Интерполирование и приближение функций

Разделенные разности и аппроксимация функций методом наименьших квадратов. Интерполяционные многочлены Лагранжа и Ньютона. Экспериментальные данные функциональной зависимости. Система уравнений для полинома. Графики аппроксимирующих многочленов.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 26.07.2009
Размер файла 139,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Міністерство освіти і науки України

Національний технічний університет

“ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ”

Кафедра “Обчислювальної техніки та програмування”

Реферат з курсу “Численные методы

Тема: ИНТЕРПОЛИРОВАНИЕ И ПРИБЛИЖЕНИЕ ФУНКЦИЙ

Виконав:

студент групи

Перевірив:

Харків

Содержание

1. Разделенные разности

2. Интерполяционный многочлен Лагранжа

3. Интерполяционный многочлен Ньютона

4. Аппроксимация функций методом наименьших квадратов

Литература

1. Разделенные разности

Часто экспериментальные данные функциональной зависимости представляются таблицей, в которой шаг по независимой переменной не постоянен. Для работы с таким представлением функции конечные разности и конечно-разностные операторы не пригодны. В этом случае первостепенную роль играют разделенные разности.

Разделенную разность функции f(x) для некоторых двух точек и определяют следующей дробью:

Для построения степенного многочлена, проходящего через заданные точки, необходимо иметь число точек на единицу больше, чем степень многочлена. Согласно определению разделенной разности число их для n точек равно числу сочетаний из n по 2. Это во много раз больше, чем необходимо для построения кривых, проходящих через n точек. Из опыта работы с конечными разностями видно, что разделенных разностей из всего множества достаточно выбрать всего n, но выбрать так, чтобы в их образование входили все (n+1) точек таблицы.

Вполне разумно вычислять разделенные разности только для соседних значений функции в таблице. В этом случае говорят об упорядоченных разделенных разностях. Аргументу табличной функции присваиваются индексы из чисел натурального ряда, начиная с нуля, в результате чего обозначения разделенных разностей для i-той строки таблицы будут .

Повторная разность от разделенной разности есть разделенная разность второго порядка:

В общем случае разделенная разность n-го порядка имеет вид:

2. Интерполяционный многочлен Лагранжа

Произведения из скобочных сомножителей в знаменателе каждого слагаемого напоминают своим видом некий степенной многочлен от переменной , который своими корнями имеет значения , исключая . Многочлен от x с корнями в этих же точках, включая и , будет иметь вид:

Удаляя тот или иной сомножитель из , можно по желанию исключить ненужный нуль многочлена. Если взять i-тое слагаемое без из выражения для разделенной разности n-го порядка и умножить его на , в котором отсутствует сомножитель , то многочлен степени n будет обладать следующими свойствами:

Если умножить на , то полученный многочлен степени n будет проходить через точку с координатами и будет равен нулю во всех точках . Сумма таких многочленов по всем определяет интерполяционный многочлен Лагранжа степени n.

.

3. Интерполяционный многочлен Ньютона

Интерполяционный многочлен в форме многочлена Лагранжа не удобен в случаях, когда необходимо добавлять экспериментальные данные в таблицу с целью повышения точности интерполяции. При этом необходимо проводить все вычисления заново.

Если задачу поставить так, что добавление лишней точки требовало бы лишь добавки некоторого многочлена степени (n+1) к многочлену Лагранжа n-й степени, то эту добавку можно искать, выполнив в общем виде преобразование разности двух многочленов Лагранжа: степени (n+1) и n. Несложные преобразования приводят к следующему соотношению для добавочного многочлена степени (n+1):

,

где - многочлен степени (n+1),

- разделенная разность (n+1)-го порядка.

Если считать разделенную разность нулевого порядка равной значению функции в точке , то

Поступая аналогичным образом и находя последовательно , в конце концов, получим общее выражение для другой формы представления интерполяционного многочлена Лагранжа, которая в литературе называется интерполяционным многочленом Ньютона для неравных интервалов и записывается так:

Надо отметить, что дополнительную точку в таблицу необходимо записывать в самую нижнюю строку таблицы, чтобы не нарушить уже имеющегося упорядочения разностей и ускорить вычисление новых.

И, наконец, надо отметить, что и многочлен Лагранжа, и многочлен Ньютона удобны для вычислений, но после раскрытия скобок и приведения подобных дают один и тот же степенной многочлен.

4. Аппроксимация функций методом наименьших квадратов

Основным недостатком интерполяционных многочленов является наличие у них большого числа экстремумов и точек перегибов, что определяется суммированием в них многочленов , n раз меняющих свой знак. Кроме того, исходные табличные значения функции заданы неточно по разным причинам, поэтому строить многочлены выше 4-5-й степени, зная, что из теоретических исследований функция в интервале таблицы совсем не такая, не имеет особого смысла.

Если табличные значения функции можно интерпретировать как теоретическое значение плюс погрешность, то, задав некоторый критерий близости теоретической кривой к заданному множеству табличных точек, можно найти нужное число параметров этой кривой.

Наиболее популярным критерием близости является минимум среднего квадрата отклонения:

,

где - точка экспериментальных данных из таблицы,

- значение искомой зависимости в точке .

Если искомую зависимость желательно представить многочленом степени n, то (n+1) коэффициент в нем будут представлять неизвестные параметры. Подставив в сумму квадратов отклонений искомый многочлен, получим функционал, зависящий от этих параметров:

Чтобы функционал был минимален, необходимо все частные производные функционала по параметрам приравнять нулю и систему разрешить относительно неизвестных параметров . Эти действия приводят к следующей системе линейных уравнений

Здесь - постоянный коэффициент, равный сумме (j+k)-тых степеней всех значений аргументов. Для их ручного вычисления удобно к исходной таблице данных добавить еще столбцов. - числовые значения в правой части системы линейных алгебраических уравнений, для подсчета которых тоже

удобно к исходной таблице данных добавить еще n столбцов.

Демонстрацию метода наименьших квадратов проведем для данных с количеством точек в таблице, равным 4. Максимальная степень аппроксимирующего многочлена для такого набора равна 3, так как должно выполняться соотношение: . Для максимальной степени аппроксимирующий и интерполяционный многочлены равны.

Пусть таблица данных после добавления в нее дополнительных колонок выглядит следующим образом:

В нижней строке размещаем итоговые суммы по каждой колонке.

Система уравнений для полинома третьей степени:

Решив систему, найдем:

Эта же таблица без добавления чего-либо позволяет найти коэффициенты аппроксимирующего многочлена второй степени. Для этого достаточно в системе для полинома третьей степени убрать 4-е уравнение, а из остальных уравнений исключить слагаемые с неизвестной . В результате система уравнений для полинома второй степени будет:

Решив систему, найдем:

Аналогично можно уменьшать число уравнений для построения аппроксимирующих многочленов первой и нулевой степеней.

На рисунке 1 показаны графики двух аппроксимирующих многочленов второй и третьей степени. Многочлен третьей степени проходит через 4 заданные точки, а многочлен второй степени проходит сквозь множество заданных точек с минимумом суммы квадратов отклонений от них, что хорошо видно на графиках.

Рисунок 1.

Литература

1. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы: Учеб. пособие. - М.: Наука, 1987. - 600 с.

2. Воеводин В.В. Численные методы алгебры. Теория и алгорифмы. - М.: Наука, 1966. - 248 с.

3. Воеводин В.В. Вычислительные основы линейной алгебры. - М.: Наука, 1977. - 304 с.

4. Волков Е.А. Численные методы. - М.: Наука, 1987. - 248 с.

5. Калашников В. И. Аналоговые и гибридные вычислительные устройства: Учеб. пособие. - Харьков: НТУ “ХПИ”, 2002. - 196 с.

6. Вержбицкий, В. М. Численные методы. Математический анализ и обыкновенные дифференциальные уравнения. М.: Высш.шк., 2001. 383 с.

7. Волков, Е. А. Численные методы. СПб.: Лань, 2004. 248 с.

8. Мудров, А. Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. Томск: МП "РАСКО", 1991. 272 с.

9. Шуп, Т. Е. Прикладные численные методы в физике и технике. М.: Высш. шк., 1990. 255 с.

10. Бахвалов, Н. С. Численные методы в задачах и упражнениях / Н. С. Бахвалов, А. В. Лапин, Е. В. Чижонков. М.: Высш. шк., 2000. 192 с.


Подобные документы

  • Непрерывная и точечная аппроксимация. Интерполяционные полиномы Лагранжа и Ньютона. Погрешность глобальной интерполяции, квадратичная зависимость. Метод наименьших квадратов. Подбор эмпирических формул. Кусочно-постоянная и кусочно-линейная интерполяции.

    курсовая работа [434,5 K], добавлен 14.03.2014

  • Способы построения интерполяционных многочленов Лагранжа, основные этапы. Интерполирование функций многочленами Ньютона, способы построения графика. Постановка задачи аппроксимации функции одной переменной, предпосылки повышения точности расчетов.

    презентация [204,5 K], добавлен 18.04.2013

  • В вычислительной математике существенную роль играет интерполяция функций. Формула Лагранжа. Интерполирование по схеме Эйткена. Интерполяционные формулы Ньютона для равноотстоящих узлов. Формула Ньютона с разделенными разностями. Интерполяция сплайнами.

    контрольная работа [131,6 K], добавлен 05.01.2011

  • Изучение аппроксимации таблично заданной функции методом наименьших квадратов при помощи вычислительной системы Mathcad. Исходные данные и функция, вычисляющая матрицу коэффициентов систему уравнений. Выполнение вычислений для разных порядков полинома.

    лабораторная работа [166,4 K], добавлен 13.04.2016

  • Постановка задачи аппроксимации методом наименьших квадратов, выбор аппроксимирующей функции. Общая методика решения данной задачи. Рекомендации по выбору формы записи систем линейных алгебраических уравнений. Решение систем методом обратной матрицы.

    курсовая работа [77,1 K], добавлен 02.06.2011

  • Аппроксимация и теория приближений, применение метода наименьших квадратов для оценки характера приближения. Квадратичное приближение таблично заданной функции по дискретной норме Гаусса. Интегральное приближение функции, которая задана аналитически.

    реферат [82,0 K], добавлен 05.09.2010

  • Аппроксимация функций методом наименьших квадратов. Описание программного средства: спецификация переменных, процедур и функций, схемы алгоритмов. Реализация расчетов в системе Mathcad. Порядок составления графика в данной среде программирования.

    курсовая работа [808,9 K], добавлен 09.05.2011

  • Вычисление производной по ее определению, с помощью конечных разностей и на основе первой интерполяционной формулы Ньютона. Интерполяционные многочлены Лагранжа и их применение в численном дифференцировании. Метод Рунге-Кутта (четвертого порядка).

    реферат [71,6 K], добавлен 06.03.2011

  • Исследование вопросов построения эмпирических формул методом наименьших квадратов средствами пакета Microsoft Excel и решение данной задачи в MathCAD. Сравнительная характеристика используемых средств, оценка их эффективности и перспективы применения.

    курсовая работа [471,3 K], добавлен 07.03.2015

  • Построение приближающей функции, используя исходные данные, с помощью методов Лагранжа, Ньютона и Эйткена (простая и упрощенная форма реализации). Алгоритм вычисления интерполяционного многочлена. Сравнение результатов реализации методов в среде Mathcad.

    курсовая работа [299,3 K], добавлен 30.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.