения скорости полимеризации АК и МАК с ростом рН уже были обсуждены выше), а растущие полимерные цепи в рассматриваемом интервале рН не ионизованы.

При больших рН (5-10) зависимость скорости полимеризации МАК в случае добавления в реакционную систему ЭДА или NH4OH проходит через экстремум. Для системы МАК-ЭДА максимум скорости наблюдается при рН = 6,6, когда макрорадикалы ПМАК преимущественно еще не ионизованы (константы диссоциации ЭДА равны: рКa1 = 7,0; рКа2 = 10,0). Авторами было высказано предположение, что неионизованные аминогруппы ЭДА, присутствующие в реакционных растворах, в этих условиях способны, по-видимому, образовывать ассоциаты с неионизованными карбоксильными группами на концах растущих цепей. В таком случае переходное состояние в акте роста цепи для данной системы можно представить следующим образом (схема 2).

Поэтому можно ожидать, что электростатическое притяжение протонированной (второй) аминогруппы ЭДА и метакрилатаниона должно дополнительно способствовать присоединению метакрилатаниона к активному центру, связанному водородной связью с неионизованной аминогруппой ЭДА. Существенный вклад в стабилизацию таких ассоциатов могут также вносить гидрофобные взаимодействия. Однако, при переходе к нейтральным рН (6,8-7,5) концентрация подобных ассоциатов, очевидно, уменьшается (вследствие ионизации самих карбоксильных групп в звеньях растущих цепей), что приводит к падению скорости полимеризации.

Схема 2

В щелочной области рН присутствие ЭДА и ИБА (рК = 10,4) приводит к более резкому, чем при добавлении NaOH, возрастанию скорости полимеризации метакрилатаниона с ростом рН. В рамках гипотезы о кинетической роли ионных пар это можно объяснить тем, что при рН 7,5, когда макрорадикалы преимущественно ионизованы, происходит образование ионных пар на концах растущих цепей с участием карбоксилатанионов макрорадикалов и органических катионов, что способствует ускорению реакции роста цепи. В этих случаях, видимо, образованию ионных пар с участием этилендиаммония и изобутиламмония способствуют и гидрофобные взаимодействия, дополнительно стабилизирующие ионные пары.

По всей вероятности, гидрофобные эффекты ответственны также и за наблюдаемые значительные отличия в кинетике полимеризации акрилат- и метакрилатанионов в водных растворах, рН которых установлен добавлением триэтиламина. Существенно бульший кинетический эффект с ростом рН при полимеризации метакрилатаниона авторы связали с установленными ранее доказательствами того, что для цепей ПМАК гидрофобные взаимодействия существенно выше, чем для ПАК [33] и предположили, что именно такие взаимодействия дополнительно стабилизируют ионные пары на концах ионизованных радикалов роста ПМАК.

Интересные результаты были получены в ходе кинетических исследований полимеризации рассматриваемых кислот при использовании в качестве нейтрализующего агента слабого неорганического основания NH4OH. Авторами было установлено, что, как при полимеризации АК, так и для МАК наблюдается более резкое увеличение скорости полимеризации. Особенно значительно это увеличение проявляется при полимеризации метакрилатаниона.

Обнаруженные различия в скоростях полимеризации МАК и АК в области рН = 6-9 в присутствии NaOH и NH4OH [10, 12] авторы объяснили специфичностью связывания ионов Na+ и NH4+ с ПМАК, что вытекает из рассмотрения кривых титрования соответствующих поликислот [19]. Существенно больший кинетический эффект (с ростом рН) при полимеризации метакрилатаниона также связали с ярко выраженными гидрофобными свойствами ПМАК (по сравнению с ПАК), предположив, что и в случае добавления NH4OH в реакционные растворы так же, как и в случае ЭДА и ИБА, гидрофобные взаимодействия должны дополнительно стабилизировать ионные пары на концах ионизованных радикалов ПМАК.

В работах этих же авторов [10,12] был обнаружен также качественно другой тип влияния нейтрализующего агента при полимеризации МАК в водных средах, когда рН реакционного раствора создавался добавлением в него слабого органического основания - пиридина (Py) (рКа - 5,19). Полимеризация метакриловой кислоты от рН в присутствии пиридинийионов заметно отличается от аналогичной зависимости, обнаруженной в растворе NaOH и других изученных нейтрализующих агентов - ЭДА, ИБА, NH4OH. Во всех указанных случаях наблюдали падение скорости полимеризации с ростом рН до 4,5.

Характерной особенностью обнаруженной зависимости является наличие острого максимума в интервале рН = 3,5-4,0, причем скорость реакции оказывается на порядок выше скорости полимеризации метакриловой кислоты в растворе NaOH при тех же значениях рН ([МАК] = 0,92 мольл-1). Увеличение скорости происходит даже тогда, когда в растворах присутствует относительно небольшое количество пиридина. Для обеих концентраций максимальной скорости полимеризации соответствует исходное молярное отношение [Ру]/[МАК] = 0,23.

В качестве вероятных причин объясняющих аномальный ход кривой скорости полимеризации МАК, авторы рассматривают возможное влияние присутствующих в водном растворе линейных димеров МАК, о которых сообщалось в ряде работ [34, 35]. При этом было установлено, что в водных растворах карбоновых кислот имеются линейные димеры (схема 3), тогда как в неполярных растворителях присутствуют циклические димеры [36].

Схема 3

Увеличение скорости полимеризации МАК при рН = 3-4, сопровождаемое помутнением системы и выпадением полимера, обуславливается образованием донорно-акцепторного комплекса между ионизованным димером МАК (в котором система сопряженных связей играет роль донора электронов) и ионом пиридиния (акцептором электронов), который стабилизован гидрофобными взаимодействиями (схема 4).

Схема 4

В образовавшемся комплексе происходит перераспределение электронной плотности на двойных связях, что может привести к химической активации димера. Увеличение рН раствора до 5-6 приводит к ионизации второй молекулы мономера входящей в димер и, следовательно, приводит к разрушению комплекса и к резкому падению скорости полимеризации. Константы ионизации таких димеров выше констант ионизации соответствующих мономерных кислот. Основная роль в стабилизации линейных димеров принадлежит гидрофобным взаимодействиям алкильных групп [35].

Роль гидрофобных взаимодействий в рассматриваемом процессе была показана также при изучении кинетики полимеризации другой непредельной кислоты АК в водных растворах, рН которых были установлены добавление NaOH и пиридина. Известно, что гидрофобность АК существенно менее выражена, чем гидрофобность МАК. Оказалось, что изменение скорости полимеризации АК в интервале рН = 2-6 мало зависит от природы нейтрализующего агента, т.е. в присутствии пиридинийионов не происходит ускорения полимеризации АК.

В результате проведенных исследований данного явления, авторы заключили, что в рассмотренной системе реализуется случай взаимодействия саморегулирующегося активатора - пиридинийиона - с димером МАК, в результате чего образуется комплекс с более высокой реакционной способностью, чем у МАК.

Таким образом рассмотренные в данном разделе результаты изучения кинетики полимеризации метакрилат- и акрилатанионов в водных растворах оснований и органических аминов свидетельствуют о весьма слабом влиянии природы нейтрализующего агента на зависимость начальной скорости полимеризации непредельных кислот от рН реакционного раствора. В соответствии с выдвинутой гипотезой авторы [20] рассматривают это явление как результат специфичного влияния природы ионных пар на константу скорости роста цепи при полимеризации и растущий радикал ионизованной поликислоты-поликатиона, либо образованием комплекса ионизованных мономеров в водных средах (например, система МАК - пиридин).

1.2 Полимеризация непредельных кислот в водных и органических средах

В предыдущих разделах рассматривались основы кинетических закономерностей и особенностей реакции радикальной полимеризации мономеров акрилового ряда в водных растворах с изменением рН в присутствии различных нейтрализующих агентов. Анализ представленных литературных данных позволяет заключить, что обнаруженные кинетические особенности, главным образом, являются следствием специфических взаимодействий заряженных макрорадикалов и присутствующих в реакционном растворе низкомолекулярных противоионов.

Представляется также несомненно важным оценить влияние природы реакционной среды на процесс полимеризации рассматриваемых мономеров, в частности провести сравнительный анализ кинетических данных при полимеризации акриловых кислот в органических растворителях и в водных растворах. Данной проблеме посвящено значительное количество публикаций [37-43].

Известно, что при радикальной полимеризации непредельных кислот в органических растворителях важную роль играет электронодонорная способность растворителей, а, следовательно, степень сольватации мономера в реакционной системе. Для димерной формы непредельных кислот характерно большее значение Q1, т.е. большая реакционноспособность в рамках схемы Q-е, поскольку димерная форма характеризуется большей энергией стабилизации двойной связи по сравнению с мономерной.

Наиболее детальные количественные исследования об активирующей роли воды и Н-ионов на процесс полимеризации непредельных кислот и амидов принадлежат Абкину и сотр. [37-43].

В представленных работах авторы исследовали полимеризацию АК, МАК и фторакриловой кислоты (ФАК), инициированную фотохимическим распадом ДАК в следующих растворителях: воде, диметилформамиде (ДМФА), диметилсульфоксиде (ДМСО) (табл. 5).

Таблица 5

Параметры, характеризующие реакции роста и обрыва цепей при полимеризации МАК и АК в различных растворителях

(УФ, = 365 нм, 20 0С)

Раство-ритель

Мономер

kр 10-3,

л/(мольс)

Ер,

ккал/моль

Ар10-7,

л/(мольс)

k0 107,

л/(мольс)

Е0,

ккал/моль

А010-7,

л/(мольс)

Н2О

АК

ФАК

МАК

27,2

26,0

4,1

3,1

4,5

4,3

0,6

0,6

0,67

18

8,7

1,1

0

0,6

0,2

18

20

1,6

ДМФА

АК

ФАК

4,2

2,2

5,6

4,9

6,2

0,75

10

7,4

0

0,4

10

15

ДМСО

АК

ФАК

МАК

0,5

0,85

0,15

8,0

5,2

7,6

47

0,66

4,1

2,0

4,9

0,9

0

0,4

1,0

2,0

10,0

4,8

Как следует из табл. 5, при переходе от водных растворов к растворам ДМФА и, особенно ДМСО, и константа скорости роста цепи kр, и константа обрыва цепи k0 заметно уменьшаются (одновременно падает и скорость полимеризации).

Установлено, что данное явление не связано с увеличением диэлектрической проницаемости реакционной системы [44], поскольку при одинаковой концентрации воды скорость полимеризации в различных средах близка, хотя диэлектрическая проницаемость различается в весьма широких пределах.

Наибольшее изменение константы роста kр наблюдается при переходе от воды к ДМСО для АК (в 50 раз) и наименьшее для ФАК (в 30 раз). Обнаруженное влияние природы растворителей на кинетику радикальной полимеризации рассматриваемых непредельных кислот, по мнению авторов этих работ, связано со способностью конкретного растворителя разрушать димеры мономерных кислот и тем самым изменять их реакционную способность. Однако это предположение не представляется достаточно обоснованным, поскольку, как известно, содержание димеризованных молекул АК в ДМСО не превышает 10% (согласно криоскопическим измерениям). В воде АК находится в основном в виде отдельных молекул (концентрация димерной формы незначительна), то же относится и к ФАК, которая не обнаруживает склонности к ассоциативным взаимодействиям.

Поэтому только образованием димеров между молекулами акриловых кислот нельзя объяснить наблюдаемые кинетические эффекты при полимеризации акриловых кислот в различных растворителях. Влияние природы растворителя может быть связано с рядом причин, среди которых в первую очередь следует отметить следующие:

1. Образование донорно-акцепторных комплексов между полимерными радикалами и молекулами растворителя, приводящих к уменьшению реакционной способности радикалов.

2. Сольватация молекул мономера и полимерных радикалов или специфическое взаимодействие этих частиц с молекулами растворителя, в частности, за счет образования водородных связей, приводящих к изменению плотности электронов на С=С-связи мономера или неспаренного электрона в радикале, а следовательно, к изменению реакционной способности реагирующих частиц.

3. Изменение конформационных характеристик полимерных молекул в растворителях, обладающих различной растворяющей способностью по отношению к полимеру.

Отличительной особенностью полимеризации водорастворимых мономеров является гидрофобное взаимодействие, возникающее в водных растворах полимеров. Оно приводит к резкому различию кинетических параметров полимеризации этого класса мономеров в воде и растворах органических растворителей. Гидрофобное взаимодействие также обуславливает значительное уменьшение скорости полимеризации и величины kр при добавлении к воде уже небольших количеств органического растворителя вследствие предпочтительной сорбции органического растворителя полимерным клубком. Естественно, что образование межцепных ассоциатов в результате гидрофобных взаимодействий, а, следовательно, и их «каталитическое» воздействие должно зависеть от гидрофобности используемых мономеров.

Авторы рассматриваемых работ считают, что определенный вклад в наблюдаемые кинетические эффекты вносят и факторы, связанные с конформационным состоянием растущих цепей в указанном ряду растворителей (т.е. влияние изменения конформационного состояния макрорадикала при изменении природы растворителя на кинетику процесса вследствие изменения доступности полимеризующихся частиц к активным центрам). Не отрицая, в принципе, возможности вклада этого фактора в кинетику полимеризации в рассматриваемых системах, считается целесообразным также обратить внимание на следующее. Как было отмечено выше, для водных растворов (табл. 5) характерны значительно более высокие константы роста и обрыва цепей (одновременно и более высокие скорости полимеризации). Эти же эффекты наблюдали и для некоторых других водорастворимых мономеров. Поэтому можно предположить, что причиной этого может быть большая сольватация (по сравнению с органическими растворителями), т.е. гидратация полимеризующихся частиц в водных средах. Разные мономеры могут характеризоваться разной степенью сольватации. Нетрудно допустить, что в рассматриваемом ряду мономеров именно для АК должна наблюдаться склонность полимеризующихся частиц - молекул мономера и макрорадикалов - к гидратации в водных растворах. Неудивительно, что при переходе от ДМСО к воде наибольшие кинетические эффекты обнаруживаются при полимеризации АК. При обсуждении вопроса о сравнительной реакционной способности рассматриваемых мономеров в различных растворителях, полезно было бы иметь соответствующие данные по сополимеризационной активности этих мономеров.

Интересные результаты при исследовании водородной связи в условиях гетерофазной полимеризации АК и МАК были получены Шапиро и сотр., когда полимеризация инициировалась радиационно-химически [45-47]. Оказалось, что растворители, способные к образованию водородной связи - диоксан, СН3СООН, метанол, вода - мало влияют на скорость полимеризации АК в гетерофазной области, тогда как углеводородные растворители - толуол, гексан, являющиеся осадителями по отношению к ПАК, приводят к резкому падению скорости полимеризации АК и уменьшению длины образующихся цепей. При полимеризации МАК отмеченные выше эффекты проявляются в существенно меньшей степени.

Авторы предполагают, что растворители первой группы увеличивают время жизни линейных ассоциатов АК, сшивая их, а растворители второй группы (углеводородные) смещают равновесие в сторону димерной формы [45-47]. Вопреки мнению авторов, трудно предположить, что растворители, способные к образованию Н-связи и участию в смешанных ассоциатах, не разрушают, а упрочняют линейные ассоциаты АК и что уменьшение относительного количества линейных ассоциатов АК достаточно для снижения скорости полимеризации АК почти на порядок. Поэтому более вероятным представляется объяснить обнаруженные кинетические эффекты в терминах изменения констант бимолекулярного и мономолекулярного обрыва растущих цепей.

Приведенные выше результаты убедительно показывают, что природа растворителя - важный фактор, определяющий ход радикальной полимеризации водорастворимых мономеров. Влияние растворителя в случае водорастворимых мономеров существенно выше, чем в случае радикальной полимеризации таких малополярных мономеров, как, например, стирол. Особенно большое изменение как общей скорости реакции, так и величины kр наблюдается при переходе от полимеризации в органических растворителях к полимеризации в водном растворе.

1.3 Сополимеризация

Свободнорадикальной сополимеризацией АА, МАА и соответствующих N-замещенных амидов с другими мономерами получают линейные разветвленные и сшитые сополимеры, растворимые в воде или органических растворителях. Карбоцепные полиамидные гомо- и сополимеры превосходят соответствующие сложноэфирные аналоги по прочностным свойствам, имеют более высокие температуры стеклования, труднее гидролизуются. Показано также [48], что исходные амидные мономеры СН2 =CRCONR'R" отличаются от близких по строению сложных эфиров большей скоростью полимеризации.

Технология получения акриламидных сополимеров в основном такая же, как и гомополимеров. Однако сополимеризация АА или МАА с различными мономерами протекает, медленнее, чем гомополимеризация акриламидов, что может повлечь за собой повышение содержания в сополимерах остаточных мономеров, обычно являющихся токсичными. Нежелательным является также образование при сополимеризации полимеров с меньшей средней ММ, чем при гомополимеризации АА. Это обусловлено более высокими значениями константы передачи цепи kМ на сомономеры, чем на АА, для которого значение kМ очень незначительно.

Основные типы сополимеров

На основе акриламидов получен большой ассортимент как ионогенных (катионных и анионных), так и неионогенных сополимеров.

К наиболее распространенным водорастворимым катионным сополимерам относятся сополимеры АА с N-(диалкиламиноалкил)акрилатами и метакрилатами (в первую очередь, с NN-диметиламиноэтилметакрилатом) в нейтрализованной или квартернизованной форме. В последнее время стали привлекать внимание аналогичные сополимеры с N-(диалкиламиноалкил)-акриламидами. Сополимеры с N-(диме-тиламинопропил)метакриламидом превосходят сополимеры с диметиламиноалкилметакрилатами по устойчивости к гидролизу в щелочной среде.

Анионные сополимеры получают сополимеризацией АА или МАА, в первую очередь, с АК или МАК и их солями. Из МАА и МАК в промышленности получают сополимер "Метас", применяемый как защитный реагент в буровой технике и для других целей. Полимеры, макромолекулы которых состоят из элементарных звеньев амида и соли АК, или МАК, образуются и в результате гидролиза ПАА и ПМАА, I, а также при полимеризации АА и МАА в присутствии гидролизующих, агентов. Однако эти полимеры отличаются от сополимеров АА, полученных радикальной сополимеризацией, характером распределения элементарных звеньев в макромолекулах. Анионные сополимеры, водные растворы которых обладают повышенной устойчивостью к разделению фаз под действием двухвалентных металлов, синтезированы сополимеризацией АА с мономерами, в которых кислотная группа непосредственно не связана с винильной группой, например с 3-акриламидо-3-метилбутаноатом натрия и 2-акриламидо-2-метилпропансульфонатом натрия. Сополимеры N-н-алкилакриламида (алкильная группа - C8, С10, С12) и З-акриламидо-З-метилбутаноата натрия образуют водные растворы, вязкость которых не уменьшается под действием электролитов [49].

При сополимеризации 2-акриламидо-2-метилпропансульфокислоты со стиролом [50] и с 9-винилфенантреном или 1-винилпиреном [51] в органических растворителях получены полимеры, в состав которых входят как гидрофильные, так и гидрофобные сегменты, причем первые (в виде солей) обладают высокой способностью солюбилизировать вторые в воде. Эти сополимеры служат средой для фотосенсибилизированных реакций переноса электрона. Широко известны сополимеры АА с n-стиролсульфокислотой и ее солями [52].

Среди ионогенных акриламидных сополимеров все больший интерес представляют полиамфолиты. Так, сополимеризацией в воде АА с метакрилатом натрия, 5-винил-1,2-диметилпиридинийметилсульфатом и NN-метилен-бис-акриламидом получены набухающие и коллапсирующие полиамфолитные сетки [53, 54]. Полиамфолиты синтезированы из смесей мономеров, содержащих соли ("сомономеры"), катион и анион которых имеют винильные группы, участвующие в сополимеризации, например, 3-метакрил-амидопропилметиламмоний, 2-акриламидо-2-метилпропансульфонат [55, 56].

На основе акриламидов получают различные неионогенные сополимеры. К ним относятся сополимеры АА или МАА с N-замещенными акриламидами, не содержащими или содержащими в заместителе функциональные группы, сополимеры, для получения которых используются только замещенные амиды, сополимеры АА и МАА с б, в-ненасыщенными нитрилами, сложными эфирами и другими мономерами.

АА сополимеризуют c N-n-алкилакриламидами (алкильная группа - C8, С10, С12) для получения "гидрофобно ассоциирующих" полимеров. Наличие в сополимерах всего 0,25 - 0,5% (масс.) звеньев вторых мономеров способствует сохранению или даже увеличению вязкости водных растворов полимеров при добавлении к ним электролитов [57, 58].

На основе АА и N-(1,1-диметил-3-оксобутил)акриламида получают сополимеры, предельные числа вязкости которых при нулевом сдвиге возрастают в результате добавления одно- и двухвалентных солей. Предположено, что этот эффект связан с наличием в макромолекулах циклов за счет образования водородных связей [59].

Для межмолекулярного сшивания полимеров на основе АА, замещенных акриламидов и других мономеров широкое применение находят N,N'-метилен-бис-акриламид, N,N' -метилен-бис-метакриламид и другие мономеры на основе АА, содержащие две и более полимеризующихся группы. С увеличением доли сшивающих агентов в смеси мономеров снижается степень превращения, при которой эти агенты вызывают образование геля.

На основе АА и акрилата натрия с применением аллилового эфира карбоксиметилцеллюлозы в качестве полифункционального сшивающего агента синтезированы гидрогели с большой степенью набухания (влагоабсорбенты), причем набухшие гидрогели имели хорошие деформационно-прочностные характеристики [60].

Для получения термореактивных ариловых и других полимеров в макромолекулы путем сополимеризации часто вводятся элементарные звенья N-гидроксиметакриламида или N-гидроксиметилметакриламида [61, 62]. Структурированию полимеров, содержащих N-гидроксиметиламидные группировки, способствует наличие в макромолекулах незамещенных амидных групп. При сополимеризации акрилонитрила и 0,5 - 0,7% N-гидроксиметил-метакриламида в отсутствие [63] или в присутствии 1-8% АА [64] образуются термически сшиваемые волокнообразующие сополимеры. При сополимеризации метилметакрилата, N-гидроксиметилметакриламида и N,N'-метилен-бис-метакриламида может быть получено модифицированное органическое стекло [61].

К новым направлениям синтеза сополимеров АА относится сополимеризация АА с макромономерами (Мn = 1100-4600) строения

СН2=СНСООСН2СН2S(СН2СН)nН

|

СООС12Н25

синтезированными теломеризацией додецилакрилата в присутствии 2-мер-каптоэтанола в качестве телогена с последующим ацилированием теломеров акрилоилхлоридом. При этом получены сополимеры с соотношением элементарных звеньев в основной цепочке 160 : (2,5-1) [65].

Закономерности сополимеризации

Закономерности сополимеризации определяются, в первую очередь, строением исходных мономеров и средой, в которой проводится процесс. Оба фактора в полной мере проявляются при сополимеризации непредельных амидов. Для «классических» вариантов сополимеризации вклад этих факторов оценивается по их влиянию на скорость сополимеризации, степень полимеризации и относительные активности мономеров (константы сополимеризации) r1 и r2 . При этом r1 =k11/k12 и r2 =k22/k21 , где k11 , k12 - константы скоростей реакций макрорадикала М1 с «собственным» (M1) и «чужим» (М2) мономерами; k22, k21 - константы скоростей реакций макрорадикала М2 с мономерами М2 и M1.

Показателями активности мономеров при сополимеризации, как известно, являются также полуэмпирические параметры Q и е, предложенные Алфреем и Прайсом и характеризующие резонансный (наличие сопряжения) и полярный эффекты соответственно. Необходимо отметить, что многие реальные процессы полимеризации и сополимеризации с участием АА и замещенных акриламидов; являются осложненными («особыми») процессами [66, 67]. Поэтому приводимые значения r1, r2, Q1, Q2, е1, е2, k11, k12, k22, k21 часто представляют собой усредненные (эффективные) величины.

Влияние строения акриламидов на их реакционную способность при сополимеризации. Реакционная способность замещенных АА изменяется в широких пределах в зависимости от природы заместителей. Влияние последних выражается в виде полярного, резонансного и стерических эффектов. Рассматривая сополимеризацию в ряду замещенных непредельных амидов, удается вывести закономерности влияния отдельных эффектов и в тех случаях, когда одновременно значительное влияние оказывают и другие эффекты.

При исследовании радикальной сополимеризации АА с МАА было найдено, что при 25 °С r1 = 0,74 ± 0,11 и r2 = 1,1 ± 0,2. Несколько большую реакционную способность второго мономера связывают с тем, что замещение а-водородного атома в АА метальной группой приводит к повышению стабильности переходного состояния за счет сверхсопряжения. Вместе с тем, при взаимодействии с одним и тем же мономером метакриламидный радикал значительно менее реакционноспособен, чем акриламидный.

В данном случае определяющую роль, играет стерический эффект [68], При взаимодействии с ММА-радикалом N-арилметакриламид также оказался более активным, чем имеющий тот же заместитель АА [69].

При сополимеризации замещенных акриламидов CH2=CHCONR'R" с АН в среде ДМФА величина r1 уменьшается в том же ряду, в котором изменяется скорость гомополимеризации этих же амидов (даны R' и R")[70]:

Н, СН3 > Н, Н > Н, н-С4Н9 > С6Н5 , С6Н5 ? СН3 , СН3 .

Реакционные способности пара-замешенных N-фенилметакриламидов (1/r2) при сополимеризации в массе этих мономеров с ММА (М2) также убывают с уменьшением электронодонорной и увеличением электроноакцепторной способности пара-заместителя [71]:

СН3О > СН3 > Н > Сl.

При изучении сополимеризации N-замещенных метакриламидов с АН были установлены линейные зависимости реакционных способностей lg(l/r2) 4-замещенных N-фенилметакриламидов от о-констант Гаммета и N-алкил-метакриламидов и N-фенилметакриламида от о-констант Тафта. Константы, характеризующие резонансный (BR) и стерический (Es) эффекты в уравнениях Гаммета и Тафта, не оказывали заметного влияния на значение 1/r2, т.е. изменение реакционных способностей рассматриваемых мономеров зависит в основном от полярного эффекта заместителей. Малые абсолютные значения р (-0,13) и р* (-0,033) в уравнениях Гаммета и Тафта характерны для гемолитических реакций. Отрицательные же значения этих констант, как и константы р* для реакции N-монозамещенных амидов с метилметакри-латным радикалом [72], связаны с тем, что при переходе к амиду с более электроноакцепторным заместителем уменьшается его реакционная способность по отношению к акрилонитрильному или метилметакрилатному радикалам, у которых заместитель также является электроноакцептором [70]. Следует отметить, что в ИК-спектрах N-моноэамещенных амидов полосы поглощения С=С и С=О смещаются в сторону более длинных волн с ростом электронодонорных свойств заместителей [72].

При изучении бинарной сополимеризации 1-акриламидо-1-дезокси-D-глюцита и 1-дезокси-1-метакриламидо-D-глюцита с различными виниловыми мономерами найдено, что при использовании винилацетата в качестве сомономера решающую роль играет наличие резонансной стабилизации в молекуле первого мономера и ее отсутствие во втором (r1> r2); в случае же, когда оба мономера являются сопряженными (М2 - СТ, ММА), способность к сополимеризации определяется главным образом тем, что в первом мономере стерические препятствия играют значительно большую роль, чем во втором (r1 << r2) [73].


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.