Доказательства неравенств с помощью одномонотонных последовательностей

Примеры неравенств, доказываемых техникой одномонотонных последовательностей. Обоснование данного метода для случая с произвольным числом переменных. Доказательство неравенств с минимальным числом переменных. Сравнение метода с доказательством Коши.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 05.02.2011
Размер файла 132,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Муниципальное общеобразовательное учреждение

Средняя общеобразовательная школа № 4

Секция: математика

ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА

по теме

Доказательства неравенств с помощью одномонотонных последовательностей

Позолотина Наталья Андреевна, 9б класс,

МОУ СОШ №4 Центрального района.

224-49-85

Руководитель: Тропина Наталья Валерьяновна,

кандидат педагогических наук,

доцент кафедры математического анализа НГПУ.

(Работа выполнена в МОУ СОШ №4)

Новосибирск 2008

Содержание

Введение

1. Основные понятия и определения

2. Обоснование метода одномонотонных последовательностей для случая с произвольным числом переменных

2.1 Доказательство неравенств с минимальным числом переменных

2.2 Случай с двумя последовательностями из двух переменных

Упражнения

2.3 Случай с двумя последовательностями из трех переменных

Упражнения

2.4 Случай с двумя последовательностями из n переменных

Упражнения

2.5 Случай с n последовательностями из n переменных

Упражнения

Заключение

Список использованной литературы

Введение

В школьном курсе математике мы изучали доказательства неравенств в основном двумя способами:

- сведение к очевидному с помощью равносильных преобразований;

- графически (исследование свойств и построение графиков функции)

Не существует универсального способа доказательства всех неравенств, и более того, не существует конкретных указаний для выбора способа доказательства. Поэтому любой новый способ доказательства неравенств представляет особый интерес.

В данном работе мы рассмотрим один из таких способов: доказательство неравенств с помощью одномонотонных последовательностей.

Работа состоит из 2-х параграфов. В первом параграфе я объясняю основные определения, которые нам понадобятся для работы. Во втором параграфе находится основная работа с примерами и упражнениями.

1. Основные понятия и определения

В данном параграфе мы рассмотрим основные понятия и определения, которые нам понадобятся для дальнейшей работы.

Определение 1. Множество - это совокупность, собрание, набор некоторых объектов по какому - либо общему для них признаку.

Определение 2. Натуральные числа N - это целые положительные числа 1, 2, 3, 4, 5,…

Определение 3. Целые числа Z - это числа 0, +1, +2, +3, +4, +5…:

Z = N -N {0}

Определение 4. Рациональные числа Q - это числа представимые обычными дробями в виде , где m є Z , n є N (или конечными, или бесконечными периодичными дробными).

Определение 5. Иррациональные числа I - это числа, представимые бесконечными непериодическими десятичными дробями и непредставимые в виде .

Определение 6. Вещественные (действительные) числа R - объединение множества рациональных и иррациональных чисел.

R=Q I

Определения 7. Неравенство - соотношение между величинами, показывающее, что одна величина больше или меньше другой.

Например: ,

Известно, что все неравенства подчиняются определенным свойствам, таким как:

а) a<b, b<ca<c

b) ab, baa=b

c) ab a+cb+c

d) a0 -a0

Определения 8. Доказать неравенство - установить истинность неравенства.

Неравенства бывают разными: с одной, двумя и более переменными, со степенями. Ля каждого неравенства существует свой способ доказательств. Мы рассмотрим еще один способ: через одномонотонные последовательности.

Определение 9. Следствие - из двух неравенств одно является следствием другого, если область истинности второго неравенства содержит в себе область истинности первого неравенства.

Обозначение: f1(x)>f2(x)ц1(x)>ц2(x) - второе неравенство - следствие первого.

Определение 10. Два неравенства называются равносильными, если каждое из них является следствием другого. Иначе это можно сформулировать так: два неравенства считаются равносильными, если их множества значений переменных, для которых они истинны, совпадают.

Обозначаются равносильные неравенства: f1(x)>f2(x)ц1(x)>ц2(x)

Эти определения аналогичны соответствующим определениям для уравнений. Как и для уравнений, можно сформулировать утверждения о действиях, преобразующих данное неравенство в равносильное ему. Такими действиями могут быть:

- прибавление к обеим частям неравенства одного слагаемого;

- перенос слагаемого с противоположным знаком из одной части неравенства в другую;

- умножение обеих частей на положительное число или положительную функцию и т.д.

Следует, однако, производя эти действия, следить, чтобы не изменилась область допустимых значений, так как иначе будет нарушена равносильность этих неравенств.

Определение 11. Метода математической индукции - метод доказательства неравенств, путем схожести доказательств от самого легкого к самому сложному.

Например, Р(n) - некоторое утверждение, зависимое от n є N

1) Проверяем правдивость Р(1)

2) Предполагаем, что P(k) истинно

3) Доказываем истинность Р(k+1)

4) Заключаем, что Р(n) истинно для любых n.

Определение 12. Одномонотонные последовательности - это последовательности чисел вида (а1 а2 … аn)(b1 b2 … bn) записанных в виде таблицы, где наибольшее из чисел а1 а2 … аn находится над наибольшим числом из чисел b1 b2 … bn и второе по величине из чисел а1 а2 … аn над вторым по величине из чисел b1 b2 … bn и т.д., другими словами обе последовательности одновременно возрастающие или одновременно убывающие.

Определение 13. Произведение одномонотонных последовательностей (а1, а2, …аn), (b 1, b2,…bn), …( d 1, d 2,…, d n) это число вида

= а1b1…d12b2…d2+ …+anbn…dn

2. Обоснование метода одномонотонных последовательностей для случая с произвольным числом переменных

Данный параграф разбит на пункты, в которых мы попробуем прийти к самому общему доказательству, для случая k последовательностей с n числом переменных, с помощью метода математической индукции.

2.1 Доказательство неравенств с минимальным числом переменных

а1*b1 - неравенство с минимальным числом переменных. Тогда

= a1b1.

Так как это неравенство минимальное из всех существующих, то сравнивать с похожим неравенством его просто невозможно.

2.2 Случай с двумя последовательностями из двух переменных

Если = a1b1. то =а1b12b2

Теорема 1. Пусть 1а2)(b1b2) - одномонотонные последовательности. Тогда

Доказательство

Действительно,

- =a1b1+a2b2-a1b2-a2b1 = (a1-a2) (b1-b2)

Так как последовательности (а1а2)(b1b2) одномонотонны, то числа a1-a2 и b1-b2 имеют одинаковый знак. Поэтому

(a1-a2)(b1-b2) 0.

Теорема доказана.

Упражнения

Данные ниже упражнения мы решим с помощью Теоремы 1

Упражнение №1.

Пусть a и b - положительные вещественные числа.

Доказать неравенство

a3 +b3 a2b+b2a.

Доказательство.

Заметим, прежде всего, что

a3 +b3 =, a2b+b2a =

А так как последовательности (a2, b2), (a, b) одномонотонны, то

А это значит, что a3 +b3 a2b+b2a.

Что и требовалось доказать.

Докажем это же неравенство, но другим способом.

Значит a3 +b3 a2b+b2a.

Что и требовалось доказать.

Мы не можем сказать какой из методов доказательства решения легче, так как в данном случае оба метода решения неравенства примерно одинаковые по сложности.

Упражнение №2.

Пусть a и b - положительные вещественные числа.

Доказать неравенство.

а2+b2.

Доказательство.

Заметим, прежде всего, что

а2+b2 =, ,

А так как последовательности (), () одномонотонны, то

.

Что и требовалось доказать.

2.3 Случай с двумя последовательностями из трех переменных

Рассмотрим последовательность (а123) и (b 1, b2,b3), и запишем в виде таблицы

Если последовательность (а123)(b1, b2 ,b3) записанных в виде таблицы, где наибольшее из чисел а123 находиться над наибольшим из чисел b 1,b2,b3, а второе по величине а123 находиться над вторым по величине из чисел b 1,b2,b3 , и где наименьшее из чисел а123 находиться над наименьшим из чисел b 1,b2,b3 то последовательность одномонотонная.

Если =a1b1, и =а1b12b2, то =а1b12b2+a3b3

Для доказательства следующих теорем нам понадобится одно свойство одномонотонных последовательностей, которое оформим в виде леммы.

Лемма. Если (а1, а2, …аn) и (b 1, b2,…bn) одномонотонные последовательности, то их произведение не изменится при перестановки местами столбцов.

Доказательство.

Рассмотрим последовательность с двумя переменными из двух переменных.

1b12b2.

Заметим, что а1b12b2 = а2b2+ а1b1 по переместительному свойству сложения. Значит, в самой таблице мы тоже можем переставлять столбцы переменных, при этом сохраняется одномонотонность последовательности. То есть

=

Теперь рассмотрим последовательность с двумя последовательностями из трех переменных.

1b12b2+a3b3.

Кроме того, что мы можем поменять переменные по переместительному свойству, а по сочетательному свойству мы можем объединять некоторые слагаемые, сохраняя одномонотонность последовательности. То есть

а1b12b2+a3b3= (a3b32b2)+ а1b1 =

Лемма доказана

Теорема 2. Пусть 1 а2 а3), (b1 b2 b3) - одномонотонные последовательности и ()(здесь и в дальнейшем) любая перестановка чисел b1 b2 b3. Тогда

.

Доказательство.

Действительно, если последовательность отличается от (b1 b2 b3) то найдется пара чисел k, l (1k<l3) такая, что последовательности (ak, al) и (bk, bl) не одномонотонны. Значит, поменяв местами числа и , мы увеличим всю сумму, а значит и всю сумму . То есть

, так как .

Очевидно, что за конечное число попарных перестановок элементов 2-ой строки можно получить одномонотонную последовательность.

Теорема доказана

Упражнения

Данные ниже упражнения мы решим с помощью Теоремы 2

Упражнение №1.

Пусть a и b и c - положительные вещественные числа.

Докажите неравенство.

a3+b3+c3a2b+b2c+c2a.

Доказательство.

Заметим, прежде всего, что

a3+b3+c3=, a2b+b2c+c2a =

А так как последовательности (a2, b2, c2), (a, b , c) одномонотонны, то

.

А это значит, что a3+b3+c3a2b+b2c+c2a.

Что и требовалось доказать.

Упражнение №2.

Пусть a и b и c - положительные вещественные числа.

Докажите неравенство.

.

Доказательство.

Заметим, прежде всего, что

и (a, b, c) и () одномонотонные последовательности, то

,

.

Складывая эти неравенства, мы получаем

.

Отделим дроби с одинаковым знаменателем в правой части

.

Вычислив, получаем

.

А это значит, что

Что и требовалось доказать

2.4 Случай с двумя последовательностями из n переменных

Рассмотрим одномонотонные последовательность (а1, а2, …аn) и (b 1, b2,…bn)

Если =a1b1, и =а1b12b2, то =а1b12b2…anbn

Теорема 3. Пусть (а1 а2 … аn), (b1 b2 … bn) - одномонотонные последовательности и ()перестановка чисел b1 b2 … bn. Тогда

.

Доказательство.

Действительно, если последовательность () отличается от (b1 b2 … bn) то найдется пара чисел k, l (1k<ln) такая, что последовательности (ak, al) и (bk, bl) не одномонотонны. Значит, поменяв местами числа и и , мы увеличим всю сумму, а значит и всю сумму . То есть

,

так как .

Очевидно, что за конечное число попарных перестановок элементов 2-ой строки можно получить одномонотонную последовательность.

Теорема доказана.

Следствие.

Для любого nN верно

.

Доказательство.

Но последовательности (а1 а2 … аn) и () не являются одномонотонными, и поэтому мы не можем воспользоваться теоремой 3.

Однако эти последовательности противомонотонны: числа в последовательностях расположены в обратном порядке - самому большому по величине соответствует самое маленькое, а самому маленькому соответствует самое большое. А из противомонотонных последовательностей сделать одномонотонные очень просто - достаточно все числа второй линии взять со знаком минус. В данном случае одномонотонными являются последовательности

1 а2 … аn) и ()

Поэтому

Отсюда и следует искомое неравенство

Следствие

Для любого nN верно

(Неравенство Чебышева).

Доказательство.

В силу теоремы 3 справедливы следующие n неравенства

Значит

В этих неравенствах левая часть не изменяется, а в правой части элементы второй строки меняются циклически.

Складываем все и получаем

Что и требовалось доказать

Упражнение №1.

Пусть a и b и c - положительные вещественные числа.

Докажите неравенство.

a3+b3+c3+d3a2b+b2c+c2d+d2a.

Доказательство.

Заметим, прежде всего, что

a3+b3+c3+d3=, a2b+b2c+c2d+d2a =.

А так как последовательности

(a2, b2, c 2, d3), (a, b , c, d)

одномонотонны, то

.

А это значит, что a3+b3+c3+d3a2b+b2c+c2d+d2a.

Что и требовалось доказать.

Доказательство этого неравенства с помощью одномонотонных последовательностей я не могу сравнить с другим доказательством, так как доказать другим способом это неравенство я не смогла.

2.5 Случай с n последовательностями из n переменных

Рассмотрим одномонотонные последовательность (а1, а2, …аn), (b1, b2,…bn), …(d 1, d 2,…, d n).

Если =a1b1, и =а1b12b2, и =а1b12b2…anbn,

то = а1b1…d12b2…d2+ …+anbn…dn

Теорема 4. Рассмотрим одномонотонные последовательности 1, а2, …аn), (b 1, b2,…bn), …, (d1, d2,…,dn). Тогда

.

Доказательство.

Действительно, если последовательность (a1, а2, …аn), (b'1, b'2,…b'n), …, (d'1, d'2,…,d'n) отличается от (а1, а2, …аn), (b 1, b2,…bn), …, (d1, d2,…,dn), то найдутся переменные k, l (1k<ln) такие, что последовательности (ak, al) и (bk, bl) …(dk, dl) не одномонотонны. Значит, поменяв местами числа ,, ak, al … dk, dl мы увеличим всю сумму, а значит и всю сумму . То

есть

,

так как .

Очевидно, что за конечное число попарных перестановок элементов n-ой строки можно получить одномонотонную последовательность.

Теорема доказана.

Пример

Упражнение 1

Пусть а1, а2, …аn - положительные вещественные числа.

Докажите, что

Это неравенство называется неравенством Коши о среднем арифметическом и среднем геометрическом. Докажем его двумя способами

Доказательство.

Перепишем его в виде:

, введя новые переменные

Имеем

Если сравнить эти два доказательства неравенства, можно заметить, что доказательство с помощью одномонотонных последовательностей гораздо легче в сравнении с доказательством Коши.

неравенство одномонотонный последовательность коши

Заключение

Работая по данной теме, я узнала новый способ доказательства неравенств, вспомнила уже изученные способы доказательства неравенств. Все упражнения в работе я решала сама.

Список использованной литературы

1. Большой справочник школьника. 5 - 11 кл. М. Дрофа, 2001 г.

2. В.В. Зайцев, В.В. Рыжков, М.И. Сканави. Элементарная математика (повторительный курс). М., Наука. 1976 г.

3. Р.Б. Алексеев, Л.Д. Курлядчик. Нетрадиционные способы доказательства традиционных неравенств. /Математика в школе. 1991 г. №4

4. Л. Пинтер, Й. Хегедыш. Упорядоченные наборы чисел и неравенства. /Квант. 1985 г. №12.

Размещено на http://www.allbest.ru/


Подобные документы

  • Однородные системы линейных неравенств и выпуклые конусы. Применение симплекс-метода для отыскания опорного решения системы линейных неравенств, ее геометрический смысл. Основная задача линейного программирования. Теорема Минковского, ее доказательство.

    курсовая работа [807,2 K], добавлен 03.04.2015

  • Сущность метода системосовокупностей как одного из распространенных и универсальных методов решения неравенств любого типа. Обобщение метода интервалов на тригонометрической окружности. Эффективность и наглядность графического метода решения задач.

    методичка [303,7 K], добавлен 14.03.2011

  • Данный электронный учебник по математике предназначен для изучения темы "Использование неравенств при решении олимпиадных задач". Постановка и реализация задачи. Теоретические сведения по неравенствам Йенсена, Коши, Коши-Буняковского и Бернулли.

    научная работа [124,1 K], добавлен 12.12.2009

  • Понятие неравенства, его сущность и особенности, классификация и разновидности. Основные свойства числовых неравенств. Методика графического решения неравенств второй степени. Системы неравенств с двумя переменными, с переменной под знаком модуля.

    реферат [118,9 K], добавлен 31.01.2009

  • Существование и способ построения фундаментального набора решений для систем, состоящих из одного или нескольких неравенств. Метод последовательного уменьшения числа неизвестных. Системы однородных и неоднородных произвольных линейных неравенств.

    курсовая работа [69,8 K], добавлен 09.12.2011

  • Теоретические сведения о числовых неравенствах и их свойствах. Линейные неравенства с одной переменной. Квадратные и рациональные неравенства. Особенности решения различных неравенств, содержащих знак модуля. Нестандартные методы решения неравенств.

    реферат [2,0 M], добавлен 18.01.2011

  • Стандартные методы решений уравнений и неравенств. Алгоритм решения уравнения с параметром. Область определения уравнения. Решение неравенств с параметрами. Влияние параметра на результат. Допустимые значения переменной. Точки пересечения графиков.

    контрольная работа [209,4 K], добавлен 15.12.2011

  • Геометрический смысл решений неравенств, уравнений и их систем. Определение понятия двойственности с помощью преобразования Лежандра. Разбор примеров нахождения переменных или коэффициентов при неизвестных в целевой функции двойственной задачи.

    дипломная работа [2,6 M], добавлен 30.04.2011

  • Некоторые применения производной. Использование основных теорем дифференциального исчисления к доказательству неравенств. Первообразная и интеграл в задачах элементарной математики. Монотонность интеграла. Некоторые классические неравенства.

    курсовая работа [166,4 K], добавлен 11.01.2004

  • Сведения из истории математики о решении уравнений. Применение на практике методов решения уравнений и неравенств, основанных на использовании свойств функции. Исследование уравнения на промежутках действительной оси. Угадывание корня уравнения.

    курсовая работа [1,4 M], добавлен 07.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.