Проектирование и строительство двух воздушных линии электропередачи (500 кВ)

Проведение инженерно-геологических изысканий для обеспечения информацией, необходимой для строительства трассы ВЛ 500 кВ. Геолого-геоморфологическая характеристика района строительства. Буровые работы, изучение геологического разреза, отбор проб грунта.

Рубрика Геология, гидрология и геодезия
Вид дипломная работа
Язык русский
Дата добавления 08.12.2010
Размер файла 4,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ГОУ ВПО Иркутский государственный технический университет

Геологоразведочный техникум

Пояснительная записка

К ДИПЛОМНОМУ ПРОЕКТУ

Тема проекта: Проектирование и строительство двух воздушных линии электропередачи (500 кВ) - от строящейся Богучанской ГЭС до подстанции «Ангара», 1-ая воздушная линия. Стадия «Проект».

Проектировал: ст. гр. Гг-07-1 Лоншаков Г.С. ( )

Руководитель: куратор гр. Гг-07-1 Ильина А.А. ( )

Консультант: Загороднюк А.А. ( )

Консультант: Губенский А.П. ( )

Допущен к защите:«_____» _________________ 2010 г.

Зам. директора по учебной работе__________________

Иркутск

2010

СОДЕРЖАНИЕ

  • ВВЕДЕНИЕ

ОБЩАЯ ЧАСТЬ

1. ХАРАКТЕРИСТИКА ПРИРОДНЫХ УСЛОВИЙ РАЙОНА РАБОТ

1.1 Физико-географические условия района работ

1.2 Краткая характеристика климата

2. ХАРАКТЕРИСТИКА ТРАССЫ ВЛ

3. ПЕРЕХОД ЧЕРЕЗ Р. КАРАБУЛА

4. ГЕОЛОГИЧЕСКИЕ УСЛОВИЯ РАЙОНА

4.1 Инженерно-геологическая изученность района

4.2 Геолого-геоморфологическая характеристика района строительства…

4.2.1 Стратиграфия

4.2.2 Магматизм

4.2.3 Тектоника

4.3 Гидрогеологические условия

4.4 Инженерно-геологический очерк

ПРОЕКТНАЯ ЧАСТЬ

5. ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИЕ РАБОТЫ

5.1 Задачи, объемы и виды работ

5.2 Методика выполнения запроектированных видов работ

5.2.1 Подготовительный период

5.2.2 Рекогносцировочное обследование

5.2.3 Буровые работы

5.2.4 Опробование грунтов несущей толщи

5.2.5 Лабораторные исследования физико-технических свойств грунтов

5.2.6 Топогеодезические работы

5.2.7 Камеральные работы

6. ГЕОФИЗИЧЕСКИЕ РАБОТЫ

7. ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ

8. БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ

9. ЗАКЛЮЧЕНИЕ

ЭКОНОМИЧЕСКАЯ ЧАСТЬ

10. ОРГАНИЗАЦИЯ РАБОТ

11. РАСЧЕТ ТЕХНИКО-ЭКОНОМИЧЕСКИХ ПОКАЗАТЕЛЕЙ

12. СМЕТНО-ФИНАНСОВЫЕ РАСЧЕТЫ

13. ЗАКЛЮЧЕНИЕ ПО ЭКОНОМИЧЕСКОЙ ЧАСТИ

14. Список использованной литературы

  • ВВЕДЕНИЕ
  • Целью данного дипломного проекта является проведение инженерно-геологических изыскании для обеспечения необходимой информацией необходимой для строительства ВЛ 500 кВ. Инженерно-геологические изыскания будут выполнены от Уг.13 до Уг.23. Общая протяженность трассы 60 033 м.

Территория объекта находится в Богучанском районе, Красноярского края. Село Богучаны расположено в 580 км к северо-востоку от г. Красноярска и является центром развитого района. Сообщение между районным центром и г. Красноярском осуществляется по автодороге, воздушным и речным транспортом. Ближайшие населенные пункты: п. Ярки, п. Ангарский, п. Гремучий, ж/д станция «Карабула». Населенные пункты соединяются между собой автодорогами. Основной водной артерией является р. Ангара. Через р. Ангара в летнее время действует паромная переправа, зимой перевозки грузов и населения осуществляются по льду.

Территория характеризуется довольно развитой сетью путей транспорта. Основными транспортными магистралями являются наземные пути, основу которых составляют дороги общего пользования и лесовозные дороги с твердым покрытием.

Инженерные изыскания обеспечивают надежную и безопасную эксплуатацию объекта на весь срок эксплуатации, изучение инженерно-геологических и гидрогеологических условии в районе строительства трассы, выявляют последствия строительства проектируемого объекта в плане взаимодействия с окружающей средой и помогают разработать способы борьбы с ними, выявляют развивающиеся на площадке опасные геологические процессы различного характера и способы защиты проектируемого сооружения от их влияния.

Для выполнения изыскании под строительство ВЛ 500 кВ «Богучанская ГЭС-ПС Ангара» запроектированы:

- проектно-сметные, организационные и подготовительные работы;

- топогеодезические работы, с целью привязки трассы к пунктам государственной геодезической сети, разбивки трассы на пикеты, выноса в натуру и привязки мест заложения буровых выработок;

- рекогносцировочные обследования, с целью первичного исследования трассы ВЛ, характера развития геологических процессов и явлении, выявления условии проходимости;

-буровые работы, с целью детального изучения геологической среды, с сопутствующими работами - гидрогеологические исследования, опробование скважин и их крепление;

- отбор монолитов, с целью изучения физико-механических свойств грунтов слагающих несущую толщу;

- геофизические работы, с целью дополнительного изучения геологического строения несущей толщи, определения кажущегося сопротивления грунтов для проектирования заземления опор;

- ликвидация работ, с целью сохранения природных условий площадки строительства;

- камеральная обработка результатов бурения, геофизических работ и лабораторных исследовании, составление отчета.

Инженерно-геологические изыскания на стадии рабочей документации будут выполнены ООО «Сибстройизыскания+».

Все виды работ будут производится в соответствии с требованиями действующих нормативных документов и государственных стандартов по инженерным изысканиям (СНиП 2.02.01-83, 11-02-96; СП 11-105-97, ГОСТ 25100-95, 12071-84, 5180-84, СНиП 11-104-97, ПТБ-88, «Руководство по инженерным изысканиям трасс воздушных линий электропередачи 35-1150 кВ).

Графическое оформление и составление проекта выполнены на персональном компьютере в программах «Microsoft Office Word, Exel», «CREDO» и «AutoCAD-2008».

Проект составлен в электронном виде и на бумажном носителе.

ОБЩАЯ ЧАСТЬ

1. Характеристика природных условий района работ

1.1 Физико-географические условия района работ

В административном отношении площадь работ входит в состав Богучанского района Красноярского края. Село Богучаны расположено в 580 км к северо-востоку от г. Красноярска и является центром развитого района. Сообщение между районным центром и г. Красноярском осуществляется по автодороге, воздушным и речным транспортом. Ближайшие населенные пункты: п. Ярки, п. Ангарский, п. Гремучий, ж/д станция «Карабула». Населенные пункты соединяются между собой автодорогами. Основной водной артерией является р. Ангара. Через р. Ангара в летнее время действует паромная переправа, зимой перевозки грузов и населения осуществляются по льду.

В географическом отношении район работ расположен в юго-западной части Средне-Сибирского плоскогорья и представляет собой холмистое, холмисто-грядовое густорасчлененное плато.

Территория характеризуется довольно развитой сетью путей транспорта. Основными транспортными магистралями являются наземные пути, основу которых составляют дороги общего пользования и лесовозные дороги с твердым покрытием.

Речная сеть рассматриваемой территории широко развита и относится к бассейну р. Енисей. Основной водной артерией является Ангара с ее многочисленными притоками.

Река Ангара вытекает из оз. Байкал и впадает в р. Енисей справа, в 83 км выше г. Енисейска. Длина реки - 1 779 км, общая площадь водосбора - 1 039 тыс. км2. Бассейн Ангары вытянут с юго-востока на северо-запад и занимает площадь 468 тыс. км2 без бассейна оз. Байкал. На юге он граничит с притоками оз. Байкал, на западе и севере - с р. Енисей, на востоке - с р. Лена.

Река Ангара зарегулирована тремя водохранилищами: Иркутским с 1957 г., Братским с 1961 г. и Усть-Илимским с 1974 г. Заполнение Усть-Илимского водохранилища продолжалось до 25 мая 1977 г. Создается Богучанское водохранилище в 121 км выше с. Богучаны.

Уклон поверхности в пределах участка принимается 0,00013, продольный профиль русла ступенчатый, порожистый.

В период летне-осенней межени средняя скорость течения в русле на участке строительства колеблется от 0,7 до 1,2 м/с, наибольшая может достигать 1,2-1,8 м/с.

В период весеннего половодья средняя скорость может достигать 1,4-1,6 м/с, наибольшая до 2,4 м/с. В зимний период средняя скорость в русле может колебаться от 0,2 до 1,1 м/с, а наибольшая - 0,3-1,5 м/с.

Мощность рыхлых отложений в русле не превышает 5,0 м, в среднем принимается 2,0 м.

Подземные воды имеют распространение по долинам рек и ручьев, в аллювиальных отложениях. Глубина их залегания от 0,0 до 2,0 - 5,0 м и глубже.

Гидрохимическая характеристика реки составлена по данным наблюдений за химическим составом воды у с. Богучаны. Гидрохимический режим Ангары характеризуется малыми изменениями минерализации воды в течение года. На пике половодья вода очень мало минерализована, сумма ионов составляет менее 100 мг/л. В период летне-осенней межени вода малой минерализации с суммой ионов до 200 мг/л. В период зимней межени минерализация повышается до средней, с суммой ионов до 300 мг/л. Вода относится к гидрокарбонатному классу группы кальция. Вода очень мягкая на пике половодья и становится мягкой в период межени, жесткость не превышает 3 мг-экв/л. Содержание органических веществ в воде Ангары среднее, перманганатная окисляемость составляет 5-9 мг О/л и только во время сильных подъемов уровней окисляемость возрастает до 19-34 мг О/л, составляя 44-46% бихроматной. Цветность воды в зимнюю межень равна 9-240, в половодье - 75-1320. Концентрации биогенных веществ, как правило, не превышают предельных. В половодье наблюдается повышенное содержание железа (0,5-1,5 мг/л). Содержание растворенного кислорода колеблется от 6,45 до 14,7 мг/л, содержание СО2 от 2,1 до 36 мг/л; рН колеблется в течение года от 6,8 до 7,85. Бикарбонатная щелочность в весеннее половодье составляет 47,3-73,4 мг/л, в межень 76,4-91,1 мг/л. При очень малой минерализации вода Ангары обладает выщелачивающей углекислой агрессивностью. Ангара у с. Богучаны подвергается загрязнению сточными водами очистных сооружений пос. Кодинска, речфлотом и лесосплавом. Максимальные концентрации загрязняющих веществ нефтепродуктов составили 1,2 мг/л (24 ПДК), фенолов - 0,018 мг/л (18 ПДК), азота аммонитного - 0,54 мг/л.

Пределы колебаний величин основных показателей качества воды р. Ангара - с. Богучаны приведены в таблице 1.

Таблица 1

Показатель

Форма выражения

Весенне половодье

Межень

Минерализация

мг/л

78,3-121

129-157

Концентрация ионов водорода

мг/л

7,25-7,65

7,15-7,85

Кислород

мг/л

7,68-12,4

6,45-14,7

Бикарбонатная щелочность

мг/л

47,3-73,4

76,4-91,1

Спав

мг/л

1,01

0-0,03

Нитратный азот

мг/л

0

0-0,42

Нитритный азот

мг/л

0

0-0,012

БПК5

мг/л

0,3-2,0

0,5-2,8

БПК20

мг/л

-

7,39

Нефтепродукты

мг/л

0,44-0,52

0-1,20

Фенолы

мг/л

0,001-0,013

0,002-0,018

Содержание органических веществ по ХПК

мг/л

24,4-37,0

11,9-27,0

1.2. Краткая характеристика климата

1.2.1 Климатические характеристики по результатам изучения и обследования

Трасса ВЛ 500 кВ расположена в бассейне р. Ангары, в юго-западной части Среднесибирского плоскогорья и характеризуется крупнохолмистым рельефом, изрезанным долинами рек. Река Ангара в этом месте имеет направление преимущественно с востока на запад и является естественной границей, разделяющей Заангарское плато (расположено к северу от реки Ангара с высотами местности 400-800 м, максимальная отметка -1104 м) и Приангарское плато (расположено к югу от реки Ангара с высотами местности 200-400 м, максимальная отметка - 504 м). С запада Заангарское и Приангарское плато ограничены Енисейским кряжем (высота в центральной части 800 - 900 м, максимальная отметка - г. Енашимский Полкан, 1104 м), который тянется с юга на северо-запад вдоль русла р. Енисей.

От Уг.13 до Уг.15, трасса ВЛ 500 кВ проходит по левобережью реки Ангары, вдоль ее русла. Местность крупнохолмистая, изрезанная долинами небольших рек, являющихся притоками Ангары. Абсолютные высоты местности колеблются от 160 м до 450 м.

Климат района резко континентальный с продолжительной суровой зимой и коротким, теплым, с обильными осадками летом. Для второй половины зимы и начала весны характерны проявления деятельности Сибирского антициклона, в остальное время года - циклонической формы циркуляции.

Сведения о метеостанциях, материалы наблюдений которых использованы, приведены в таблице 2.

Таблица 2

Сведения о метеорологических станциях

Название метеостанции

Высота над

уровнем моря, м

Начало метеонаблюдений (год)

Начало наблюдений (год)

Местоположение станции, форма рельефа. Удаленность от трассы, км.

По флюгеру с

тяжелой доской

По анемо-румбометру М-63

По гололедному станку

Кежма

183

1928

1952

1967

1952

Долина р. Ангары. Лесная зона. Местность слабохолмистая. 120 км.

Богучаны

131

1930

1951

1978

-

Долина р. Ангары. Местность холмистая, таежная. 7 км

Климино

146

1942

1957

-

1953

Долина р. Ангары. Рельеф крупнохолмистый. Лесная зона. 7 км

Гонда

378

1929

1957

1979

-

Водораздел р.Ангары и р. Чуны. Зона тайги. Местность слабохолмистая. 25км

По данным о среднемноголетнем распределении ветра по направлениям за год (таблица 3) очевидно, что преобладающими направлениями ветра являются западные и юго-западные.

Таблица 3

Повторяемость направлений ветра и штилей, %

Метеостанция

С

СВ

В

ЮВ

Ю

ЮЗ

З

СЗ

Штиль

Кежма

5

6

17

6

6

27

23

10

32

Богучаны

3

10

8

3

7

28

32

9

33

Климино

6

19

6

2

5

42

13

7

26

Мотыгино

10

18

5

7

9

28

18

5

29

В холодный и теплый периоды года преобладающими направлениями ветра также являются, в основном, западные и юго-западные (таблицы 4, 5). В летний период года отмечается значительное увеличение ветров северо-восточного направления (таблица 5).

Таблица 4

Повторяемость направлений ветра и штилей за январь, %

Метеостанция

С

СВ

В

ЮВ

ю

ЮЗ

3

СЗ

Штиль

Богучаны

2

7

5

1

6

35

38

6

50

Климино

4

24

6

1

2

48

10

5

36

Мотыгино

8

20

2

3

9

37

17

4

44

Гонда

6

4

3

2

8

38

36

3

28

Таблица 5

Повторяемость направлений ветра и штилей за июль, %

Метеостанция

С

СВ

В

ЮВ

Ю

ЮЗ

3

СЗ

Штиль

Богучаны

6

17

12

4

5

21

23

12

26

Климино

10

24

10

4

6

28

10

8

28

Мотыгино

14

26

6

8

10

18

13

5

26

Гонда

12

18

8

4

4

15

27

12

34

В таблице 6 приведена средняя месячная и годовая максимальная скорости ветра (м/с).

Таблица 6

месяц

01

02

03

04

05

06

07

08

09

10

11

12

Год

Средняя скорость ветра, м/с

2,2

1,9

2,6

3,1

3,2

2,7

2,0

2,1

2,4

3,6

3,3

2,3

2,6

Максим. скорость ветра, м/с

20

20

25

24

28

17

17

18

20

24

24

27

28

Ярко выраженная континентальность климата и низкие зимние температуры воздуха создают более благоприятные условия для образования кристаллической изморози и менее благоприятные - для гололеда. Максимум случаев с кристаллической изморозью наблюдается в декабре- январе. Другие виды гололедно-изморозевых образований (гололед, зернистая изморозь, сложное отложение и отложение мокрого снега) наблюдаются не ежегодно и их появление приурочено, в основном, к переходным сезонам года (сентябрь-ноябрь, март-апрель), когда наблюдается циклоническая деятельность.

Максимальная толщина стенки гололеда с повторяемостью 1 раз в 5, 25 лет и максимальные значения за период наблюдений по метеостанциям приведены в таблице 7.

Таблица 7

Максимальная толщина стенки гололеда

Метеостанция

Высота над уровнем моря, м

Период наблюдений (годы)

Максимальная толщина стенки гололеда, мм

Повторяемостью 1 раз в

за период наблюдений

5 лет

25 лет

Кежма

183

1952-1994

3,0

4,8

8,0

Мотыгино

161

1954-2007

1,8

2,8

4,5

Богучаны

131

1960-2007

1,5

2,1

3,9

Климино

146

1953-1985

4,4

7,2

8,4

Значения толщин стенок гололеда с повторяемостью 1 раз в 25 лет за период наблюдений по 2006 г. по рассматриваемым метеостанциям не превышают величины первого гололедного района, то есть 10 мм.

Данные наблюдений метеостанций не в полной мере характеризуют условия образования гололедно-изморозевых отложений и отложений мокрого снега по длине трассы ВЛ 500 кВ, проложенной в сильно пересеченной местности. Большинство метеостанций расположены в долинах рек. При определении границ районов по гололеду учитывалось влияние микроклиматических условий на величину гололедных отложений по трассе ВЛ, а также опыт эксплуатации существующих ВЛ. С учетом требований п.2.5.46 ПУЭ-7 в отношении минимальных значений нормативной толщины стенки гололеда для ВЛ 500 кВ рекомендуются: на участке Уг.13 - Уг.23 ПС Ангара - 15 мм (II район по гололеду).

Данные показаний метеостанций также не в полной мере характеризуют трассы ВЛ по ветровым нагрузкам при гололеде. Региональная карта районирования территории по ветровой нагрузке при гололеде для Красноярского края не разработана.

Период с отрицательными средними месячными температурами продолжается с октября по апрель. Средняя месячная и годовая температура воздуха приведена в таблице 8.

Таблица 8

Средняя месячная и годовая температура воздуха, °С

Метеостанция

I

II

III

IV

V

VI

VII

VIII

IX

X

XI

XII

Год

Кежма

-27,4

-25,1

-14,1

-2,2

6,3

14,9

18,1

14,2

7,1

-1,9

-15,8

-25,7

-4,3

Мотыгино

-22,4

-20,8

-11.0

-0,7

6,8

15,1

18,3

14,4

7,8

-1,0

-13,5

-21,7

-2,4

Богучаны

-24,4

-22,4

-12.1

0,5

7,2

15,7

18,8

14,9

8,0

-0,5

-13,4

-22,8

-2,6

Климино

-25,5

-24,1

-13,3

-1,6

7,0

15,6

18,7

14,8

7,8

-1,3

-14,7

-24,5

-3,5

Гонда

-21,8

-18,7

-10,0

-0,9

6,7

14,2

17,2

13,4

6,8

-2,1

-13,5

-21,4

-2,5

Лето короткое, жаркое. Абсолютная максимальная температура в летние месяцы может повышаться до плюс 38 °С. Абсолютная максимальная температура воздуха приведена в таблице 9.

Таблица 9

Абсолютная максимальная температура воздуха, °С

Метеостанция

I

II

III

IV

V

VI

VII

VIII

IX

X

XI

XII

Год

Кежма

4

4

11

21

34

36

34

33

31

23

7

3

36

Мотыгино

6

5

13

24

33

34

36

33

27

23

9

5

36

Богучаны

4

7

14

25

35

38

37

33

31

24

9

5

38

Климино

4

5

10

22

35

36

35

33

30

21

8

4

36

Гонда

4

7

13

23

32

33

34

31

29

22

9

4

34

Осенью температура воздуха постепенно понижается и в конце октября уже устанавливается зима. Наиболее холодным месяцем является январь. В отдельные холодные зимы абсолютная минимальная температура понижается до минус 60 °С. Абсолютная минимальная температура воздуха приведена в таблице 10.

Таблица 10

Абсолютная минимальная температура воздуха, °С

Метеостанция

I

II

III

IV

V

VI

VII

VIII

IX

X

X

XII

Год

Кежма

-57

-54

-47

-34

-19

-7

0

-4

-13

-35

-50

-60

-60

Мотыгино

-52

-48

-42

-33

-12

-5

-0

-2

-11

-30

-47

-51

-52

Богучаны

-54

-52

-44

-31

-15

-5

2

-2

-9

-28

-49

-51

-54

Климино

-56

-53

-46

-33

-11

-5

1

-1

-10

-31

-50

-55

-56

Гонда

-52

-47

-39

-31

-14

-8

-1

-4

-13

-31

-45

-50

-52

Переход температуры через 0 °С весной происходит в конце второй декады апреля, осенью - в начале второй декады октября. Средняя продолжительность безморозного периода по метеостанциям Богучаны и Гонда равна соответственно 109, 91 дней; сумма отрицательных среднемесячных температур соответственно - 96,1 °С, 88,4 °С. Средний из абсолютных минимумов температуры воздуха по метеостанциям Кежма, Климино, Богучаны, и Гонда составляет соответственно минус 51 °С, минус 50 °С, минус 47 °С и минус 44 °С.

Годовые суммы осадков рассматриваемого района изменяются от 377 до 457 мм в год. Твёрдые осадки выпадают с октября по май, жидкие с мая по сентябрь. На первый из этих периодов приходится 25-40% годовой суммы осадков, на второй - 60 - 75%. Наибольшее количество осадков приходится на июнь-сентябрь. Максимальное суточное количество на июль-август. Среднемесячные и годовые суммы осадков приведены в таблице 11.

Таблица 11

Среднемесячные и годовые суммы осадков, мм

Станция

I

II

III

IV

V

VI

VII

VIII

IX

X

XI

XII

Год

Богучаны

17

11

12

17

35

47

55

61

47

30

25

20

377

Гонда

24

17

17

23

37

50

59

64

50

47

40

29

457

Климино

21

12

11

16

37

45

51

63

43

28

28

24

379

На большей части территории снежный покров образуется в середине октября и разрушается в третьей декаде апреля. Под влиянием ветра и особенностей подстилающей поверхности снег перераспределяется. Наиболее равномерно он залегает в залесённой местности. Здесь высота снега достигает 100 см. Средняя декадная высота снежного покрова, из наибольших за зиму, по постоянной рейке приведена в таблице 12.

Таблица 12

Средняя декадная высота снежного покрова, из наибольших за зиму, см

Станция

средняя

максимальная

минимальная

Место установки рейки

Кежма

34

79

14

Открытое

Климино

35

56

14

Открытое

Богучаны

32

78

12

Открытое

Гонда

72

100

44

Защищенное

Плотность снежного покрова в поле 0,21-0,22 г/см, в лесу 0,18 - 0,20 г/см.

В среднем за год наблюдается 21 день с грозой, средней продолжительностью 34 часа в год. По опыту эксплуатации аварийных ситуаций на существующих подстанциях и ВЛ по метеоусловиям не наблюдалось. Предприятия, загрязняющие атмосферу, отсутствуют.

Климатическая характеристика составлена по материалам комплексных инженерных изысканий проектной документации «Две ВЛ 500 кВ Богучанская ГЭС - ПС Ангара» ЗАО «Сибэнергосетьпроект».

1.2.2 Климатические характеристики по нормативным документам

Климатический район для строительства I, подрайон IB.

Климатические параметры по ветру и гололеду приведены по фоновым картам районирования территории РФ по ветровому давлению и по толщине стенки гололеда. Ветровой район II. Нормативная скорость ветра (V0) повторяемостью 1 раз в 25 лет на уровне 10 м от поверхности земли 29 м/с. Район по гололеду II. Нормативная толщина стенки эквивалентного гололеда (bэ) повторяемостью 1 раз в 25 лет на уровне 10 м от поверхности земли составляет 15 мм. Температура воздуха при гололеде минус 10 °С.

Согласно требованиям главы 2.5 ПУЭ-7 при отсутствии региональных карт и данных наблюдений метеостанций скорость ветра при гололеде принимается равной 0,5 V0 но не менее 16 м/с; условная толщина стенки гололеда (bу) равной нормативной толщине стенки эквивалентного гололеда (bэ).

Температура воздуха наиболее холодной пятидневки обеспеченностью 0.92 равна минус 46 °С, наиболее холодных суток обеспеченностью 0.92 - минус 49 °С.

Снеговой район, согласно районированию территории Российской Федерации по расчетному значению веса снегового покрова земли, IV. Расчетное значение веса снегового покрова 240 кгс/м. Среднегодовая продолжительность гроз 20-40 часов, пляска проводов умеренная.

Степень загрязнения (СЗ) с учетом розы ветров 1 -я.

1.2.3 Климатические характеристики рекомендуемые для проектирования

Преобладающее направление ветра западное и юго-западное. Климатические параметры по ветру и гололеду приведены в таблице 13.

Таблица 13

Климатические условия

Углы ВЛ

Уг.13--ПС Ангара

Район по ветру и нормативная максимальная

скорость ветра, с повторяемостью 1 раз в 25 лет, м/с

II 29

Район по гололеду и нормативная максимальная толщина стенки гололеда, с повторяемостью 1 раз в 25 лет, мм

II 15

Максимальная скорость ветра при гололеде с повторяемостью 1 раз в 25 лет, Vr, м/с

16

Условная толщина стенки гололеда для определения ветровой нагрузки при гололеде, bу, мм

15

Температура воздуха:

cреднегодовая минус 5°С

абсолютная максимальная плюс 35 °С

абсолютная минимальная минус 55 °С

наиболее холодных суток обеспеченностью 0.92 минус 49 °С

наиболее холодной пятидневки обеспеченностью 0.92 минус 46 °С

при гололеде минус 10 °С

средняя из ежегодных абсолютных минимумов минус 47 °С

Среднегодовое количество осадков 377 - 457 мм. Средняя из наибольших декадных высот снежного покрова за зиму на открытых участках 35 см. Плотность снежного покрова в поле 0,22 г/см, в лесу 0,20 г/см. Расчетное значение веса снегового покрова 240 кгс/м.

Среднегодовая продолжительность гроз 20 - 40 часов. Пляска проводов умеренная.

Степень загрязнения 1-я.

2. Характеристика трассы ВЛ

Трасса ВЛ 500 кВ ПС «Ангара» проходит по малообжитой, таёжной, пересечённой местности Богучанского района Красноярского края.. На участке 10 углов поворота.

Конечной точкой трассы ВЛ является портал Уг.23 - ОРУ 500 кВ ПС Ангара.

На участке Уг.13 - Уг.15 траса ВЛ 500 кВ проходит вдоль р. Ангара в западном направлении, и проложена в одном коридоре с трассами двух ВЛ 220 кВ Богучанская ГЭС - ПС Приангарская, проходящими в 40 м друг от друга. Расстояние от оси правой ВЛ 500 кВ до оси левой ВЛ 220 кВ составляет 50 м.

В коридоре совместного прохождения трасс ВЛ 500 кВ и ВЛ 220 кВ углы поворота намечены с учётом рельефных и гидрографических условий местности, при этом, расстояние от трасс ВЛ до существующей (реконструируемой) автодороги Абан - Богучаны - Кодинск колеблется от 0 м до 8 км.

На этом участке трассы ВЛ пересекают множество ручьёв, малую реку Бол. Мельничный.

На углах 15 и 16 трасса ВЛ 500 кВ меняет своё направление на южное. От Уг.16 до Уг.18 трасса ВЛ 500 кВ следует с минимальным расстоянием 50 м восточнее существующей ВЛ 110 кВ ПС Чунояр - ПС Богучаны.

На углу 18 трасса ВЛ поворачивает на запад и по прямой Уг.18 - Уг.19 пересекает реку Карабула и железную дорогу ст. Решёты - ст. Карабула.

Пересечение трассой ВЛ реки Карабула выбрано с таким расчётом, чтобы пересечь её одним нормальным пролётом.

На Уг.19 трасса ВЛ поворачивает на юг, в сторону ПС Ангара. Углы 20, 21, 22 и 23 предусмотрены для захода трассы ВЛ на ОРУ 500 кВ ПС Ангара.

3. переход через р. Карабула

Трассы ВЛ пересекают р. Карабула в двух километрах ниже поселка Карабула.

Река Карабула, левобережный приток р. Ангары, берет начало в отрогах Бирюсинского плато. Длина реки до створа перехода 140 км, площадь водосбора 4 190 км2. Долина реки трапецеидальной формы, ширина дна долины в створе перехода 2,0 км. Склоны долины высокие, пологие.

Русло реки очень извилистое, однорукавное, шириной 20,0 - 30,0 м. Глубина реки в межень составляет 0,6--2,0 м, скорости течения изменяются от 0,5 до 1,2 м/с, на перекатах 2,0 м/с. Берега реки крутые, высотой 2,0-2,5 м, сложены песчаным грунтом с прослойками гальки, в период половодья сильно разрушаются. Дно реки сильно засорено топляками, грунт дна - пески и галька. В летний период русло частично зарастает водной растительностью, местами наблюдаются запруды из упавших в воду деревьев.

Пойма реки, шириной 1,1 км, возвышается над меженным урезом на 2,0-3,0 м. В прирусловой части и по понижениям она заросла густым кустарником, местами заболочена. Поверхность поймы, с отметками 182,0-183,7 м БС, изрезана большим количеством староречий и ложбин между береговых валов разного возраста, действующими в период весеннего половодья. Затопление поймы происходит не ежегодно, в среднем 1 раз в 4 - 5 лет. При прохождении весеннего половодья с 1 % расчетной обеспеченностью глубины на пойме составляют 1,0 - 2,0 м, в старицах - до 3,5 м; скорости течения воды на пойме, вычисленные по формуле Шези, изменяются соответственно от 0,5 до 1,0 м/с.

Описание гидрологического режима р. Карабулы дано на основании 72 - летнего ряда наблюдений (1933-2007 гг.) на гидрологическом посту, расположенному в 4,5 км выше по течению (поселок Карабула).

Водный режим реки характеризуется высоким весенним половодьем и очень низкими дождевыми паводками, устойчивыми летне-осенней и зимней меженями. Половодье начинается в конце апреля - начале мая, при крайних датах 01.05.1953 г. и 28.05.1976 г. Подъем уровня в многоводные годы составляет 3,5-4,0 м. Наивысшие наблюденные уровни воды на посту (обеспеченностью около 1 и 2 %) достигали 471 см и 442 см над нулем графика в 1999 и 2001 годах соответственно. Общая продолжительность половодья колеблется от 36 до 72 дней, в среднем около 1,5 месяца.

Расчетный уровень воды обеспеченностью 1% (УВВ1%) равен 460 см над нулем графика поста. Отметка УВВ 1% подтверждена данными ООО «ПИИ ГИДЭП», проводившего изыскания водозабора для БоАЗ в районе поселка Карабула (2007 г.).

Ледовый режим реки характеризуется установлением ледостава в конце октября, при крайних датах 08.10.1962 г. и 13.11.1990 г. Продолжительность ледостава колеблется от 173 до 213 дней, в среднем - 192 дня. Лед ровный, толщиной от 40 до 60 см. Максимальная наблюденная толщина льда достигала 99 см (10.04.57). Начало весеннего ледохода приходится на первые числа мая, крайние даты - 14.04.38 и 15.05 (7% случаев).

Русловой процесс на рассматриваемом участке реки развивается по типичной схеме свободного меандрирования и носит активный характер. Русло реки чрезвычайно извилистое, местами образует меандры второго и даже третьего порядка. Ширина пояса меандрирования составляет 700-800 м. Анализ положения излучин на аэрофотоснимках 1988 г., планов ООО «ОПТЭН» 2007 г. и сравнение их с картой масштаба 1:25000 (1974 г.) показали, что средняя скорость размыва берегов за рассматриваемый период составляет, в зависимости от поперечника, 0,5-1,0 м/год. Наибольшие скорости размыва в районе перехода трассы ВЛ, от 0,5 до 0,8 м/год, наблюдаются в верховом и низовом изгибах правого берега П - образной излучины II. Следов местного размыва на участке перехода и районе нижерасположенной существующей ВЛ 110 кВ не обнаружено.

За расчетный срок эксплуатации ВЛ возможно завершение цикла развития излучины II с прорывом перешейка и образованием нового положения русла на месте левобережной старицы. В результате этого участок склона левобережной надпойменной террасы (правая линия ПК 1523+11.75, левая - ПК 1549+31.01) окажется в зоне деформации. Полевое обследование аналогичного участка в вершине соседней излучины III показало, что разрушение склона террасы в этом случае, несмотря на высоту до 6 м, может протекать достаточно интенсивно. Следует учитывать и тот фактор, что при строительстве ВЛ экологическое равновесие на участке перехода будет значительно нарушено.

4. ГЕОЛОГИЧЕСКИЕ УСЛОВИЯ РАЙОНА

4.1. Инженерно-геологическая изученность

В районе проложения трассы ВЛ 500кВ институтом «Сибэнергосетьпроект» в разные годы выполнялись изыскания по нескольким электросетевым объектам.

Отчет ЗАО «Сибэнергосетьпроект» по комплексным инженерным изысканиям «Две ВЛ 500 кВ Богучанская ГЭС - ПС Ангара» проектная документация (том 12, 7686-01-ИЗ, 2008 г.), отчет ООО «Картограф» по комплексным инженерным изысканиям «ВЛ110 кВ для питания ЛПК в с. Богучаны» (2008 г.) были использованы для получения общих сведений о районе производства работ и при совместной статистической обработке данных.

4.2. Геолого-геоморфологическая характеристика района строительства ВЛ 500 кВ ПС « Ангара»

В геоморфологическом отношении трасса ВЛ располагается в юго-западной части Сибирской платформы, представляющей собой холмистую, среднерасчлененную местность с обширными плоскими водоразделами, местами плавно переходящими в широкие речные долины, которые имеют ящикообразный поперечный профиль с абсолютными отметками от 150 до 340 м. И только на узкой полосе шириной 6-10 м вдоль долины р. Ангары наблюдаются резкие поднятия поверхности, придающие ей грядохолмистый характер рельефа. Водоразделы здесь узкие с сильно изрезанными склонами и V-образным профилем речных долин. Относительные превышения поверхности земли достигают 180 - 200 м.

Ведущими факторами рельефообразования являлись тектонические движения, денудационно-эрозионные, эрозионно-акумулятивные процессы и литологический состав отложений.

Денудационно-эрозионный рельеф развит вдоль р. Ангара полосой 3 - 8 км. Характерны максимальные отметки, большая глубина вреза, четкие гряды, ориентированные вдоль долины реки.

Эрозионно-аккумулятивные формы рельефа характерны для террас р. Ангары.

На исследуемом участке р. Ангара пересекает западную окраину Средне-Сибирского плоскогорья. Ширина долины реки непостоянна и колеблется в пределах от 2,5 - 3 км до 7 - 8 км, соответственно изменяется и ширина русла.

Долина реки Ангара в основном симметричная, коренные берега ее высокие, крутые, террасы узкие и имеют небольшое распространение. В местах, где река пересекает легко размываемые породы кембрия и ордовика встречаются широкие террасы всех комплексов.

4.2.1 Стратиграфия

Палеозойская группа. Кембрийская система, средний и верхний отделы.

Эвенкийская свита (€2-3ev).

Эти отложения широко развиты, слагают водораздельные пространства. Несогласно залегают на карбонатной толще нижнего кембрия. Представлены переслаивающейся толщей мергелей, алевролитов, аргиллитов. Мощность отложений - до 300 м.

Ордовикская система нижний отдел

Усть-кутская свита (О1uk)

Отложения усть-кутского яруса согласно залегают на пестроцветах эвенкийской свиты и представлены в основном терригенными отложениями. Нижняя часть толщи сложена песчаниками мелко и среднезернистыми серыми, зеленовато-серыми и малиново-серыми, тонкоплитчатыми. В составе песчаников угловато окатанные зерна кварца, полевого шпата, редко зерна роговой обманки с окатанными обломками кварцитов, сланцев, чешуйками слюды. Цемент породы карбонатный, кремнисто-слюдисто-железистый. В песчаниках присутствуют прослои алевролитов и аргиллитов. Верхняя часть яруса представлена чередованием песчаников, алевролитов и аргиллитов. Мощность отложений - до 200 м.

Чуньский ярус

Бадарановская свита (О1bd)

Отложения свиты прослеживаются по левому склону долины р. Ангары на участке между р. Бол. Мельничной и восточной границей района. Она широко развита в районе пос. Карабулы, а также вскрыта в междуречье Карабулы - Кежмы. Бадарановская свита залегает согласно на ийской, граница между ними проводится несколько условно по резкой смене преимущественно красноцветных отложений сероцветными.

Толща сложена красноцветными, олигомиктовыми серыми, зеленовато-серыми песчаниками с прослоями алевролитов и аргиллитов. Обломки слабоокатаны, изъедены цементом. Цемент карбонатный, реже кремнисто-слюдистый и очень редко железистый. Тип цемента базальный, выполнения пор, иногда разъедания. Мощность отложений достигает 90 м.

Каменноугольная система средний и верхний отделы объединенные

Катская свита (C2+3kt)

Свита широко развита по долинам рек Карабулы, Кежмы, Бол. Мельничной, а также в междуречье Карабулы и Кежмы.

Породы катской свиты с размывом и незначительным угловым несогласием залегают на различных горизонтах нижнего ордовика, в основании свиты иногда отмечаются маломощные прослои конгломератов. Сложена свита полимиктовыми песчаниками, алевролитами, аргиллитами и пластами углей. Редко отмечаются маломощные прослои известняков.

Мощность свиты составляет 58 м.

Пермская система нижний отдел

Бургуклинская свита (P1br)

Свита широко распространена к югу от р. Ангары. В междуречье Карабулы и Кежмы, а также в районе пос. Карабулы. Бургуклинская свита залегает согласно на породах катской свиты и с размывом перекрывается верхнепермскими или мезозойско-кайнозойскими отложениями. Представлена свита серыми и зеленовато-серыми полимиктовыми и олигомиктовыми песчаниками, алевролитами, аргиллитами и пластами каменных углей. Мощность свиты от 7 до 90 м.

Верхний отдел

Стрелкинская свита (P2st)

Свита с размывом и стратиграфическим несогласием перекрывает различные горизонты катской и бургуклинской свит. Выходы пород известны в междуречье Кежмы, Тины и Чулюндея. Сложена стрелкинская свита песчаниками, алевролитами, аргиллитами, конгломератами, гравелитами и углями. Мощность свиты 43 м.

Мезозойская группа. Триасовая система, нижний отдел

Корвунчанская свита (Т1kr)

Свита широко развита в междуречье Карабулы - Тины и на водоразделе рек Бол. Мельничный, Чельчета - Бубенихи. Небольшие выходы ее отмечаются в верховьях р. Моткалея, в нижнем течении р. Речной Арюзихи. Свита несогласно залегает на различные горизонты палеозойских отложений.

Сложена корвунчанская свита агломератными туфами и туфобрекчиями основного состава, туфоалевролитами, туфопесчаниками и туффитами. Обломочный материал в туфобрекчиях представлен долеритами, базальтами, туффитами, песчаниками и углистыми аргиллитами. Содержание обломков 30-50%, размеры их меняются от 1-2 до 10-50 см. Агломератные туфы содержат лапилли и бомбы долеритов размером до 0,5 - 3,0 м. Мощность толщи от 30 до 60-70 м.

Юрская система нижний отдел

Переясловская свита (P1pr)

Свита широко развита на всей южной части территории, где она слагает обычно водораздельные участки. Породы нижней юры с размывом и незначительным угловым несогласием перекрывают различные горизонты ордовика, карбона, перми и нижнего триаса. Они представлены песчаниками, алевролитами, аргиллитами, бурыми углями, известковистыми песчаниками и конгломератами. Для нижнеюрских отложений района характерна фациальная изменчивость, выражающаяся в увеличении песчанистости разреза в северном направлении, быстром выклинивании по простиранию угольных пластов. Мощность свиты 80-100 м.

Кайнозойская группа. Четвертичная система

Средний отдел (QII)

Среднечетвертичные отложения слагают II надпойменную террасу р. Ангары. Представлены коричневато-бурыми среднезернистыми песками, в которых содержатся галька и валуны долеритов, кварцитов. Мощность отложений - 30 м.

Верхний отдел (QIII)

Верхнечетвертичные отложения слагают I надпойменную террасу р. Ангары. В основании террасы на коренных горных породах залегает тонкий слой галечникового грунта, который перекрывается мощной пачкой песков, супесей, суглинков. Мощность аллювиальных верхнечетвертичных отложений составляет 10 - 12 м.

Современные отложения (QIV).

К ним относятся аллювиальные осадки, слагающие пойменные террасы, бечевники, отмели, косы и острова. Представлены двумя фациями:

- русловая фация сложена гравием, галькой, разнозернистыми песками;

- пойменная фация представлена песками, суглинками, глинами.

Вблизи развития трапповых тел в большом количестве встречаются валуны, глыбы и щебень долеритов.

Мощность современных отложений 9 - 10 м.

Породы кембрийской системы эвенкийской свиты нижней подсвиты предсталены мергелями различной степени выветрелости с прослоями и линзами алевролитов и известняков, доломитов.

В разрезе пород кембрийской системы выделяются два слоя выветривания до глубины 30 м.

Глубокого выветривания и разгрузки (дисперсная зона коры выветривания) характеризующаяся наибольшей степенью выветривания. Здесь полускальные породы ослаблены, превращены в супесчаный и суглинистый материал с реликтами менее выветрелых пород, причем прослои и линзы известняков, разбитые многочисленными трещинами, сохранили свои прочностные свойства. В породе изредка встречаются слои и линзы гипса волокнистого. Мощность отложений зоны составляет порядка 17 - 19 м.

Слабого выветривания (обломочная зона коры выветривания) - пачка переслаивающихся мергелей, алевролитов и песчаников разбита трещинами открытыми и закрытыми. Трещины различного направления и генезиса с преобладанием сингенетических трещин напластования. Вскрытая мощность пород составляет порядка 4 -7,5 м.

4.2.2 Магматизм

Формация Сибирских траппов. Ангарский комплекс (в-рмв Т1an)

Ангарский комплекс представлен слабодифференцированными интрузиями. Изверженные породы распространенны в долинах рек Ангары, Карабулы, Бол. Мельничной. Выходы коренных отложений вскрыты по трассе изысканий ВЛ 500: Уг.13 -Уг.14, Уг.14 - Уг.15, Уг.15 - Уг.16; на глубине от 0,8 м до 4,0 м. В керне наблюдается II системы трещин, I-я система субвертикальная под углом 900, II-я система под углом 450. Трещины залечены вторичным кальцитом (рисунок. 4.1).

Рисунок 4.1. Системы трещин в керне долерита

Делювиально-элювиальные отложения долеритов вскрыты скважинами: Уг.13 - Уг.14, от 0,5 м до 5,0 м (рисунок 4.2).

Рисунок 4.2. Керн долерита. Уг.13 - Уг.14

Приконтактовые слабометаморфизованные породы представлены: красноцветными алевролитами и брекчиями на кремниевом цементе. Алевролиты вскрыты на участке: Уг.13 - Уг.14, на глубине от 4,4 м до 5,0 м. Брекчии вскрыты на участке: Уг.13 - Уг.14, на глубине от 2,1 до 2,5 м, Уг.15 - Уг.16 на глубине 2,10-2,20 м. (рисунок. 5.3).

Рисунок 4.3. Брекчия. Уг.15 - Уг.16

Распространение траппов в значительной степени контролируются зонами разломов в фундаменте платформы (Ангарские разломы, Чельчетский разлом). По морфологии интрузивные тела подразделяются на пластовые, пластообразные секущие, тела неправильной формы и дайки.

Пластовые и пластообразные тела приурочены к определенным стратиграфическим горизонтам. Мощность пластовых и пластообразных тел меняется от 10 до 70 м. Для интрузий характерны четкие прямые контакты, обычно параллельные общему простиранию вмещающих пород.

Секущие тела неправильной формы и дайки приурочены, в основном, к долинам рек Карабулы, Бубенихи и Кежмы и, предположительно, контролируются разломами. Они прорывают отложения нижнего ордовика, перми, карбона и нижнего триаса. Мощность даек меняется от 10-20 до 30 м, протяженность 1-2,5 км, простирание их обычно субширотное.

Секущие интрузии неправильной формы характеризуются неровными извилистыми контактами, дайки имеют простое строение и характеризуются четкими прямыми контактами. Центральные части интрузий сложены мелко-среднекристаллическими, иногда пегматоидными долеритами, краевые - микродолеритами, афанитовыми долеритами и долерит-порфиритами. Дайки сложены мелко-среднекристаллическими долеритами, в эндоконтактах их отмечаются маломощные зоны микродолеритов и афанитовых долеритов. Для долеритов характерны столбчатая, параллелепипедная и реже шаровая формы отдельности. Преобладающее направление трещин северо-восточное и северо-западное.

По химическому и минералогическому составу, по структурным особенностям среди долеритов выделяются следующие разности: оливиновые долериты и габбро-долериты, троктолитовые долериты, пегматоидные долериты и лейкократовые долериты, толеитовые долериты, долерит-порфириты, микродолериты, миндалекаменные долериты, атакситовые порфириты и долеритовые афаниты.

4.2.3 Тектоника

Рассматриваемая территория расположена в юго-западной части Сибирской платформы. В ее строении принимают участие Иркинеевский выступ, зона Ангарских складок и Мурский прогиб. Все эти структуры рассматриваются как платформенные образования и граница фундамента платформы проводится по подошве тассеевской серии.

В строении района отчетливо выделяется два структурных этажа: нижний этаж, сложенный интенсивно дислоцированными верхнепротерозойскими породами фундамента платформы (исключая тасеевскую серию); верхний этаж, представленный позднекембрийскими, палеозойскими и мезозойско-кайнозойскими отложениями платформенного чехла.

В составе верхнего этажа выделяется пять структурных ярусов, разделенных стратиграфическими перерывами и незначительными угловатыми несогласиями: позднекембрийский, сложенный отложениями тасеевской серии дислоцированными в конце позднего докембрия; низжнепалеозойский - отложения кембрия и нижнего ордовика дислоцированные в докаменноугольное время; верхнепалеозойский - дислокации верхнепермского времени; нижнемезозойский - дислокации верхнетриасового времени; юрско-меловой, отложеня этого яруса недислоцированные или слабодислоцированные.

Выделенные структурные этажи характеризуются резко различной степенью дислоцированности слагающих их пород и разделены четкими и стратиграфическими несогласиями.

Разрывные нарушения в районе подразделяются на две крупные группы: а) глубинные - фундамента платформы и связанные с ними нарушения в осадочном чехле; б) разломы северного борта Мурского прогиба.

В составе первой группы выделяются долгоживущие разломы глубинного положения - Ангарские разломы. Эти разломы имеют субширотное простирание и примерно совпадают с долиной реки Ангары.

В составе второй группы выделяются разломы донижнетриасового возраста, предшествующие трапповому магматизму, и мезозойские нарушения. С первыми связаны многочисленные субширотные секущие дайки долеритов в низовьях р. Карабулы.

Мезозойские разрывные нарушения в районе преобладают. Это разломы сбросового типа. Они секут интрузии долеритов, четко ограничивают блоки с выходами туфогенных пород, смещают юрские отложения.

Расчетная сейсмичность. Согласно СНиП II-7-81* и карте общего сейсмического районирования Российской Федерации (ОСР-97) расчетная сейсмическая интенсивность в баллах шкалы МSК-64 для средних грунтовых условий в пределах района составляет:

- 6 баллов - соответствует 5% вероятности;

- 7 баллов - соответствует 1% вероятности.

4.3 Гидрогеологические условия

Территория находится в области Енисейской гидрогеологической складчатой области, имеющей сложное геологическое строение. В пределах области выделяются гидрогеологические массивы, сложенные архейскими и протерозойскими кристаллическими породами, адартезианские бассейны, в строении которых принимают участие разнообразные терригенные и карбонатные породы верхнего протерозоя, нижнего кембрия, и артезианские бассейны, выполненные терригенно-карбонатными отложениями палеозоя, мезозоя и кайнозоя. В гидрогеологических массивах развиты трещинные и трещинно-жильные пресные и ультрапресные подземные воды, в адартезианских и артезианских бассейнах преимущественным распространением пользуются трещинно-пластовые и порово-пластовые пресные подземные воды.

В долине р. Ангары имеют место подземные воды аллювиальных отложений. Уровень подземных вод в пойме на глубине 5,0 м и 14 - 15 м в пределах первой надпойменной террасы. Уровенный режим водоносного горизонта напрямую зависит от уровня воды в р. Ангара. По химическому составу подземные воды гидрокарбонатные кальциево-магниевые.

Подземные воды пород кембрийской системы вскрыты в прослоях известняков и песчаников, воды имеют слабый напор. По химическому составу подземные воды гидрокарбонатные кальциевые.

Водоносный комплекс четвертичных отложений. Распространен в долине р. Ангара и ее крупных притоков. Глубина залегания зеркала подземных вод изменяется от 1 - 2 м на низких террасах и до 8 - 20 м на высоких террасах. Мощность водовмещающих горных пород от 1 до 10 м. Дебит скважин - 1-5 л/сек. По химическому составу воды гидрокарбонатные кальциевые с минерализацией до 0,5 г/л. Используются населением п. Ангарский и п. Богучаны.

Водоносный комплекс триасовых вулканогенно-осадочных образований и траппов. Характеризуется развитием трещинных вод зон трещиноватости. Наиболее обводнена верхняя трещиноватая зона, глубина которой составляет около 100 м. Дебиты родников изменяются от 0,5 до нескольких 1-2 л/сек. Воды гидрокарбонатные, с минерализацией не более 0,5 г/л.

Водоносный комплекс терригенно-карбонатных отложений эвенкийской свиты и нижнего ордовика. Характерно развитие трещинно-пластовых вод. Родники имеют расход до 3 л/сек. По химическому составу воды сульфатные кальциевые, иногда с резким запахом сероводорода. Минерализация от 0,5 до 4,5 г/л.

Водоносный комплекс карбонатных отложений нижнего кембрия. Развит на правобережье р. Ангара. Воды пластово-карстового, трещинно-карстового типа. Расход родников до 10 л/сек. Характерно высокое содержание хлор-иона, связанного с процессами выщелачивания соленосных фаций. Соленые родники отмечаются в районе п. Ангарский, в бассейне р. Ельчимо (правого притока р. Ангара). Минерализация вод составляет от 0,5 до 10 г/л.

Подземные воды встречены на глубине 0,35-2,70 м, что соответствует абсолютным отметкам 252,30-347,10 м. Водовмещающими грунтами являются суглинки, супеси, щебенистый грунт.

Воды безнапорные. По химическому составу на Уг.13 - Уг.14 и Уг.17 - Уг.18 воды гидрокарбонатно-кальциевые, с очень слабокислой реакцией, на Уг.15 -Уг.16 гидрокарбонатно-кальциево-магниевые, с нейтральной реакцией (по классификации В.А. Александрова).

По степени агрессивного воздействия на конструкции из бетона марок W4, W6, воды слабоагрессивные, и среднеагрессивные для бетона марки W4 - по содержанию агрессивной углекислоты (при коэффициенте фильтрации < 0.1 м/сут).

При воздействии на арматуру железобетонных конструкций подземные воды неагрессивные при постоянном погружении, слабоагрессивные при периодическом погружении и среднеагрессивные по водородному показателю, сумме хлоридов и сульфатов по скорости движения до 1 м/с. Подземные воды обладают низкой, средней коррозионной активностью к алюминиевой оболочке кабеля, средней и высокой - к свинцовой.

4.4 Инженерно-геологический очерк

Одним из основных показателей инженерно-геологических условий района прохождения трасс ВЛ 500кВ являются экзогенные геологические процессы и явления. По результатам исследований, в пределах изученной территории отмечены: выветривание, развитие островной многолетней мерзлоты, сезонное промерзание грунтов, гравитационные процессы (обвалы, оползни, камнепады), оврагообразование и заболачивание.

Выветривание. Характер выветривания в значительной степени обусловлен суровыми климатическими условиями региона. Наиболее важными факторами, влияющими на динамику процесса выветривания, является большая амплитуда суточных (18°) и годовых (82°) колебаний температуры с частыми переходами через 0° в осенне-весеннее время. В этих условиях дробление пород осуществляется главным образом за счет температурного и морозного выветривания.

Устойчивость различных отложений к выветриванию определяется структурно-литологическими особенностями и свойствами разрушающихся пород.

В результате физико-химических преобразований существующий профиль коры выветривания имеет три зоны: дисперсную, крупнообломочную и трещиноватую.

Для дисперсной зоны характерно изменение химического состава с сохранением некоторых структурных особенностей. Мощность этой зоны меняется в пределах от 1,0 до 6,0-8,0 м.

Крупнообломочная зона сложена щебенисто-дресвяным материалом с песчано-глинистым заполнителем.

Для трещиноватой зоны выветривания характерно слабое изменение состава пород и значительное уменьшение их прочности.

Многолетнемерзлые породы и криогенные процессы. Мерзлотные условия района прохождения трассы ВЛ характеризуются распространением многолетнемерзлых пород и развитием криогенных процессов.

Многолетнемерзлые породы по условия залегания относятся к долинному типу и встречаются на затененных и залесенных склонах северной экспозиции, по днищам речных долин и глубоких падей. Острова и линзы многолетнемерзлых пород различной конфигурации и размеры их в плане колеблются от десятков до нескольких сотен метров.

Многолетнемерзлые грунты подсечены скважинами 0914-0919, 0921 Уг.13 - Уг.14. Вскрытая мощность от 0,5 до 4,0 м. Данные бурения подтверждены данными вертикального электрического зондирования.

Верхняя граница многолетнемерзлых пород обычно сливается со слоем сезонного промерзания грунтов и находится на заболоченных участках, в торфяных отложениях, на глубине от 0,5 до 1,5 м, а в суглинках, супесях, песках и щебенистых грунтах на глубине от 1,5 до 2,5м.

Температура многолетнемерзлых пород колеблется от 0° до минус 1,1° (по данным наблюдений Ангарской экспедиции Гидропроекта).

Мерзлые грунты характеризуются большой льдистостью и в них отмечаются слоистые и массивные криогенные текстуры.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.