Интерполирование и приближение функций
Разделенные разности и аппроксимация функций методом наименьших квадратов. Интерполяционные многочлены Лагранжа и Ньютона. Экспериментальные данные функциональной зависимости. Система уравнений для полинома. Графики аппроксимирующих многочленов.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 26.07.2009 |
Размер файла | 139,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Міністерство освіти і науки України
Національний технічний університет
“ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ”
Кафедра “Обчислювальної техніки та програмування”
Реферат з курсу “Численные методы”
Тема: “ИНТЕРПОЛИРОВАНИЕ И ПРИБЛИЖЕНИЕ ФУНКЦИЙ”
Виконав:
студент групи
Перевірив:
Харків
Содержание
1. Разделенные разности
2. Интерполяционный многочлен Лагранжа
3. Интерполяционный многочлен Ньютона
4. Аппроксимация функций методом наименьших квадратов
Литература
1. Разделенные разности
Часто экспериментальные данные функциональной зависимости представляются таблицей, в которой шаг по независимой переменной не постоянен. Для работы с таким представлением функции конечные разности и конечно-разностные операторы не пригодны. В этом случае первостепенную роль играют разделенные разности.
Разделенную разность функции f(x) для некоторых двух точек и определяют следующей дробью:
Для построения степенного многочлена, проходящего через заданные точки, необходимо иметь число точек на единицу больше, чем степень многочлена. Согласно определению разделенной разности число их для n точек равно числу сочетаний из n по 2. Это во много раз больше, чем необходимо для построения кривых, проходящих через n точек. Из опыта работы с конечными разностями видно, что разделенных разностей из всего множества достаточно выбрать всего n, но выбрать так, чтобы в их образование входили все (n+1) точек таблицы.
Вполне разумно вычислять разделенные разности только для соседних значений функции в таблице. В этом случае говорят об упорядоченных разделенных разностях. Аргументу табличной функции присваиваются индексы из чисел натурального ряда, начиная с нуля, в результате чего обозначения разделенных разностей для i-той строки таблицы будут .
Повторная разность от разделенной разности есть разделенная разность второго порядка:
В общем случае разделенная разность n-го порядка имеет вид:
2. Интерполяционный многочлен Лагранжа
Произведения из скобочных сомножителей в знаменателе каждого слагаемого напоминают своим видом некий степенной многочлен от переменной , который своими корнями имеет значения , исключая . Многочлен от x с корнями в этих же точках, включая и , будет иметь вид:
Удаляя тот или иной сомножитель из , можно по желанию исключить ненужный нуль многочлена. Если взять i-тое слагаемое без из выражения для разделенной разности n-го порядка и умножить его на , в котором отсутствует сомножитель , то многочлен степени n будет обладать следующими свойствами:
Если умножить на , то полученный многочлен степени n будет проходить через точку с координатами и будет равен нулю во всех точках . Сумма таких многочленов по всем определяет интерполяционный многочлен Лагранжа степени n.
.
3. Интерполяционный многочлен Ньютона
Интерполяционный многочлен в форме многочлена Лагранжа не удобен в случаях, когда необходимо добавлять экспериментальные данные в таблицу с целью повышения точности интерполяции. При этом необходимо проводить все вычисления заново.
Если задачу поставить так, что добавление лишней точки требовало бы лишь добавки некоторого многочлена степени (n+1) к многочлену Лагранжа n-й степени, то эту добавку можно искать, выполнив в общем виде преобразование разности двух многочленов Лагранжа: степени (n+1) и n. Несложные преобразования приводят к следующему соотношению для добавочного многочлена степени (n+1):
,
где - многочлен степени (n+1),
- разделенная разность (n+1)-го порядка.
Если считать разделенную разность нулевого порядка равной значению функции в точке , то
Поступая аналогичным образом и находя последовательно , в конце концов, получим общее выражение для другой формы представления интерполяционного многочлена Лагранжа, которая в литературе называется интерполяционным многочленом Ньютона для неравных интервалов и записывается так:
Надо отметить, что дополнительную точку в таблицу необходимо записывать в самую нижнюю строку таблицы, чтобы не нарушить уже имеющегося упорядочения разностей и ускорить вычисление новых.
И, наконец, надо отметить, что и многочлен Лагранжа, и многочлен Ньютона удобны для вычислений, но после раскрытия скобок и приведения подобных дают один и тот же степенной многочлен.
4. Аппроксимация функций методом наименьших квадратов
Основным недостатком интерполяционных многочленов является наличие у них большого числа экстремумов и точек перегибов, что определяется суммированием в них многочленов , n раз меняющих свой знак. Кроме того, исходные табличные значения функции заданы неточно по разным причинам, поэтому строить многочлены выше 4-5-й степени, зная, что из теоретических исследований функция в интервале таблицы совсем не такая, не имеет особого смысла.
Если табличные значения функции можно интерпретировать как теоретическое значение плюс погрешность, то, задав некоторый критерий близости теоретической кривой к заданному множеству табличных точек, можно найти нужное число параметров этой кривой.
Наиболее популярным критерием близости является минимум среднего квадрата отклонения:
,
где - точка экспериментальных данных из таблицы,
- значение искомой зависимости в точке .
Если искомую зависимость желательно представить многочленом степени n, то (n+1) коэффициент в нем будут представлять неизвестные параметры. Подставив в сумму квадратов отклонений искомый многочлен, получим функционал, зависящий от этих параметров:
Чтобы функционал был минимален, необходимо все частные производные функционала по параметрам приравнять нулю и систему разрешить относительно неизвестных параметров . Эти действия приводят к следующей системе линейных уравнений
Здесь - постоянный коэффициент, равный сумме (j+k)-тых степеней всех значений аргументов. Для их ручного вычисления удобно к исходной таблице данных добавить еще столбцов. - числовые значения в правой части системы линейных алгебраических уравнений, для подсчета которых тоже
удобно к исходной таблице данных добавить еще n столбцов.
Демонстрацию метода наименьших квадратов проведем для данных с количеством точек в таблице, равным 4. Максимальная степень аппроксимирующего многочлена для такого набора равна 3, так как должно выполняться соотношение: . Для максимальной степени аппроксимирующий и интерполяционный многочлены равны.
Пусть таблица данных после добавления в нее дополнительных колонок выглядит следующим образом:
В нижней строке размещаем итоговые суммы по каждой колонке.
Система уравнений для полинома третьей степени:
Решив систему, найдем:
Эта же таблица без добавления чего-либо позволяет найти коэффициенты аппроксимирующего многочлена второй степени. Для этого достаточно в системе для полинома третьей степени убрать 4-е уравнение, а из остальных уравнений исключить слагаемые с неизвестной . В результате система уравнений для полинома второй степени будет:
Решив систему, найдем:
Аналогично можно уменьшать число уравнений для построения аппроксимирующих многочленов первой и нулевой степеней.
На рисунке 1 показаны графики двух аппроксимирующих многочленов второй и третьей степени. Многочлен третьей степени проходит через 4 заданные точки, а многочлен второй степени проходит сквозь множество заданных точек с минимумом суммы квадратов отклонений от них, что хорошо видно на графиках.
Рисунок 1.
Литература
1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы: Учеб. пособие. - М.: Наука, 1987. - 600 с.
2. Воеводин В.В. Численные методы алгебры. Теория и алгорифмы. - М.: Наука, 1966. - 248 с.
3. Воеводин В.В. Вычислительные основы линейной алгебры. - М.: Наука, 1977. - 304 с.
4. Волков Е.А. Численные методы. - М.: Наука, 1987. - 248 с.
5. Калашников В. И. Аналоговые и гибридные вычислительные устройства: Учеб. пособие. - Харьков: НТУ “ХПИ”, 2002. - 196 с.
6. Вержбицкий, В. М. Численные методы. Математический анализ и обыкновенные дифференциальные уравнения. М.: Высш.шк., 2001. 383 с.
7. Волков, Е. А. Численные методы. СПб.: Лань, 2004. 248 с.
8. Мудров, А. Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. Томск: МП "РАСКО", 1991. 272 с.
9. Шуп, Т. Е. Прикладные численные методы в физике и технике. М.: Высш. шк., 1990. 255 с.
10. Бахвалов, Н. С. Численные методы в задачах и упражнениях / Н. С. Бахвалов, А. В. Лапин, Е. В. Чижонков. М.: Высш. шк., 2000. 192 с.
Подобные документы
Непрерывная и точечная аппроксимация. Интерполяционные полиномы Лагранжа и Ньютона. Погрешность глобальной интерполяции, квадратичная зависимость. Метод наименьших квадратов. Подбор эмпирических формул. Кусочно-постоянная и кусочно-линейная интерполяции.
курсовая работа [434,5 K], добавлен 14.03.2014Способы построения интерполяционных многочленов Лагранжа, основные этапы. Интерполирование функций многочленами Ньютона, способы построения графика. Постановка задачи аппроксимации функции одной переменной, предпосылки повышения точности расчетов.
презентация [204,5 K], добавлен 18.04.2013В вычислительной математике существенную роль играет интерполяция функций. Формула Лагранжа. Интерполирование по схеме Эйткена. Интерполяционные формулы Ньютона для равноотстоящих узлов. Формула Ньютона с разделенными разностями. Интерполяция сплайнами.
контрольная работа [131,6 K], добавлен 05.01.2011Изучение аппроксимации таблично заданной функции методом наименьших квадратов при помощи вычислительной системы Mathcad. Исходные данные и функция, вычисляющая матрицу коэффициентов систему уравнений. Выполнение вычислений для разных порядков полинома.
лабораторная работа [166,4 K], добавлен 13.04.2016Постановка задачи аппроксимации методом наименьших квадратов, выбор аппроксимирующей функции. Общая методика решения данной задачи. Рекомендации по выбору формы записи систем линейных алгебраических уравнений. Решение систем методом обратной матрицы.
курсовая работа [77,1 K], добавлен 02.06.2011Аппроксимация и теория приближений, применение метода наименьших квадратов для оценки характера приближения. Квадратичное приближение таблично заданной функции по дискретной норме Гаусса. Интегральное приближение функции, которая задана аналитически.
реферат [82,0 K], добавлен 05.09.2010Аппроксимация функций методом наименьших квадратов. Описание программного средства: спецификация переменных, процедур и функций, схемы алгоритмов. Реализация расчетов в системе Mathcad. Порядок составления графика в данной среде программирования.
курсовая работа [808,9 K], добавлен 09.05.2011Вычисление производной по ее определению, с помощью конечных разностей и на основе первой интерполяционной формулы Ньютона. Интерполяционные многочлены Лагранжа и их применение в численном дифференцировании. Метод Рунге-Кутта (четвертого порядка).
реферат [71,6 K], добавлен 06.03.2011Исследование вопросов построения эмпирических формул методом наименьших квадратов средствами пакета Microsoft Excel и решение данной задачи в MathCAD. Сравнительная характеристика используемых средств, оценка их эффективности и перспективы применения.
курсовая работа [471,3 K], добавлен 07.03.2015Построение приближающей функции, используя исходные данные, с помощью методов Лагранжа, Ньютона и Эйткена (простая и упрощенная форма реализации). Алгоритм вычисления интерполяционного многочлена. Сравнение результатов реализации методов в среде Mathcad.
курсовая работа [299,3 K], добавлен 30.04.2011